.. .. Chapitre-i-Étude-bibliographique,

.. .. ,

. .. , I.1.1 Définition et caractéristiques physico-chimiques des déchets alimentaires, p.38

, Risque sanitaire de la politique « retour au sol »

, 47 I.2.2 Hygiénisation avant, pendant et après la méthanisation

I. , 3 Consommation énergétique de l'hygiénisation thermique

, Effet de la pré-hygiénisation thermique sur la production de méthane des intrants de méthanisation

, Technologies alternatives non-thermiques

, 3.2 Efficacité sur l'hygiénisation des intrants de méthanisation

, Effet sur la production de méthane des intrants de méthanisation

, Technologie alternative -Champs électriques pulsés (CEP)

, Microorganismes indicateurs caractérisant l'efficacité du traitement

, Modélisation des courbes de destruction microbienne

, Chapitre IV Hygiénisation des SPAN par CEP en batch

, Chapitre IV Hygiénisation

, Corrélation entre la conductivité électrique du milieu et la température, p.142

, Cinétiques de destruction des microorganismes indicateurs

, 2.3 Modélisation -Modèle de Weibull couplé avec modèle secondaire, IV.2.1 Effet de l'intensité du champ électrique et du temps de traitement

, 3.2 Effet de l'énergie délivrée par CEP

. .. , Récupération et croissance des bactéries indicatrices endommagées, p.156

, relèvent que le traitement traditionnel a peu d'effet sur l'inactivation des GRA dans les déchets alimentaires. Des études sur une élimination des GRA par hygiénisation et méthanisation pourront être envisagées. La réglementation concernant l'hygiénisation des biodéchets sera probablement de plus en plus stricte. En Europe, les sous-produits animaux doivent être hygiénisés

. États-unis, Il existe une forte possibilité que la liste de produits nécessitant une hygiénisation soit élargie pour couvrir plus de biodéchets potentiellement dangereux pour l'environnement et l'être humain, seules les boues d'épuration sont concernées

A. .. Annexes,

, Annexe-1 Résumé de l'abattement microbien par la digestion anaérobie

, Annexe-2 Publications parues dans les revues internationales

, Annexe-2 Publications parues dans les revues internationales

X. Liu, T. Lendormi, and J. Lanoisellé, Overview of hygienization pretreatment for pasteurization and methane potential enhancement of biowaste: Challenges, state of the art and alternative technologies, Journal of Cleaner Production, vol.236, p.117525, 2019.

X. Liu, T. Lendormi, M. L. Fellic, Y. Lemée, and J. Lanoisellé, Hygienization of mixed animal by-product using Pulsed Electric Field: inactivation kinetics modeling and recovery of indicator bacteria, Chemical Engineering Journal, vol.368, pp.1-9, 2019.

X. Liu, I. Souli, M. Chamaa, T. Lendormi, C. Sabourin et al., Effect of thermal pretreatment at 70 °C for one hour (EU hygienization conditions) of various organic wastes on methane production under mesophilic anaerobic digestion, AIMS Environmental Science, vol.5, issue.2, pp.117-129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02069282

X. Liu, T. Lendormi, and J. Lanoisellé, A review of hygienization technology of biowastes for anaerobic digestion: effect on pathogen inactivation and methane production, Chemical Engineering Transactions, vol.70, pp.529-534, 2018.

. Références,

. Eurostat, Total amount of waste generated by households and businesses, by waste category, p.24, 2018.

L. Franceagrimer, observatoire national des ressources en biomasse -Évaluation des ressources disponibles en France, Établissement national des produits de l'agriculture et de la mer, 2012.

C. Ji, C. Kong, Z. Mei, and J. Li, A Review of the Anaerobic Digestion of Fruit and Vegetable Waste, Appl Biochem Biotechnol, vol.183, pp.906-922, 2017.

, Règlement (CE) No 1069/2009 du Parlement Européen et du Conseil du 21 octobre 2009 établissant des règles sanitaires applicables aux sous-produits animaux et produits dérivés non destinés à la consommation humaine et abrogeant le règlement (CE) no 1774/2002 (règlement relatif aux sous-produits animaux), Journal Officiel de l'Union Européenne, vol.52, 2009.

T. R. Mathias, V. M. Alexandre, M. C. Cammarota, P. P. De-mello, and E. F. Sérvulo, Characterization and determination of brewer's solid wastes composition, Journal of the Institute of Brewing, vol.121, pp.400-404, 2015.

F. Xu, Y. Li, X. Ge, L. Yang, and Y. Li, Anaerobic digestion of food waste -Challenges and opportunities, Bioresource Technology, vol.247, pp.1047-1058, 2018.

S. Luste, S. Luostarinen, and M. Sillanpää, Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry, Journal of Hazardous Materials, vol.164, pp.247-255, 2009.

E. O. Uzodinma, A. U. Ofoefule, J. I. Eze, and N. D. Onwuka, Biogas Production from blends of Agro-industrial wastes, Trends Appl. Sci. Res, vol.2, pp.554-558, 2007.

R. A. Labatut, L. T. Angenent, and N. R. Scott, Biochemical methane potential and biodegradability of complex organic substrates, Bioresource Technology, vol.102, pp.2255-2264, 2011.

B. Farizoglu, B. Keskinler, E. Yildiz, and A. Nuhoglu, Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR), Journal of Hazardous Materials, vol.146, pp.399-407, 2007.

R. Li, S. Chen, X. Li, J. Saifullah-lar, Y. He et al., Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production, Energy Fuels, vol.23, pp.2225-2228, 2009.

D. Kim, S. Kim, H. Kim, M. Kim, and H. Shin, Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance, Bioresource Technology, vol.102, pp.8501-8506, 2011.

D. Divya, L. R. Gopinath, and P. M. Christy, A review on current aspects and diverse prospects for enhancing biogas production in sustainable means, Renewable and Sustainable Energy Reviews, vol.42, pp.690-699, 2015.

C. Zhang, G. Xiao, L. Peng, H. Su, and T. Tan, The anaerobic co-digestion of food waste and cattle manure, Bioresource Technology, vol.129, pp.170-176, 2013.

X. Liu, I. Souli, M. Chamaa, T. Lendormi, C. Sabourin et al., Effect of thermal pretreatment at 70 °C for one hour (EU hygienization conditions) of various organic wastes on methane production under mesophilic anaerobic digestion, AIMS Environmental Science, vol.5, pp.117-129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02069282

X. Li, L. Li, M. Zheng, G. Fu, and J. S. Lar, Anaerobic Co-Digestion of Cattle Manure with Corn Stover Pretreated by Sodium Hydroxide for Efficient Biogas Production, Energy Fuels, vol.23, pp.4635-4639, 2009.

H. B. Møller, S. G. Sommer, and B. K. Ahring, Methane productivity of manure, straw and solid fractions of manure, Biomass and Bioenergy, vol.26, pp.485-495, 2004.

L. Masse, D. I. Massé, and Y. Pellerin, The effect of pH on the separation of manure nutrients with reverse osmosis membranes, Journal of Membrane Science, vol.325, pp.914-919, 2008.

C. Laguë, H. Landry, and M. Roberge, Engineering of land application systems for livestock manure: A review, Canadian Biosystems Engineering, vol.47, p.6, 2005.

J. Gelegenis, D. Georgakakis, I. Angelidaki, and V. Mavris, Optimization of biogas production by co-digesting whey with diluted poultry manure, Renewable Energy, vol.32, pp.2147-2160, 2007.

J. E. Ruiz-espinoza, J. M. Méndez-contreras, A. Alvarado-lassman, and S. A. Martínez-delgadillo, Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge, Journal of Environmental Science and Health, pp.1795-1802, 2012.

S. Borowski, J. Doma?ski, and L. Weatherley, Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge, Waste Management, vol.34, pp.513-521, 2014.

, Politique intégrée des produits: Développement d'une réflexion environnementale axée sur le cycle de vie, 2003.

, Innovating for sustainable growth A bioeconomy for Europe, vol.13, 2012.

N. Mirabella, V. Castellani, and S. Sala, Current options for the valorization of food manufacturing waste: a review, Journal of Cleaner Production, vol.65, pp.28-41, 2014.

T. Vandermeersch, R. A. Alvarenga, P. Ragaert, and J. Dewulf, Environmental sustainability assessment of food waste valorization options, Resources, Conservation and Recycling, vol.87, pp.57-64, 2014.

Z. Li, H. Lu, L. Ren, and L. He, Experimental and modeling approaches for food waste composting: A review, Chemosphere, vol.93, pp.1247-1257, 2013.

A. Cerda, A. Artola, X. Font, R. Barrena, T. Gea et al., Composting of food wastes: Status and challenges, Bioresource Technology, vol.248, pp.57-67, 2018.

S. Wainaina, I. S. Horváth, and M. J. Taherzadeh, Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review, Bioresource Technology, vol.248, pp.113-121, 2018.

Y. Zhao, A. Damgaard, and T. H. Christensen, Bioethanol from corn stover -a review and technical assessment of alternative biotechnologies, Progress in Energy and Combustion Science, vol.67, pp.275-291, 2018.

T. P. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, Food waste-to-energy conversion technologies: Current status and future directions, Waste Management, vol.38, pp.399-408, 2015.

, 28/CE du Parlement Européen et du Conseil du 23 avril 2009 relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables et modifiant puis abrogeant les directives 2001/77/CE et 2003/30/CE, Journal Officiel de l'Union Européenne, p.140, 2009.

Y. Li, Y. Chen, and J. Wu, Enhancement of methane production in anaerobic digestion process: A review, Applied Energy, vol.240, pp.120-137, 2019.

V. Boy, X. Liu, M. Chamaa, Y. Lemée, C. Sabourin et al., Air impingement drying of digestate: Experimental and modelling study, Chemical Engineering Research and Design, vol.146, pp.436-448, 2019.

M. L. Hutchison, L. D. Walters, S. M. Avery, B. Synge, and A. Moore, Levels of zoonotic agents in British livestock manures, Letters in Applied Microbiology, vol.39, pp.207-214, 2004.

C. J. Ziemer, J. M. Bonner, D. Cole, J. Vinjé, V. Constantini et al., Fate and transport of zoonotic, bacterial, viral, and parasitic pathogens during swine manure treatment, storage, and land application, Journal of Animal Science, vol.88, pp.84-94, 2010.

A. Jaffrezic, E. Jardé, A. Pourcher, M. Gourmelon, M. Caprais et al., Microbial and Chemical Markers: Runoff Transfer in Animal Manure-Amended Soils, Journal of Environmental Quality, vol.40, pp.959-968, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00729293

Q. Sui, J. Zhang, M. Chen, R. Wang, Y. Wang et al., Fate of microbial pollutants and evolution of antibiotic resistance in three types of soil amended with swine slurry, Environmental Pollution, vol.245, pp.353-362, 2019.

E. J. Grant, D. A. Rouch, M. Deighton, and S. R. Smith, Pathogen Risks in lande-applied biosolides, AWA Water, vol.39, pp.72-78, 2012.

I. H. Franke-whittle and H. Insam, Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review, Critical Reviews in Microbiology, vol.39, pp.139-151, 2013.

G. Maynaud, A. Pourcher, C. Ziebal, A. Cuny, C. Druilhe et al., Persistence and Potential Viable but Non-culturable State of Pathogenic Bacteria during Storage of Digestates from Agricultural Biogas Plants, Front. Microbiol, vol.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512204

M. D. Sobsey, L. A. Khatib, V. R. Hill, E. Alocilja, and S. Pillai, Pathogens in animal wastes and the impacts of waste management practices on their survival, transport and fate, Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers, pp.609-666, 2006.

C. Chen, C. A. Pankow, M. Oh, L. S. Heath, L. Zhang et al., Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments, Environment International, vol.128, pp.233-243, 2019.

P. He, Z. Yu, L. Shao, Y. Zhou, and F. Lü, Fate of antibiotics and antibiotic-resistance genes in a full-scale restaurant food waste treatment plant: Implications of the roles beyond heavy metals and mobile genetic elements, Journal of Environmental Sciences, 2019.

,

J. Quilez, C. Sanchez-acedo, E. Cacho, A. Clavel, and A. C. Causape, Prevalence of Cryptosporidium and Giardia infections in cattle in Aragon (northeastern Spain), vol.66, pp.139-146, 1996.

A. Busato, D. Hofer, T. Lentze, C. Gaillard, and A. Burnens, Prevalence and infection risks of zoonotic enteropathogenic bacteria in Swiss cow-calf farms, Veterinary Microbiology, vol.69, pp.251-263, 1999.

M. Watabe, J. R. Rao, T. A. Stewart, J. Xu, B. C. Millar et al., Prevalence of bacterial faecal pathogens in separated and unseparated stored pig slurry, Letters in Applied Microbiology, vol.36, pp.208-212, 2003.

J. M. Schouten, A. W. Van-de-giessen, K. Frankena, M. C. Jong, and E. A. Graat, Escherichia coli O157 prevalence in Dutch poultry, pig finishing and veal herds and risk factors in Dutch veal herds, Preventive Veterinary Medicine, vol.70, pp.1-15, 2005.

J. A. Castro-hermida, C. Carro-corral, M. González-warleta, and M. Mezo, Prevalence and intensity of infection of Cryptosporidium spp. and Giardia duodenalis in dairy cattle in Galicia (NW Spain), vol.53, pp.244-246, 2006.

G. J. Gunn, I. J. Mckendrick, H. E. Ternent, F. Thomson-carter, G. Foster et al., An investigation of factors associated with the prevalence of verocytotoxin producing Escherichia coli O157 shedding in Scottish beef cattle, The Veterinary Journal, vol.174, pp.554-564, 2007.

J. I. Esteban, B. Oporto, G. Aduriz, R. A. Juste, and A. Hurtado, A survey of food-borne pathogens in free-range poultry farms, International Journal of Food Microbiology, vol.123, pp.177-182, 2008.

C. Hölzel and J. Bauer, Salmonella spp. in bavarian liquid pig manure: Occurrence and relevance for the distribution of antibiotic resistance, Zoonoses and Public Health, vol.55, pp.133-138, 2008.

A. Pourcher, P. Fravalo, and P. Dabert, Impact du traitement biologique du lisier de porcs sur les germes d'intérêt sanitaire: exemple de 17 élevages bretons, vol.40, pp.19-24, 2008.

R. Reinoso and E. Becares, The occurrence of intestinal parasites in swine slurry and their removal in activated sludge plants, Bioresource Technology, vol.99, pp.6661-6665, 2008.

A. Huneau-salaün, M. Chemaly, S. L. Bouquin, F. Lalande, I. Petetin et al., Risk factors for Salmonella enterica subsp. enterica contamination in 519 French laying hen flocks at the end of the laying period, Preventive Veterinary Medicine, vol.89, pp.51-58, 2009.

M. J. Vilar, F. J. Pena, I. Perez, F. J. Diéguez, M. L. Sanjuán et al., Presence of Listeria, Arcobacter, and Campylobacter spp. in dairy farms in Spain, Berliner Und Munchener Tierarztliche Wochenschrift, vol.123, pp.58-62, 2010.

C. Cunault, Développement d'une méthode d'hygiénisation thermique des effluents au moyen d'échangeurs de chaleur (application au lisier porcin), Université Rennes 1, November, vol.16, 2012.

A. Pourcher, C. Druilhe, C. L. Maréchal, E. Repérant, C. Ziebal et al., Devenir des bactéries indicatrices d'efficacité de traitement et de bactéries pathogènes au cours de la méthanisation mésophile des effluents d'élevages, 2018.

N. Wéry, A. Pourcher, and J. G. Fuchs, Compostage et Compostes : Avancées Scientifi Ques et Techniques, Amaury de Guardia, 2018.

J. Santamaría and G. A. Toranzos, Enteric pathogens and soil: a short review, Int Microbiol, vol.6, pp.5-9, 2003.

J. Martinez, P. Dabert, S. Barrington, and C. Burton, Livestock waste treatment systems for environmental quality, food safety, and sustainability, Bioresource Technology, vol.100, pp.5527-5536, 2009.

C. P. Gerba and J. E. Smith, Sources of Pathogenic Microorganisms and Their Fate during Land Application of Wastes, Journal of Environmental Quality, vol.34, pp.42-48, 2005.

L. Sahlström, A review of survival of pathogenic bacteria in organic waste used in biogas plants, Bioresource Technology, vol.87, issue.02, pp.168-170, 2003.

J. R. Bicudo and S. M. Goyal, Pathogens and manure management systems: A review, Environmental Technology, vol.24, pp.115-130, 2003.

A. Lowman, M. A. Mcdonald, S. Wing, and N. Muhammad, Land Application of Treated Sewage Sludge: Community Health and Environmental Justice, Environ Health Perspect, vol.121, pp.537-542, 2013.

D. Lewis and D. Gattie, Pathogen risks from applying sewage sludge to land, Environmental Science & Technology, pp.286-293, 2002.

D. L. Lewis, D. K. Gattie, M. E. Novak, S. Sanchez, and C. Pumphrey, Interactions of pathogens and irritant chemicals in land-applied sewage sludges (biosolids), BMC Public Health, vol.2, p.11, 2002.

. Us-epa, Environmental regulation and technology control of pathogens and vector attraction in sewage sludge, 2003.

, Règlement (CE) No 1774/2002 du Parlement Européen et du Conseil du 3 octobre 2002 établissant des règles sanitaires applicables aux sous-produits animaux non destinés à la consommation humaine, Official Journal of the European Communities, vol.45, 2002.

, Règlement (UE) No 142/2011 de la Commission du 25 février 2011 portant application du règlement (CE) n o 1069/2009 du parlement européen et du conseil établissant des règles sanitaires applicables aux sous-produits animaux et produits dérivés non destinés à la consommation humaine et portant application de la Directive 97/78/CE du Conseil en ce qui concerne certains échantillons et articles exemptés des contrôles vétérinaires effectués aux frontières en vertu de cette directive, Journal, 2011.

J. Grim, P. Malmros, A. Schnürer, and Å. Nordberg, Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant -Heat demand and biogas production, Energy, vol.79, pp.419-427, 2015.

C. O. Ball, Thermal process time for canned food, the National Research Council of the National Academy of Sciences, Washinton, D. C., the United States, 1923.

T. Amon and J. Boxberger, Organic wastes for codigestion in agricultural biogas plants: guidelines and legal conditions in Austria, pp.86-94, 1999.

H. J. Bendixen, Hygienic Safety-Results of scientific investigations in Denmark (Sanitation requirements in Danish biogas plants), in: IEA BioEnergy Workshop: Hygienic and Environmental Aspects of AD: Legislation and Experiences in Europe, 1999.

. Daff and . Ireland, Conditions for approval and operation of biogas plants treating animal by-products in Ireland, 2008.

, Ministry of Health of China, Hygienic requirements for harmless disposal of night soil, 2013.

, Animal by-products (Enforcement) Regulations

S. Sörqvist, Heat Resistance in Liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp, Acta Veterinaria Scandinavica, vol.44, 2003.

J. Coultry, E. Walsh, and K. P. Mcdonnell, Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland, Energy, vol.60, pp.125-128, 2013.

B. Scaglia, G. Imporzano, G. Garuti, M. Negri, and F. Adani, Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge, Science of The Total Environment, pp.888-897, 2014.

S. Nolan, N. R. Waters, F. Brennan, A. Auer, O. Fenton et al., Toward Assessing Farm-Based Anaerobic Digestate Public Health Risks: Comparative Investigation With Slurry, Effect of Pasteurization Treatments, and Use of Miniature Bioreactors as Proxies for Pathogen Spiking Trials, Frontiers in Sustainable Food Systems, vol.2, 2018.

D. C. Tápparo, A. Viancelli, A. C. Amaral, G. Fongaro, R. L. Steinmetz et al., Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure, Environmental Technology, vol.0, pp.1-9, 2018.

G. Qi, Z. Pan, Y. Yamamoto, F. J. Andriamanohiarisoamanana, T. Yamashiro et al., The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants, Animal Science Journal, vol.90, pp.297-303, 2019.

Q. Zhao and Y. Liu, Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge?, Science of The Total Environment, vol.668, pp.893-902, 2019.

C. Cunault, A. M. Pourcher, and C. H. Burton, Using temperature and time criteria to control the effectiveness of continuous thermal sanitation of piggery effluent in terms of set microbial indicators, Journal of Applied Microbiology, vol.111, pp.1492-1504, 2011.

E. Bagge, M. Persson, and K. Johansson, Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants, Journal of Applied Microbiology, vol.109, pp.1549-1565, 2010.

, US, In-Vessel Digestion Operations and Facilities Regulatory Requirements, vol.1, p.8515, 2016.

A. Haumont, F. Lafoux, and G. Vrignaud, Les enjeux sanitaires de la méthanisation, 2019.

S. Astals, C. Venegas, M. Peces, J. Jofre, F. Lucena et al., Balancing hygienization and anaerobic digestion of raw sewage sludge, Water Research, vol.46, pp.6218-6227, 2012.

U. Keller, Experiences and development of sludge paseurization in Altenrhein, Disinfection of Sewage Sludge: Technical, Economic and Microbiological Aspects, pp.57-60, 1983.

R. P. Clements, Sludge hygienization by means of pasteurisation prior to digestion, Disinfection of Sewage Sludge: Technical, Economic and Microbiological Aspects, pp.37-52, 1983.

M. Berglund and P. Börjesson, Assessment of energy performance in the life-cycle of biogas production, Biomass and Bioenergy, vol.30, pp.254-266, 2006.

,

M. Pöschl, S. Ward, and P. Owende, Evaluation of energy efficiency of various biogas production and utilization pathways, Applied Energy, vol.87, pp.3305-3321, 2010.

A. Whiting and A. Azapagic, Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion, Energy, vol.70, pp.181-193, 2014.

E. Lindkvist, M. T. Johansson, and J. Rosenqvist, Methodology for Analysing Energy Demand in Biogas Production Plants-A Comparative Study of Two Biogas Plants, Energies, p.1822, 2017.

M. Edström, A. Nordberg, and L. Thyselius, Anaerobic Treatment of Animal Byproducts from Slaughterhouses at Laboratory and Pilot Scale, Applied Biochemistry and Biotechnology, vol.109, pp.127-138, 2003.

M. Climent, I. Ferrer, M. Baeza, A. Artola, F. Vázquez et al., Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions, Chemical Engineering Journal, vol.133, pp.335-342, 2007.

I. Ferrer, S. Ponsá, F. Vázquez, and X. Font, Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion, Biochemical Engineering Journal, vol.42, pp.186-192, 2008.

A. Hejnfelt and I. Angelidaki, Anaerobic digestion of slaughterhouse by-products, Biomass and Bioenergy, vol.33, pp.1046-1054, 2009.

S. Luste and S. Luostarinen, Anaerobic co-digestion of meat-processing by-products and sewage sludge -Effect of hygienization and organic loading rate, Bioresource Technology, vol.101, pp.2657-2664, 2010.

R. Rafique, T. G. Poulsen, A. Nizami, Z. Asam, J. D. Murphy et al., Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production, Energy, vol.35, pp.4556-4561, 2010.

S. Luste and S. Luostarinen, Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry, Waste Management, vol.31, pp.2174-2179, 2011.

A. Rodríguez-abalde, B. Fernández, G. Silvestre, and X. Flotats, Effects of thermal pretreatments on solid slaughterhouse waste methane potential, Waste Management, vol.31, pp.1488-1493, 2011.

S. Luste, H. Heinonen-tanski, and S. Luostarinen, Co-digestion of dairy cattle slurry and industrial meat-processing by-products -Effect of ultrasound and hygienization pretreatments, Bioresource Technology, vol.104, pp.195-201, 2012.

Y. Yan, H. Chen, W. Xu, Q. He, and Q. Zhou, Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment, Biochemical Engineering Journal, vol.70, pp.127-134, 2013.

P. Vergine, J. Zábranská, and R. Canziani, Low temperature microwave and conventional heating pre-treatments to improve sludge anaerobic biodegradability, Water Science and Technology, vol.69, pp.518-524, 2014.

A. Ware and N. Power, What is the effect of mandatory pasteurisation on the biogas transformation of solid slaughterhouse wastes?, Waste Management, vol.48, pp.503-512, 2016.

L. Nazari, Z. Yuan, D. Santoro, S. Sarathy, D. Ho et al., Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation, Water Research, vol.113, pp.111-123, 2017.

M. and L. Guen, La boîte à moustaches de TUKEY, un outil pour initier à la statistique, Statistiquement Votre -SFDS, pp.1-3, 2001.

. Wikipedia, . Box-plot, and . Wikipedia, , 2019.

M. A. Chamaa, Couplage de la méthanisation et des électrotechnologies : intentisification de la production de biogaz et du séchage du digestat, phdthesis, April, vol.27, 2017.

J. G. Brennan and A. S. Grandison, Food Processing Handbook

M. Wang and L. Wang,

X. Dai and . Zeng, A review of sublethal effects of pulsed electric field on cells in food processing, Journal of Food Engineering, vol.223, pp.32-41, 2018.

V. K. Tyagi and S. Lo, Microwave irradiation: A sustainable way for sludge treatment and resource recovery, Renewable and Sustainable Energy Reviews, vol.18, pp.288-305, 2013.

I. Toreci, K. J. Kennedy, and R. L. Droste, Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment, Water Research, vol.43, pp.1273-1284, 2009.

M. F. Martín, G. V. Barbosa-cánovas, and B. G. Swanson, Food Processing by High Hydrostatic Pressure, Critical Reviews in Food Science and Nutrition, vol.42, pp.627-645, 2002.

P. Piyasena, E. Mohareb, and R. C. Mckellar, Inactivation of microbes using ultrasound: a review, International Journal of Food Microbiology, vol.87, pp.207-216, 2003.

C. Keles, G. T. Icemer, and S. Ozen, Inactivation of Salmonella spp. by low-frequency electric fields in sewage sludge, Int. J. Civil Environ Eng, vol.10, pp.13-18, 2010.

S. M. Hong, J. K. Park, and Y. ,

. Lee, Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids, Water Research, vol.38, pp.1615-1625, 2004.

D. I. Martin, I. Margaritescu, E. Cirstea, I. Togoe, D. Ighigeanu et al., Application of accelerated electron beam and microwave irradiation to biological waste treatment, Vacuum, vol.77, pp.501-506, 2005.

S. M. Hong, J. K. Park, N. Teeradej, Y. O. Lee, Y. K. Cho et al., Pretreatment of Sludge with Microwaves for Pathogen Destruction and Improved Anaerobic Digestion Performance, Water Environment Research, vol.78, pp.76-83, 2006.

S. A. Pino-jelcic, S. M. Hong, and J. K. Park, Enhanced Anaerobic Biodegradability and Inactivation of Fecal Coliforms and Salmonella spp, Wastewater Sludge by Using Microwaves, vol.78, pp.209-216, 2006.

D. Akgul, M. A. Cella, and C. Eskicioglu, Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge, Energy, vol.123, pp.271-282, 2017.

C. P. Chu, D. J. Lee, B. Chang, C. S. You, and J. H. Tay, Weak" ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids, Water Research, vol.36, pp.2681-2688, 2002.

M. Ruiz-hernando, J. Martín-díaz, J. Labanda, J. Mata-alvarez, J. Llorens et al., Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential, Water Research, vol.61, pp.119-129, 2014.

M. Mushtaq, C. J. Banks, and S. Heaven, Evaluation of pressurised carbon dioxide pretreatment aimed at improving the sanitisation and anaerobic digestibility of co-settled sewage sludge, Journal of Environmental Science and Health, Part A, pp.1-8, 2018.

F. Yin, L. Zifu, S. Mayiani, and D. , Performance of alkaline pretreatment on pathogens inactivation and sludge solubilization, International Journal of Agricultural and Biological Engineering, vol.10, pp.216-223, 2017.

R. Française, Arrêté du 8 février 2012 modifiant l'arrêté du 15 septembre 2006 relatif au diagnostic de performance énergétique pour les bâtiments existants proposés à la vente en France métropolitaine, Journal Officiel de la République Française, p.4710, 2012.

A. H. Santos, M. T. Fagá, and E. M. Santos, The risks of an energy efficiency policy for buildings based solely on the consumption evaluation of final energy, International Journal of Electrical Power & Energy Systems, vol.44, pp.70-77, 2013.

P. Thollander, P. Rohdin, B. Moshfegh, M. Karlsson, M. Söderström et al., Energy in Swedish industry 2020 -current status, policy instruments, and policy implications, vol.51, pp.109-117, 2013.

, Energy Policies of IEA Countries -Sweden, Review, 2019.

R. Cano, S. I. Pérez-elvira, and F. Fdz-polanco, Energy feasibility study of sludge pretreatments: A review, Applied Energy, vol.149, pp.176-185, 2015.

H. Carrère, C. Dumas, A. Battimelli, D. J. Batstone, J. P. Delgenès et al., Pretreatment methods to improve sludge anaerobic degradability: A review, Journal of Hazardous Materials, vol.183, pp.1-15, 2010.

G. Zhen, X. Lu, H. Kato, Y. Zhao, and Y. Li, Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives, Renewable and Sustainable Energy Reviews, vol.69, pp.559-577, 2017.

H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli et al., Review of feedstock pretreatment strategies for improved anaerobic digestion: From labscale research to full-scale application, Bioresource Technology, vol.199, pp.386-397, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02640339

A. Tiehm, K. Nickel, and U. Neis, The use of ultrasound to accelerate the anaerobic digestion of sewage sludge, Water Science and Technology, vol.36, pp.676-684, 1997.

M. Engelhart, M. Kruger, and J. , Effects of disintegration on anaerobic degradation of sewage excess sludge in downflow stationary fixed film digesters, pp.171-180, 1999.

Q. Wang, M. Kuninobu, K. Kakimoto, H. I. Ogawa, and Y. Kato, Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment, Bioresource Technology, vol.68, pp.309-313, 1999.

M. Weemaes, H. Grootaerd, F. Simoens, and W. Verstraete, Anaerobic digestion of ozonized biosolids, Water Research, vol.34, issue.99, pp.373-378, 2000.

T. I. Onyeche, O. Schläfer, H. Bormann, C. Schröder, and M. Sievers, Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion, Ultrasonics, vol.40, pp.31-35, 2002.

I. T. Yeom, K. R. Lee, K. H. Ahn, and S. H. Lee, Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants, Water Sci. Technol, vol.46, pp.421-425, 2002.

M. Barjenbruch and O. Kopplow, Enzymatic, mechanical and thermal pre-treatment of surplus sludge, Advances in Environmental Research, vol.7, pp.32-33, 2003.

R. Goel, T. Tokutomi, H. Yasui, and T. Noike, Optimal process configuration for anaerobic digestion with ozonation, Water Sci. Technol, vol.48, pp.85-96, 2003.

,

J. B. Bien, G. Malina, J. D. Bien, and L. Wolny, Enhancing anaerobic fermentation of sewage sludge for increasing biogas generation, Journal of Environmental Science and Health, Part A, vol.39, pp.939-949, 2004.

A. Valo, H. Carrère, and J. P. Delgenès, Thermal, chemical and thermo-chemical pretreatment of waste activated sludge for anaerobic digestion, Journal of Chemical Technology & Biotechnology, vol.79, pp.1197-1203, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682047

C. Bougrier, H. Carrère, and J. P. Delgenès, Solubilisation of waste-activated sludge by ultrasonic treatment, Chemical Engineering Journal, vol.106, pp.163-169, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681370

H. Choi, S. Jeong, and Y. Chung, Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique, Bioresource Technology, vol.97, pp.198-203, 2006.

C. Bougrier, A. Battimelli, J. Delgenes, and H. Carrere, Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment, Ozone: Science & Engineering, vol.29, pp.201-206, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666254

R. Xie, Y. Xing, Y. A. Ghani, K. Ooi, and S. Ng, Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge, J. Environ. Eng. Sci, vol.6, pp.533-541, 2007.

C. M. Braguglia, G. Mininni, and A. Gianico, Is sonication effective to improve biogas production and solids reduction in excess sludge digestion, Water Science and Technology, vol.57, pp.479-483, 2008.

M. Carlsson, A. Lagerkvist, and H. Ecke, Electroporation for enhanced methane yield from municipal solid waste, ORBIT 2008: Moving Organic Waste Recycling Towards Resource Management and Biobased Economy, 2008.

B. E. Rittmann, H. Lee, H. Zhang, J. Alder, J. E. Banaszak et al., Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane, Water Science and Technology, vol.58, pp.1895-1901, 2008.

Y. Lin, D. Wang, S. Wu, and C. Wang, Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge, Journal of Hazardous Materials, vol.170, pp.366-373, 2009.

M. B. Salerno, H. Lee, P. Parameswaran, and B. E. Rittmann, Using a Pulsed Electric Field as a Pretreatment for Improved Biosolids Digestion and Methanogenesis, Water Environment Research, vol.81, pp.831-839, 2009.

M. R. Salsabil, A. Prorot, M. Casellas, and C. Dagot, Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility, Chemical Engineering Journal, vol.148, pp.327-335, 2009.

G. Erden and A. Filibeli, Ultrasonic pre-treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability, Journal of Chemical Technology & Biotechnology, vol.85, pp.145-150, 2010.

X. Yang, X. Wang, and L. Wang, Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process, Bioresource Technology, vol.101, pp.2580-2584, 2010.

S. Beszédes, Z. László, Z. H. Horváth, G. Szabó, and C. Hodúr, Comparison of the effects of microwave irradiation with different intensities on the biodegradability of sludge from the dairy-and meat-industry, Bioresource Technology, vol.102, pp.814-821, 2011.

C. M. Braguglia, A. Gianico, and G. Mininni, Laboratory-scale ultrasound pre-treated digestion of sludge: Heat and energy balance, Bioresource Technology, vol.102, pp.7567-7573, 2011.

N. M. Coelho, R. L. Droste, and K. J. Kennedy, Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge, Water Research, vol.45, pp.2822-2834, 2011.

D. C. Devlin, S. R. Esteves, R. M. Dinsdale, and A. J. Guwy, The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge, Bioresource Technology, vol.102, pp.4076-4082, 2011.

I. Lee and B. E. Rittmann, Effect of low solids retention time and focused pulsed pretreatment on anaerobic digestion of waste activated sludge, Bioresource Technology, vol.102, pp.2542-2548, 2011.

H. Li, C. Li, W. Liu, and S. Zou, Optimized alkaline pretreatment of sludge before anaerobic digestion, Bioresource Technology, vol.123, pp.189-194, 2012.

L. Shao, X. Wang, H. Xu, and P. He, Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism, Journal of Environmental Sciences, vol.24, issue.11, pp.61031-61031, 2012.

S. Zhang, P. Zhang, G. Zhang, J. Fan, and Y. Zhang, Enhancement of anaerobic sludge digestion by high-pressure homogenization, Bioresource Technology, vol.118, pp.496-501, 2012.

L. Appels, S. Houtmeyers, J. Degrève, J. Van-impe, and R. Dewil, Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion, Bioresource Technology, vol.128, pp.598-603, 2013.

C. Cheng and P. K. Hong, Anaerobic digestion of activated sludge after pressureassisted ozonation, Bioresource Technology, vol.142, pp.69-76, 2013.

R. Rani, S. Kumar, S. Kaliappan, I. Yeom, and J. R. Banu, Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge, Waste Management, vol.33, pp.1119-1127, 2013.

I. Zawieja and L. Wolny, Ultrasonic disintegration of sewage sludge to increase biogas generation, Chemical and Biochemical Engineering Quarterly, vol.27, pp.491-497, 2013.

A. Cesaro, S. Velten, V. Belgiorno, and K. Kuchta, Enhanced anaerobic digestion by ultrasonic pretreatment of organic residues for energy production, Journal of Cleaner Production, vol.74, pp.119-124, 2014.

S. Houtmeyers, J. Degrève, K. Willems, R. Dewil, and L. Appels, Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semicontinuous anaerobic digestion of waste activated sludge, Bioresource Technology, vol.171, pp.44-49, 2014.

A. K. Wahidunnabi and C. Eskicioglu, High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge, Water Research, vol.66, pp.430-446, 2014.

W. Wonglertarak and B. Wichitsathian, Alkaline Pretreatment of Waste Activated Sludge in Anaerobic Digestion, Journal of Clean Energy Technologies, pp.118-121, 2014.

A. V. Ebenezer, P. Arulazhagan, S. Kumar, I. Yeom, and J. R. Banu, Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge, Applied Energy, vol.145, pp.104-110, 2015.

D. Ki, P. Parameswaran, S. C. Popat, B. E. Rittmann, and C. I. Torres, Effects of prefermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells, Bioresource Technology, vol.195, pp.83-88, 2015.

M. Á. Martín, I. González, A. Serrano, and J. Á. Siles, Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge, Journal of Environmental Management, vol.147, pp.330-337, 2015.

V. Riau, M. A. De-la-rubia, and M. Pérez, Upgrading the temperature-phased anaerobic digestion of waste activated sludge by ultrasonic pretreatment, Chemical Engineering Journal, vol.259, pp.672-681, 2015.

X. Zhou, Q. Wang, and G. Jiang, Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process, Bioresource Technology, vol.182, pp.267-271, 2015.

S. Pilli, S. Yan, R. D. Tyagi, and R. Y. Surampalli, Anaerobic digestion of ultrasonicated sludge at different solids concentrations -Computation of mass-energy balance and greenhouse gas emissions, Journal of Environmental Management, vol.166, pp.374-386, 2016.

A. Serrano, J. A. Siles, M. A. Martín, A. F. Chica, F. S. Estévez-pastor et al., Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment, Journal of Environmental Management, vol.177, pp.231-239, 2016.

L. Zou, C. Ma, J. Liu, M. Li, M. Ye et al., Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement, Bioresource Technology, vol.222, pp.82-88, 2016.

S. M. Safavi and R. Unnthorsson, Methane yield enhancement via electroporation of organic waste, Waste Management, vol.66, pp.61-69, 2017.

S. M. Safavi and R. Unnthorsson, Enhanced methane production from pig slurry with pulsed electric field pre-treatment, Environmental Technology, vol.39, pp.479-489, 2018.

H. Hülsheger, J. Potel, and E. Niemann, Electric field effects on bacteria and yeast cells, Radiation and Environmental Biophysics, vol.22, pp.149-162, 1983.

L. Barsotti and J. C. Cheftel, Food processing by pulsed electric fields, Food Reviews International, vol.15, pp.181-213, 1999.

J. C. Weaver and Y. A. Chizmadzhev, Theory of electroporation: A review, Bioelectrochemistry and Bioenergetics, vol.41, issue.96, pp.5062-5065, 1996.

U. Zimmermann, Electrical breakdown, electropermeabilization and electrofusion, Reviews of Physiology, vol.105, pp.175-256, 1986.

T. Kotnik, L. Rems, M. Tarek, and D. Miklav?i?, Membrane Electroporation and Electropermeabilization: Mechanisms and Models, vol.48, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02275571

B. Roodenburg, J. Morren, H. E. Berg, and S. W. De-haan, Metal release in a stainless steel Pulsed Electric Field (PEF) system: Part I. Effect of different pulse shapes; theory and experimental method, Innovative Food Science & Emerging Technologies, vol.6, pp.327-336, 2005.

Q. Zhang, G. V. Barbosa-cánovas, and B. G. Swanson, Engineering aspects of pulsed electric field pasteurization, Journal of Food Engineering, vol.25, pp.261-281, 1995.

B. Qin, F. Chang, G. V. Barbosa-cánovas, and B. G. Swanson, Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields, LWT -Food Science and Technology, vol.28, pp.90002-90002, 1995.

P. Elez-martínez, J. Escolà-hernández, R. C. Soliva-fortuny, and O. Martín-belloso, Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields, J. Food Prot, vol.67, pp.2596-2602, 2004.

P. Elez-martínez, J. Escolà-hernández, R. C. Soliva-fortuny, and O. Martín-belloso, Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields, Food Microbiology, vol.22, pp.311-319, 2005.

J. Mosqueda-melgar, P. Elez-martínez, R. M. Raybaudi-massilia, and O. Martín-belloso, Effects of Pulsed Electric Fields on Pathogenic Microorganisms of Major Concern in Fluid Foods: A Review, vol.48, pp.747-759, 2008.

Y. Pan, D. Sun, and Z. Han, Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview, Trends in Food Science & Technology, vol.64, pp.13-22, 2017.

S. Jeyamkondan, D. S. Jayas, and R. A. Holley, Pulsed Electric Field Processing of Foods: A Review, Journal of Food Protection, vol.62, pp.1088-1096, 1999.

S. Ho and G. S. , High Voltage Pulsed Electrical Field for Liquid Food Pasteurization, Food Reviews International, vol.16, pp.395-434, 2000.

N. K. Rastogi, Application of high-intensity pulsed electrical fields in food processing, Food Rev. Int, vol.19, pp.229-251, 2003.

, Requisite Scientific Parameters for Establishing the Equivalence of Alternative Methods of Pasteurization, Journal of Food Protection, vol.69, pp.1190-1216, 2006.

D. Gerlach, N. Alleborn, A. Baars, A. Delgado, J. Moritz et al., Numerical simulations of pulsed electric fields for food preservation: A review, Innovative Food Science & Emerging Technologies, vol.9, pp.408-417, 2008.

K. Huang and J. Wang, Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: A review, Journal of Food Engineering, vol.95, pp.227-239, 2009.

F. Sampedro, M. Rodrigo, A. Martinez, D. Rodrigo, and G. V. Barbosa-canovas, Quality and safety aspects of PEF application in milk and milk products, Crit. Rev. Food Sci. Nutr, vol.45, pp.25-47, 2005.

J. H. Chen, Y. Ren, J. Seow, T. Liu, W. S. Bang et al., Intervention technologies for ensuring microbiological safety of meat: current and future trends, Comprehensive Reviews in Food Science and Food Safety, vol.11, pp.119-132, 2012.

I. Odriozola-serrano, I. Aguiló-aguayo, R. Soliva-fortuny, and O. Martín-belloso, Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods, Trends in Food Science & Technology, vol.29, pp.98-107, 2013.

P. Sharma, I. Oey, and D. W. Everett, Effect of pulsed electric field processing on the functional properties of bovine milk, Trends in Food Science & Technology, vol.35, pp.87-101, 2014.

K. Yogesh, Pulsed electric field processing of egg products: a review, Journal of Food Science and Technology, vol.53, pp.934-945, 2016.

F. Lebovka, N. Vorobiev, and E. Chemat, Enhancing extraction processes in the food industry, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02802067

J. M. Jay, M. J. Loessner, and D. A. Golden, Modern food microbiology, 2012.

. Jay+jm, , pp.8-750

. Ussjprasklpxy, , 2017.

E. Vorobiev and N. Lebovka, Electrotechnologies for extraction from food plants and biomaterials, November, vol.16, 2016.

V. Heinz, I. Alvarez, A. Angersbach, and D. Knorr, Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design, Science & Technology, vol.12, pp.103-111, 2001.

I. Álvarez, J. Raso, A. Palop, and F. J. Sala, Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields, International Journal of Food Microbiology, vol.55, pp.143-146, 2000.

G. V. Barbosa-cánovas, U. R. Pothakamury, P. M. Gongora-nieto, and B. G. Swanson, Preservation of Foods with Pulsed Electric Fields, 1999.

Q. Zhang, A. Monsalve-gonzález, B. Qin, G. V. Barbosa-cánovas, and B. G. Swanson, Inactivation of Saccharomyces cerevisiae in apple juice by square-wave and exponentialdecay Pulsed Electric Fields, Journal of Food Process Engineering, vol.17, pp.469-478, 1994.

Q. Zhang, A. Monsalve-gonzález, G. V. Barbosa-cánovas, and B. G. Swanson, Inactivation of E. Coli and S. Cerevisiae by Pulsed Electric Fields under controlled temperature conditions, Transactions of the ASAE, vol.37, pp.581-587, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01792385

S. Damar, F. Bozog?lu, M. H?zal, and A. Bay?nd?rl?, Inactivation and injury of Escherichia coli O157:H7 and Staphylococcus aureus by pulsed electric fields, World Journal of Microbiology and Biotechnology, vol.18, pp.1-6, 2002.

G. Donsì, G. Ferrari, and G. Pataro, Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: The effect of electric field unevenness and initial cell concentration, Journal of Food Engineering, vol.78, pp.784-792, 2007.

S. Jayaram, G. S. Castle, and A. Margaritis, Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses, Biotechnology and Bioengineering, vol.40, pp.1412-1420, 1992.

P. Molinari, A. M. Pilosof, and R. J. Jagus, Effect of growth phase and inoculum size on the inactivation of Saccharomyces cerevisiae in fruit juices, by pulsed electric fields, Food Research International, vol.37, pp.793-798, 2004.

H. Jacob, W. Förster, and H. Berg, Microbiological implications of electric field effects II. Inactivation of yeast cells and repair of their cell envelope, Zeitschrift Für Allgemeine Mikrobiologie, vol.21, pp.225-233, 1981.

I. Álvarez, R. Pagán, J. Raso, and S. Condón, Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields, Letters in Applied Microbiology, vol.35, pp.489-493, 2002.

M. Somolinos, D. García, P. Mañas, S. Condón, and R. Pagán, Effect of environmental factors and cell physiological state on Pulsed Electric Fields resistance and repair capacity of various strains of Escherichia coli, International Journal of Food Microbiology, vol.124, pp.260-267, 2008.

K. Huang, L. Yu, D. Liu, L. Gai, and J. Wang, Modeling of yeast inactivation of PEF-treated Chinese rice wine: Effects of electric field intensity, treatment time and initial temperature, Food Research International, vol.54, pp.456-467, 2013.

H. Masood, P. J. Cullen, N. A. Lee, and F. J. Trujillo, Reactor modelling of treatment chamber for the inactivation of Escherichia coli by radio frequency electric field -mechanistic versus empirical approaches, Journal of Chemical Technology & Biotechnology, vol.93, pp.3512-3525, 2018.

H. E. Zakhem, Inactivation des suspensions microbiennes de Saccharomyces cerevisiae et d'Escherichia coli par champs électriques pulsés modérés, November, vol.16, 2006.

B. Gómez, P. E. Munekata, M. Gavahian, F. J. Barba, F. J. Martí-quijal et al., Application of pulsed electric fields in meat and fish processing industries: An overview, Food Research International, vol.123, pp.95-105, 2019.

P. C. Wouters, N. Dutreux, J. P. Smelt, and H. L. Lelieveld, Effects of Pulsed Electric Fields on Inactivation Kinetics of Listeria innocua, vol.65, pp.5364-5371, 1999.

I. Álvarez, J. Raso, F. J. Sala, and S. Condón, Inactivation of Yersinia enterocolitica by pulsed electric fields, Food Microbiology, vol.20, pp.33-42, 2003.

F. Sampedro, A. Rivas, D. Rodrigo, A. Martínez, and M. Rodrigo, Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters, Journal of Food Engineering, vol.80, pp.931-938, 2007.

G. A. Evrendilek and Q. H. Zhang, Effects of pulse polarity and pulse delaying time on pulsed electric fields-induced pasteurization of E. coli O157:H7, Journal of Food Engineering, vol.68, pp.271-276, 2005.

L. Picart, E. Dumay, and J. C. Cheftel, Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: influence of electric parameters and food composition, Innovative Food Science & Emerging Technologies, vol.3, pp.55-58, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02059728

J. Raso, W. Frey, G. Ferrari, G. Pataro, D. Knorr et al., Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes, Innovative Food Science & Emerging Technologies, vol.37, pp.312-321, 2016.

S. Monfort, E. Gayán, G. Saldaña, E. Puértolas, S. Condón et al., Inactivation of Salmonella Typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg, Innovative Food Science & Emerging Technologies, vol.11, pp.306-313, 2010.

J. M. Wood, Bacterial responses to osmotic challenges, The Journal of General Physiology, vol.145, pp.381-388, 2015.

K. Aronsson and U. Rönner, Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields, Innovative Food Science & Emerging Technologies, vol.2, pp.30-33, 2001.

J. Chirife, C. F. Fontan, and E. A. Benmergui, The prediction of water activity in aqueous solutions in connection with intermediate moisture foods IV. aW Prediction in aqueous non electrolyte solutions, International Journal of Food Science & Technology, vol.15, pp.59-70, 1980.

S. Jayaram, G. S. Castle, and A. Margaritis, The effects of high field DC pulse and liquid medium conductivity on survivability of Lactobacillus brevis, Appl Microbiol Biotechnol, vol.40, pp.117-122, 1993.

S. Y. Ho, G. S. Mittal, J. D. Cross, and M. W. Griffiths, Inactivation of Pseudomonas fluorescens by High Voltage Electric Pulses, Journal of Food Science, vol.60, pp.1337-1340, 1995.

H. Vega-mercado, U. R. Pothakamury, F. Chang, G. V. Barbosa-cánovas, and B. G. Swanson, Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles, Food Research International, vol.29, pp.117-121, 1996.

O. Martín, B. L. Qin, F. J. Chang, G. V. Barbosa-cánovas, and B. G. Swanson, Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields, Journal of Food Process Engineering, vol.20, pp.317-336, 1997.

T. Grahl and H. Märkl, Killing of microorganisms by pulsed electric fields, Applied Microbiology and Biotechnology, vol.45, pp.148-157, 1996.

L. D. Reina, Z. T. Jin, Q. H. Zhang, and A. E. Yousef, Inactivation of Listeria monocytogenes in Milk by Pulsed Electric Field, Journal of Food Protection, vol.61, pp.1203-1206, 1998.

N. Dutreux, S. Notermans, T. Wijtzes, M. M. Góngora-nieto, G. V. Barbosa-cánovas et al., Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions, International Journal of Food Microbiology, vol.54, pp.91-98, 2000.

P. Mañas, L. Barsotti, and J. C. Cheftel, Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents, Innovative Food Science & Emerging Technologies, vol.2, pp.41-49, 2001.

D. García, N. Gómez, P. Mañas, J. Raso, and R. Pagán, Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated, International Journal of Food Microbiology, vol.113, pp.219-227, 2007.

Y. W. Huang, M. Q. Chen, and L. Jia, Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced convective drying, Applied Thermal Engineering, vol.96, pp.209-216, 2016.

M. Walkling-ribeiro, O. Rodríguez-gonzález, S. H. Jayaram, and M. W. Griffiths, Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer, Food Research International, vol.44, pp.2524-2533, 2011.

X. Qiu, Y. T. Lee, and P. T. Yung, A bacterial spore model of pulsed electric fields on spore morphology change revealed by simulation and SEM, pp.6822-6825, 2014.

C. Siemer, S. Toepfl, and V. Heinz, Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy -I. Influence of process-and product parameters, Food Control, vol.39, pp.163-171, 2014.

F. Pillet, C. Formosa-dague, H. Baaziz, E. Dague, and M. Rols, Cell wall as a target for bacteria inactivation by pulsed electric fields, Scientific Reports, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01552815

M. A. Kempkes, Pulsed electric field (PEF) systems for commercial food and juice processing, Case Studies in Novel Food Processing Technologies, pp.73-102, 2010.

C. Hoogesteger and . Pressed, , 2018.

, Hoogesteger extends shelf life of fresh juice with ELEA PEF since 2012, Elea Technology, p.31, 2017.

, Elea Technology, 2019.

P. Tallon, B. Magajna, C. Lofranco, and K. T. Leung, Microbial Indicators of Faecal Contamination in Water: A Current Perspective, Water Air Soil Pollut, vol.166, pp.139-166, 2005.

C. H. Stuart, S. A. Schwartz, T. J. Beeson, and C. B. Owatz, Enterococcus faecalis: Its Role in Root Canal Treatment Failure and Current Concepts in Retreatment, Journal of Endodontics, vol.32, pp.93-98, 2006.

C. J. Kristich, C. L. Wells, and G. M. Dunny, A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence, PNAS, vol.104, pp.3508-3513, 2007.

N. Krieg, Bergey's Manual of Systematic Bacteriology, 1984.

. Hach-co, The Use of Indicator Organisms to, Assess Public Water Safety : Technical Information Series-Booklet, issue.13, 2000.

B. A. Annous, P. M. Fratamico, and J. L. Smith, Quorum Sensing in Biofilms: Why Bacteria Behave the Way They Do, Journal of Food Science, vol.74, pp.24-37, 2009.

M. A. Van-boekel, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, International Journal of Food Microbiology, vol.74, pp.139-159, 2002.

K. Huang, H. Tian, L. Gai, and J. Wang, A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing, Journal of Food Engineering, vol.111, pp.191-207, 2012.

M. C. Pérez, D. R. Aliaga, C. F. Bernat, M. R. Enguidanos, and A. M. López, Inactivation of Enterobacter sakazakii by pulsed electric field in buffered peptone water and infant formula milk, International Dairy Journal, vol.17, pp.1441-1449, 2007.

M. Peleg, A model of microbial survival after exposure to pulsed electric fields, Journal of the Science of Food and Agriculture, vol.67, pp.93-99, 1995.

M. B. Cole, K. W. Davies, G. Munro, C. D. Holyoak, and D. C. Kilsby, A vitalistic model to describe the thermal inactivation of Listeria monocytogenes, Journal of Industrial Microbiology, vol.12, pp.232-239, 1993.

C. A. Magnus, W. M. Ingledew, and A. R. Mccurdy, Thermal Resistance of Streptococci Isolated from Pasteurized Ham, Canadian Institute of Food Science and Technology Journal, vol.19, issue.86, pp.71418-71419, 1986.

S. Koseki and K. Yamamoto, Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure, International Journal of Food Microbiology, vol.110, pp.108-111, 2006.

S. Alkhafaji and M. Farid, Modelling the inactivation of Escherichia coli ATCC 25922 using pulsed electric field, Innovative Food Science & Emerging Technologies, vol.9, pp.448-454, 2008.

G. Abraham, E. Debray, Y. Candau, and G. Piar, Mathematical model of thermal destruction of Bacillus stearothermophilus spores, Applied and Environmental Microbiology, vol.56, pp.3073-3080, 1990.

G. L. Jean, G. Abraham, E. Debray, Y. Candau, and G. Piar, Kinetics of thermal destruction of Bacillus stearothermophilus spores using a two reaction model, Food Microbiology, vol.11, pp.229-241, 1994.

C. , F. S. , and A. Us-fda, Laboratory Methods -Bacteriological Analytical Manual (BAM), 2017.

. Us and . Da, Laboratory Guidebook -Most Probable Number Procedure and Tables, vol.29, 2014.

A. M. Gibson, N. Bratchell, and T. A. Roberts, The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry, Journal of Applied Bacteriology, vol.62, pp.479-490, 1987.

H. E. Zakhem, J. Lanoisellé, N. I. Lebovka, M. Nonus, and E. Vorobiev, The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields, Colloids and Surfaces B: Biointerfaces, vol.47, pp.189-197, 2006.

H. E. Zakhem, J. Lanoisellé, N. I. Lebovka, M. Nonus, and E. Vorobiev, Behavior of yeast cells in aqueous suspension affected by pulsed electric field, Journal of Colloid and Interface Science, vol.300, pp.553-563, 2006.

. Ithpp-alcen and . Mu-, , 2018.

G. F. Parkin and W. F. Owen, Fundamentals of anaerobic digestion of wastewater sludges, Journal of Environmental Engineering, vol.112, pp.867-920, 1986.

G. K. Kafle and L. Chen, Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models, Waste Management, vol.48, pp.492-502, 2016.

H. N. Gavala, U. Yenal, I. V. Skiadas, P. Westermann, and B. K. Ahring, Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge, Water Research, vol.37, pp.401-410, 2003.

E. Salminen and J. Rintala, Anaerobic digestion of organic solid poultry slaughterhouse waste -a review, Bioresource Technology, vol.83, pp.199-206, 2002.

T. Paavola, E. Syväsalo, and J. Rintala, Co-digestion of manure and biowaste according to the EC Animal By-Products Regulation and Finnish national regulations, Water Science and Technology, vol.53, pp.223-231, 2006.

P. Quideau, P. Levasseur, A. Charpiot, T. Lendormi, and F. Guiziou, Intérêts conjugués d'une évacuation rapide des déjections animales et de leur méthanisation, Innovations Agronomiques, vol.34, pp.309-320, 2014.

J. H. Achkar, T. Lendormi, D. Salameh, N. Louka, R. G. Maroun et al., Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace, Bioresour. Technol, vol.247, pp.881-889, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02069270

H. Jaeger, A. Schulz, N. Karapetkov, and D. Knorr, Protective effect of milk constituents and sublethal injuries limiting process effectiveness during PEF inactivation of Lb. rhamnosus, International Journal of Food Microbiology, vol.134, pp.154-161, 2009.

P. Sharma, P. Bremer, I. Oey, and D. W. Everett, Bacterial inactivation in whole milk using pulsed electric field processing, International Dairy Journal, vol.35, pp.49-56, 2014.

D. García, P. Mañas, N. Gómez, J. Raso, and R. Pagán, Biosynthetic requirements for the repair of sublethal membrane damage in Escherichia coli cells after pulsed electric fields, Journal of Applied Microbiology, vol.100, pp.428-435, 2006.

M. Sakr and S. Liu, A comprehensive review on applications of ohmic heating (OH), vol.39, pp.262-269, 2014.

A. Goullieux and J. Pain, Chapter 22 -Ohmic Heating, Emerging Technologies for Food Processing, pp.399-426, 2014.

M. Peleg, M. D. Normand, and M. G. Corradini, Generating microbial survival curves during thermal processing in real time, Journal of Applied Microbiology, vol.98, pp.406-417, 2005.

P. C. Wouters, I. Alvarez, and J. Raso, Critical factors determining inactivation kinetics by pulsed electric field food processing, Trends in Food Science & Technology, vol.12, pp.112-121, 2001.

F. Sampedro, A. Mcaloon, W. Yee, X. Fan, H. Q. Zhang et al., Cost analysis of commercial pasteurization of orange juice by pulsed electric fields, Innovative Food Science & Emerging Technologies, vol.17, pp.72-78, 2013.

M. R. Clavero and L. R. Beuchat, Survival of Escherichia coli O157:H7 in broth and processed salami as influenced by pH, water activity, and temperature and suitability of media for its recovery, Appl. Environ. Microbiol, vol.62, pp.2735-2740, 1996.

N. Gómez, D. García, I. Álvarez, S. Condón, and J. Raso, Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH, International Journal of Food Microbiology, vol.103, pp.199-206, 2005.

J. Morren, B. Roodenburg, and S. W. De-haan, Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers, Innovative Food Science & Emerging Technologies, vol.4, pp.41-50, 2003.

A. H. Bushnell, R. W. Clark, J. E. Dunn, and S. W. Lloyd, Prevention of electrochemical and electrophoretic effects in high-strength-electric-field pumpable-food-product treatment systems, 1995.

C. Amatore, M. Berthou, and S. Hébert, Fundamental principles of electrochemical ohmic heating of solutions, Journal of Electroanalytical Chemistry, vol.457, pp.191-203, 1998.

D. Borkholder, Cell based biosensors using microelectrodes, p.27, 1998.

E. M. Wellington, A. B. Boxall, P. Cross, E. J. Feil, W. H. Gaze et al., The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria, The Lancet Infectious Diseases, vol.13, pp.70317-70318, 2013.

P. He, Y. Zhou, L. Shao, J. Huang, Z. Yang et al., The discrepant mobility of antibiotic resistant genes: Evidence from their spatial distribution in sewage sludge flocs, Science of The Total Environment, vol.697, p.134176, 2019.

J. E. Olsen, J. B. Jørgensen, and P. Nansen, On the reduction of Mycobacterium paratuberculosis in bovine slurry subjected to batch mesophilic or thermophilic anaerobic digestion, Agricultural Wastes, vol.13, pp.273-280, 1985.

J. E. Olsen and H. E. Larsen, Bacterial decimation times in anaerobic digestions of animal slurries, Biological Wastes, vol.21, pp.90121-90123, 1987.

J. C. Shih, Ecological benefits of anaerobic digestion, Poultry Science, vol.66, pp.946-950, 1987.

L. P. Forshell, Environment and Animal Health: Proceedings of the 6th International Congress on Animal Hygiene 14-17, vol.II, pp.612-618, 1988.

H. Engeli, W. Edelmann, J. Fuchs, and K. Rottermann, Survival of Plant Pathogens and Weed Seeds during Anaerobic Digestion, Water Science and Technology, vol.27, pp.69-76, 1993.

T. E. Kearney, M. J. Larkin, J. P. Frost, and P. N. Levett, Survival of pathogenic bacteria during mesophilic anaerobic digestion of animal waste, Journal of Applied Bacteriology, vol.75, pp.215-219, 1993.

B. Lund, V. F. Jensen, P. Have, and B. Ahring, Inactivation of virus during anaerobic digestion of manure in laboratory scale biogas reactors, Antonie van Leeuwenhoek, vol.69, pp.25-31, 1996.

S. Jepsen, M. Krause, and H. Grüttner, Reduction of fecal streptococcus and salmonella by selected treatment methods for sludge and organic waste, Water Science and Technology, vol.36, pp.684-691, 1997.

G. De-luca, F. Zanetti, P. Fateh-moghadm, and S. Stampi, Occurrence of Listeria monocytogenes in sewage sludge, Zentralbl Hyg Umweltmed, vol.201, pp.269-277, 1998.

J. Ryckeboer, S. Cops, and J. Coosemans, The Fate of Plant Pathogens and Seeds During Anaerobic Digestion and Aerobic Composting of Source Separated Household Wastes, Compost Science & Utilization, vol.10, pp.204-216, 2002.

A. J. Termorshuizen, D. Volker, W. J. Blok, E. Brummeler, B. J. Hartog et al., Survival of human and plant pathogens during anaerobic mesophilic digestion of vegetable, fruit, and garden waste, European Journal of Soil Biology, vol.39, pp.165-171, 2003.

M. D. Aitken, M. D. Sobsey, K. E. Blauth, M. Shehee, P. L. Crunk et al., Inactivation of Ascaris suum and Poliovirus in Biosolids under Thermophilic Anaerobic Digestion Conditions, vol.39, pp.5804-5809, 2005.

R. Iranpour, H. H. Cox, S. Oh, S. Fan, R. J. Kearney et al., Thermophilic-Anaerobic Digestion to Produce Class A Biosolids: Initial Full-Scale Studies at Hyperion Treatment Plant, Water Environment Research, vol.78, pp.170-180, 2006.

R. Iranpour, H. H. Cox, S. Fan, V. Abkian, T. Minamide et al., Full-Scale Class A Biosolids Production by Two-Stage Continuous-Batch Thermophilic Anaerobic Digestion at the Hyperion Treatment Plant, Water Environment Research, vol.78, pp.2244-2252, 2006.

A. Schnürer and J. Schnürer, Fungal survival during anaerobic digestion of organic household waste, Waste Management, vol.26, pp.1205-1211, 2006.

R. Iranpour and H. H. Cox, Evaluation of thermophilic anaerobic digestion processes for full-scale Class A biosolids disinfection at hyperion treatment plant, Biotechnology and Bioengineering, vol.97, pp.19-39, 2007.

A. O. Wagner, G. Gstraunthaler, and P. Illmer, Survival of bacterial pathogens during the thermophilic anaerobic digestion of biowaste: Laboratory experiments and in situ validation, Anaerobe, vol.14, pp.181-183, 2008.

D. Massé, Y. Gilbert, and E. Topp, Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure, Bioresource Technology, vol.102, pp.641-646, 2011.

P. K. Pandey and M. L. Soupir, Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures, AMB Expr, vol.1, 2011.

E. Lloret, M. J. Salar, J. Blaya, and J. A. , Two-stage mesophilic anaerobicthermophilic digestion for sludge sanitation to obtain advanced treated sludge, Chemical Engineering Journal, vol.230, pp.59-63, 2013.

B. D. Rounsefell, C. A. O'sullivan, N. Chinivasagam, D. Batstone, and W. P. Clarke, Fate of pathogen indicators in a domestic blend of food waste and wastewater through a two-stage anaerobic digestion system, Water Sci Technol, vol.67, pp.366-373, 2013.

N. D. Manser, I. Wald, S. J. Ergas, R. Izurieta, and J. R. Mihelcic, Assessing the Fate of Ascaris suum Ova during Mesophilic Anaerobic Digestion, Environ. Sci. Technol, vol.49, pp.3128-3135, 2015.

P. Mazzone, S. Corneli, D. Paolo, A. Maresca, C. Felici et al., Survival of Mycobacterium avium subsp. paratuberculosis in the intermediate and final digestion products of biogas plants, Journal of Applied Microbiology, vol.125, pp.36-44, 2018.