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Flexible bipolar querying of uncertain data
using an ontology

P. Buche, S. Destercke, V. Guillard, O. Haemmerlé, and R. Thomopoulos

Abstract In this paper, we propose an approach to query a database where the user
preferences can be bipolar (i.e., express both constraints and wishes about the de-
sired result) and the data stored in the database can be uncertain. Query results are
then completely ordered with respect to these bipolar preferences, giving priority
to constraints over wishes. Furthermore, we consider user preferences expressed on
a domain of values which is not “flat”, but contains values that are more specific
than others according to the “kind of” relation. These preferences are represented
by specific fuzzy sets, called ‘“Hierarchical Fuzzy Sets” and defined over a simple
ontology. We propose a use of “Hierarchical Fuzzy Sets” for query enlargement pur-
poses. The approach is illustrated on a real-world problem concerning the selection
of optimal packaging material for fresh fruits and vegetables.
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1 Introduction

In some applications, there may be a need to differentiate, within queries, between
negative preferences and positive ones. Negative preferences correspond to con-
straints, as they specify which values or objects have to be rejected (i.e., those that
do not satisfy constraints), while positive preferences correspond to wishes, as they
specify which objects are more desirable than others (i.e., satisfy user wishes) with-
out rejecting those that do not meet the wishes. Indeed, while the first type of prefer-
ences should be satisfied by query results, satisfying the second type of preferences
can be considered as optional, as the user does not consider them to be necessary
requirements.

Also, preferences may be expressed over elements organized into a hierarchy
rather than on a ‘flat” domain. This kind of hierarchy is typically modeled as a
simple ontology in which concepts are partially-ordered by the ‘kind of” relation.
Considering these two extensions (i.e., allowing bipolar preferences expressed over
hierarchies) answers a bipolar query enlargement purpose, as the resulting query
will send back more results than classical bipolar ones.

Finally, there may be uncertainty in the available data, and there is a need to inte-
grate this uncertainty in the query processing. In this paper, we propose to consider
these three problems in a common framework, using the notion of bipolar informa-
tion and of fuzzy pattern matching.

The notions of bipolar preferences and of bipolar information in general have
recently received increasing attention [1, 21]. Roughly speaking, information is said
to be bipolar when there is a positive and a negative part of the information. These
negative and positive parts of the information may have different natures, and should
therefore be processed in parallel, and not as a single piece of information. This
kind of bipolarity [11], coined as asymmetric, is the one we are concerned with. For
example, we may feel both positive and negative about something, without being
able to fuse these two feelings in a unique one (for example, eating ice cream gives
a gustative pleasure, but one can also feel guilty about it).

In the case of database queries, asymmetric bipolarity is useful to distinguish
negative preferences or constraints (i.e. criteria that a good answer must satisfy)
from positive preferences or wishes (i.e. criteria that a good answer should satisfy,
if possible). For example, in the query “a new car not too expensive and if possible
red”, “not too expensive” is clearly a requirement while “red” merely expresses a
wish.

Some preliminary studies of this work have already been published in [14] and
[28]. In this paper, we provide a synthetic overview of a method to treat bipolar
preferences in databases where data can be uncertain and expressed on a hierarchical
domain. In particular, this method uses the bipolar nature of preferences to induce
an (pre-)ordering between query results, so that priority is given to those instances
that are the most likely to satisfy all expressed constraints and wishes. Section 2
describes the method, while Section 3 illustrates the approach on a use case coming
from a new decision support system (DSS) currently developed in IATE laboratory
where a (industrial/researcher) user wants to select a packaging material that best
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Flexible bipolar querying of uncertain data using an ontology 3

suits his/her needs. Finally, we give some elements of comparison with previous
works in Section 4.

2 Method

This section first recalls some basic tools that will be used in the method, before
describing the method itself.

2.1 Preliminaries: fuzzy pattern matching

In this paper, we use fuzzy sets [33] to represent preferences in our queries and
possibility distributions [18] to represent uncertainty in the data. A normalized fuzzy
set L over a variable X assuming its value on Dy is a mapping tt : Dx — [0,1] with
at least one x € Dy such that 1(x) = 1. Here, we assume that Dy is either a finite
set of elements (e.g., the colour of a car), possibly partially ordered by the ‘kind of”
relation (see Section 2.3), or a subset of the real line (e.g., the maximal speed of a
car).

Here, fuzzy sets are used to express preferences provided by a user in a query.
That is, for a given variable X, the fuzzy value pt(x) expresses to what degree the
value x satisfies the preference represented by p, with t(x) = 1 meaning that the
preference is fully satisfied and p(x) = 0 that it is completely unsatisfied.

Example 1. Consider again our car example “a new car not too expensive and if
possible red”. Assume the user has specified that “not too expensive”” means that
any price over 18,000 $ is unacceptable, while any price lower than 14,000 $ can
be considered as totally satisfactory. The corresponding preference is represented by
the fuzzy set uy7g in Figure 1. Given this representation, we have, for example, that
a price of 15,000 $ fulfils the user preferences at a degree Uy7g(15,000) = 0.75.

UNTE

| >~

14,000 18,000

Fig. 1 Fuzzy set uytg describing “Not Too Expensive”

Possibility distributions, on the other hand, are simple uncertainty representations
allowing to model the ill-known value of some variable. A possibility distribution 7
over a variable X is also a mapping 7 : Dy — [0, 1] with at least one x € Dy such
that (x) = 1. They are therefore equivalent to fuzzy sets from a formal point of
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view, but possess different semantics. Indeed, they describe our knowledge about the
potential value of X. Two measures or set-functions can be derived from a possibility
distribution, namely the necessity and possibility measures, which are such that, for
every event A C Dy,

II(A) = supm(x); N(A) = inf (1 —m(x)) = 1 — [T(A°),

XEA X€EAC

where IT(A) and N(A) express to what extent it is respectively plausible and certain
that the actual value of X lies in A.

Note that possibility distributions can model both precisely known values (X = x
corresponds to the distribution 7(x) = 1 and zero everywhere else) and set-valued
variables (X € A corresponds to the distribution 7(x) = 1 if x € A, zero otherwise).
In the same way, fuzzy sets can model crisp preferences (i.e., those used in classical
queries).

In the rest of the paper, we consider that each query (or preference) P on an
attribute X assuming its value on Dy is expressed by a fuzzy set up (possibly de-
generated into a crisp preference). Our knowledge D about the attribute value for a
particular tuple is given by a possibility distribution 7p (also possibly degenerated
in a crisp set). Our knowledge about the imprecise evaluation of P given uncertainty
D is summarised by the following lower and upper values [19, 18]:

n(p;D) = sup min(pp(x), 7p(x)), 4]
N(P;D) = xieanx max(Up(x), 1 — mp(x)).

In the following, we will speak of evaluations of a fuzzy preference when talking
about the interval [N(P; D), II(P;D)].

Example 2. Consider the preference of Example 1, and a car for which the price is
known to belong to the interval [14,500; 16,000], with 15,500 the most likely value.
Figure 2 illustrates both the preference and the knowledge about the price. From this
information, we have (using Eq. (1)) that

II(P;D)=0.7 and N(P;D)=0.55.

2.2 Notations and problem

The problem we consider is as follows: we assume that we have a database consist-
ing of a set .7 of T objects o;, t = 1,..., T, with each object taking its values on
the Cartesian product xﬁvz Dx; of N domains Dy, ,...,Dx,. An object o; is here de-
scribed by a set of N possibility distributions 7/, i =1,...,N, where 7 : Dx, — [0, 1]
is the possibility distribution describing our knowledge about the value of the i
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ol Fig. 2 Evaluation of a fuzzy preference with uncertain data.
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o194 attribute of object ¢. When Dy, is finite, its elements are partially ordered in an on-

tology according to the ‘kind of” relation (classical finite sets are retrieved when all
elements are incomparable w.r.t. this order, see Section 2.3). We also assume that
the user provides the following information:

0195
0196
0197
0198

0199 e aseté = {C’i1 I ,C,i\,’t" } of N, constraints (N, < N) to be satisfied by the retrieved

0200 objects, where C}j :Dx, — [0,1] is a normalised fuzzy set defined on the attribute
J

oot ij(1<i;<N).
0202 . .
e aset ¥ = {W{',...7W1i,’:f”} of N,, wishes (N,, < N) that the retrieved objects

0203

0204 should satisfy if possible, where W]l’ : DXi, — [0,1] is a normalised fuzzy set
0205 defined on the attribute i; (1 <i; <N). '

0206 e complete pre-orderings <. and <,, between the constraints to be satisfied and
0207 between the wishes, respectively. These pre-orderings take account of the fact
0208 that some constraints may be considered as more important to satisfy than others
0209 (and similarly for wishes). In the following, we denote by ¢;) (resp. #(;)) the
0210 constraints (resp. the wishes) that have rank i w.r.t. to the pre-ordering! <, (resp.
o211 <u). We denote by | <. | and | <,, | the total number of ranks (i.e., of equivalence
01 classes) induced by the two orderings.

0213
Note that constraints and wishes may well be defined on the same attribute. For

example, having an acceptable price may be considered as a constraint, but since a
lower price (all other things being equal) is always preferable, lowering the price
may become a wish for prices lower than completely satisfying prices (in Exam-
ple 1, one can define a wish that would start from 14,000 $).

The problem we consider now is how to retrieve from a set .7 of objects, those
that primarily satisfy the constraints, and among the latter, those that fulfill the most
wishes. Of course, the querying approach has to take account of the bipolar nature of
the information, of the possible uncertainty in the data, and of the user’s preferences
among the constraints and wishes. The next section presents how user preferences
are handled when defined over a domain of elements partially ordered by the “’kind
of” relation. In this latter case, a special kind of fuzzy sets, called hierarchical fuzzy
sets, will be used.
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2.3 Fuzzy sets defined on a hierarchical domain

The notion of hierarchical fuzzy set rose from our need to express fuzzy values in the
case where elements receiving a membership value are part of an ontology domain
(e.g., packaging material components). First (Section 2.3.1), a fuzzy set is created
directly by the user and defined on a part of the hierarchy (only some elements
are given membership values). Second, for reasons explained in Section 2.3.2, we
extend the fuzzy set to the whole hierarchy, thus obtaining the closure of the fuzzy
set. Section 2.3.3 defines how we extend the evaluation of fuzzy preferences when
classic fuzzy sets are extended to hierarchical fuzzy sets.

2.3.1 Presentation

The definition domains of the fuzzy sets that we define below are subsets of hierar-
chies composed of elements partially ordered by the “kind of” relation, i.e. they are
defined over a subset B C Dy of the domain of attribute X. An element x € Dy is
more general than an element X' € Dy (denoted x’ < x), if x is a predecessor of x
in the partial order induced by the “kind of” relation (denoted <) of the hierarchy.
An example of such a hierarchy is given in Figure 3. A hierarchical fuzzy set is then
defined as follows.

Packaging

Rubbers
Thermoplastic

/ \“—EH Cellulosic Plastic
Biopolymers ‘ Polyoleﬁn \
T

Polyeste

N S‘E’re.ﬂic Cellophane
] €S Low Densn} Film

Proteins Polyethylene
1 Polypropylene Polyethylen

Wheat Naphthalate
gluten Polystyrene Polyethylen
Polysaccharides Polyvinyl Terephthalate
N Chloride
Cellulose Starch Bilayer wheat
gluten LDPE

Fig. 3 Example of a hierarchy

Definition 1 A hierarchical fuzzy set is a fuzzy set whose definition domain B C
Dy is a subset of the elements of a finite hierarchy partially ordered by the “kind
of ” relation <.
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For example, the fuzzy sets HFS1 and HFS2 represented in Figure 4 conform to
Definition 1. Their definition domains are subsets of the hierarchy given in Figure 3.

HFS1 HFS2

0.9

0

0

Biopolymers Cellulose

’ t !
Wheat gluten Biopolymers

Fig. 4 Fuzzy sets HFSI and HFS2

We can note that no restriction has been imposed concerning the elements that
compose the definition domain of a hierarchical fuzzy set and their membership
values. Therefore, the user may associate a given degree d with an element x and
another degree d’ with an element X’ more specific than x. d’ < d represents a se-
mantic of restriction for x' compared to x, whereas d’ > d represents a semantic of
reinforcement for x' compared to x.

For example, if there is particular interest in wheat gluten because the user is
studying the properties of wheat chain by-products to design packaging, but also
wants to retrieve complementary information about other kinds of biopolymers,
these preferences can be expressed using for instance the following fuzzy set’:
{(Wheatgluten, 1), (Biopolymers,0.9) }. In this example, the element Wheat gluten
has a larger degree than the more general element Biopolymers, which corresponds
to a semantic of reinforcement for Wheat gluten compared to Biopolymers. On the
contrary, if the user is interested in all kinds of biopolymers to design packaging,
but to a lesser extent in Cellulose because of its higher value to make bioethanol
rather than packaging, the preferences can be expressed using the following fuzzy
set: {(Biopolymers,1),(Cellulose,0.9)}. In this case, the element Cellulose has a
smaller degree than the more general element Biopolymers, which corresponds to a
semantic of restriction for Cellulose compared to Biopolymers.

2.3.2 Closure of a hierarchical fuzzy set

We can make two remarks concerning the use of hierarchical fuzzy sets:

e the first one is semantic. Let {(Polysaccharides, 1), (Biopolymers,0.9)} be an
expression of preferences in a query. We can note that this hierarchical fuzzy set
implicitly gives information about elements of the hierarchy other than Polysac-
charides and Biopolymers. For instance, it can be deduced that the user does not

2 Here, we adopt the usual notation (x,y) for specifying fuzzy sets over symbolic variables, where
(x,y) means that modality x has membership value y.
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expect results concerning packagings like Rubber or Polyolefin, even if the de-
gree 0 has not explicitly been associated with these packagings. It is also possible
to assume that any kind of Polysaccharides (Cellulose and Starch for example)
interests the user with the degree 1;

e the second one is operational. The problem rising from Definition 1 is that two
different fuzzy sets on the same hierarchy do not necessarily have the same def-
inition domain, which means they cannot be compared using the classic com-
parison operations of fuzzy set theory (see for example Eq. (1)). For instance,
{(Wheat gluten,1),(Biopolymers,0.9)} and {(Biopolymers,1), (Cellulose,0.9)}
are defined on two different subsets of the hierarchy of Figure 3, respectively
{Wheat gluten, Biopolymers} and {Biopolymers,Cellulose}, and thus are not
comparable.

From these remarks can be defined the concept of closure of a hierarchical fuzzy
set, which is a developed form of the hierarchical fuzzy set defined on the whole
hierarchy. The closure of a hierarchical fuzzy set is computed by propagating the
degree of an element according to the “kind of” relation: the degree associated with
an element is propagated to its sub-elements (more specific elements) in the hier-
archy, provided the latter have no degree yet. For instance, in a query, if the user
is interested in the element Biopolymers, we consider that all kinds of Biopolymers
— Polysaccharides, Proteins, etc. — are of interest. On the other hand, we consider
that the super-elements (more general elements) of Biopolymers in the hierarchy —
Thermoplastic, Packaging, ...— are too general to be relevant for the user’s query.

Definition 2 Let F be a hierarchical fuzzy set defined on a subset B of the elements
of a hierarchy Dy. Its membership function is denoted ur. The closure™ and the
closure_ of F, denoted U5+ () and Uejo_ (), are two hierarchical fuzzy sets de-
fined on the whole set of elements Dy.

For each element x of Dx, let Ex = {x1,...,x,} be the set of the smallest super-
elements of x in B, i.e. elements such that foranyi=1,...,n, x Xx; (x €E,ifx €B)
and there is no X' € B such that x < x' < x;. Then:

o if E, is not empty,

Heios+(F) (X) = 1<ia<Xn(.uF (X,')) 2
and
Hetos(r)(x) = min (ip(x;)); 3)

e otherwise Heios+ (F) (x) = Helos_(F) (.X) =0.

In other words, the closure™ and the closure_ of a hierarchical fuzzy set F are
built according to the following rules. For each element x of Dy:

1. if x € B, then x keeps the same degree in both closures of F, i.e., Uejo5+ (F) (x) =
Hetos_() (%) = 1 (x) (case where E, = {x});
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2. if E, has a unique smallest super-element x; in B, then the degree associ-

0369 ated with x; is propagated to x in both closures of F, i.e., Ueoyt(r)(X) =
0370 Heios_ () (x) = pr(x1) (case where E, = {x1 } with x < x);

0371 3. if x has several smallest super-elements {xi,...,x,} in B, with different de-
0372 grees, the proposition made in Definition 2 consists in choosing the maximal
0373 degree associated with x1, ...,x, in the closure™, and the minimal degree in the
0374 ClOSI/H‘e,;

0375 4. all the other elements of Dy, i.e., those that are more general than, or not com-
0376 parable with the elements of B according to < are considered as non-relevant.
0377 The degree 0 is associated with them (case where E, = 0).

o Example 1 Figure 5 shows the two closures of the hierarchical fuzzy set

{(Wheat gluten,1),(Biopolymers,0.8),(Cellulose,0.3),(LowDensityPolyethylene,0.2)}.

0379
0380

0381

0382 Packaging
0383 0
Rubbers
0384 Thermoplastlc
0385 Cellulosw Plasnc
0386 l lefi
Biopol Polyo e n
0387 1OPO- },.r;ters } Pol} ester
o Tj S‘ﬁ’remc Cellophane
35161 Lau Density Film
0389 Protic)gls Polyethylene 0
0390 1 Polypropylene %2 Polyethylen
o1 Wheat 0 Naphthalate
gluten Polystyrene Polyethylen 0
0392 Polysaccharides" Polyvinyl 0 Terephthalate
0393 0.8 AN Chloride ’
0

0394 .

Celinlose S“f:h Bilayer wheat
0395 0.3 ’ gluten LDPE
0396 021
0397 Fig. 5 Closures of a hierarchical fuzzy set: closure™ and closure_ only differ for the element
0398 Bilayer wheat gluten LDPE for which fi.;os+(py(x) = 1 and Uy (r)(x) = 0.2.

0399
0400

oot The use of both a permissive (closure™) and a restrictive (closure_) closure is

due to the bipolar nature of the preferences involved. In the case of a wish, Equa-
tion (2) ensures a semantic of reinforcement by the use of the max operator (i.e., an
element outside B is at least as desirable as its most desirable super-element in B),
while the use of min operator in Equation (3) ensures a semantic of restriction for
constraints (i.e., an element outside B is at most as desirable as its least desirable
super-element in B).
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2.3.3 Pattern matching for hierarchical fuzzy sets

Using the concept of closure, all fuzzy sets defined on a given hierarchy can be
extended to the same definition domain (the whole hierarchy Dx) and thus can be
compared using the classical comparisons and operations between fuzzy sets (e.g.,
those presented in Equation (1)).

Similarly to preferences, our knowledge about data will usually be expressed on
a subset B of Dy, here by a possibility distribution 7 (note that here, we assume that
the ontology structure and concepts are certain, only the actual value of some data on
this ontology is uncertain). Computing the closure of 7 over Dy is slightly different,
as we do not consider bipolarity in the information (only negative information in the
form of 7 is given) and as the semantic of possibility distributions is different.

Let us define, for an element x € Dy, the set E(x) = {yi,...,yn} of the biggest
sub-elements of x in B, i.e. elements such that for any i = 1,...,m, y; < x and there
is no y € B such that y; < y < x. The closure clos(7)(x) of 7 is defined as follows:

if x € B, then clos(m)(x) = w(x);

if Ex = {x1,...,x,} is not empty, then clos(7)(x) = max<ij<,(7T(x;));

if Ex isempty and E(x) = {y1,...,Ym } is not, then clos(7) (x) = max; <;j<,n (7(y:));
else clos(m)(x) = 0.

This procedure may give quite imprecise possibilities, but it corresponds to the de-
sire not to miss any interesting data. It is also consistent with usual procedures
modifying uncertainty models in the case of refinement or coarsening of an ini-
tial non-hierarchical space (in the example of Figure 4, Biopolymers can be seen
as a coarsening of the elements Polysaccahrides, Proteins and as an element of the
refinement of Thermoplastic).

Definition 3 Let w and F be two hierarchical fuzzy sets defined on the same hi-
erarchy, respectively defining some knowledge about the variable value and some
preferences about these values. Then:

1. the possibility degree of matching between © and F a positive preference (resp.
a negative one) I1(w; F) is defined as
IT(clos(x); clos™ (F)) = supep, min(clos(m) (), Koy () (¥))
(resp. H(ClOS(ﬂ');ClOS_ (F)) = SUPyepy min(CZos(ﬂ) (x)’ .u'clos,(F) (X))),

2. the necessity degree of matching between m and F a positive preference (resp.
a negative one) , N(; F), is defined as
N(clos(r);clos™ (F)) = infyepy max(Heost () (x), 1 — clos(m)(x))
(resp. N(clos();clos—(F) = infyepy max(Lejps_(r) (%), 1 —clos()(x)))).

We will see in the next section how bipolar preferences, including positive and
negative preferences defined by hierarchical fuzzy sets, are used to query uncertain
data.
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2.4 From bipolar querying with imprecise data to answer ordering

Previous sections have dealt with the problem of modeling and specifying bipolar
preferences and uncertain data over hierarchies defined by simple ontologies. We
now detail methods allowing the retrieval and ordering of answers from these pref-
erences and propose some elements explaining this ordering to the users.

2.4.1 Ordering answers

As underlined by [1], when bipolar information concerns preferences, satisfying
constraints should be a primary aim, while satisfying wishes remains secondary. To
do this, a solution is to first retain all the objects that may satisfy the constraints,
order them w.r.t. the degree to which they satisfy these constraints, and then refine
this order by using degrees to which objects satisfy those wishes. If the user has
specified preferences between constraints (resp. between wishes)?, we also provide
a means to take these preferences into account.

We propose, for constraints (;) of rank 7, to summarise the way an object o; sat-
isfies these constraints by an aggregated interval [Nt(l),Ht<')]
formula:

¢ given by the following

N =T, NCsaR), and 10 =T, OCERY, @
) )

CZ" €% CZ" €%
with N(C[*; /%), IT(C[*; m/*) given by Eq. (1) or definition 3 if the domain associ-
ated with C,{" is a hierarchy, and T a t-norm* [23]. T-norms are conjunctive aggre-
gation operators and are chosen here for the reason that ALL constraints have to be
satisfied simultaneously. Here, we take T = min, the minimum operator.

Similarly, we build, for each #/; and object o, satisfying the constraints, the

interval [N,<i>,H,(i)]W, such that

Nt(i) =& )N(ijﬂ'ftjk)v and Hr<i) =D H(ijk;”tjk)’ ®)

wiken wikensy
where @ is an aggregation operator that can be a t-norm, an averaging operator such
as an OWA [32] operator or a t-conorm, depending on the behaviour we want to
adopt w.r.t. the satisfaction of wishes. Indeed, since satisfying wishes is not com-
pulsory, we can adopt different attitudes [1]. For instance, using a t-conorm means
that we are satisfied as soon as one wish is fulfilled, while using a t-norm means that
we still want all the wishes to be satisfied to increase our overall satisfaction. In this
paper, we consider the latter case, and will take &6 = min.

3 No preferences means here that all constraints (or wishes) have the same rank, i.e., are of equal
importance.

4 A T-norm T : [0, 112 to [0, 1] is an associative, commutative operator that has 1 for neutral
element and O for absorbing element.
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It is necessary then to order objects that could satisfy the constraints and some
wishes, according to the previous evaluations. To do so, we will use a lexicographic
order and a dominance relation < V), 70| between objects such that, for two interval

evaluations [N,<i>,Ht([>}, [Nt(,i),Ht(,i)] related to objects o; and oy and to a group of

constraints ;) or a group of wishes #(;), o, < v, 1) O if Nt(i) < Nt(,i> and H,m <

Ht(,’) (with o, <iv0) ) O if at least one inequality is strict). That is, an object oy
dominates another one o, if its satisfaction bounds are pair-wise higher than the
satisfaction bounds of o,. The lexicographic order is then used to take account of
the difference between negative and positive preferences and of the orderings <.
and <,, (i.e. objects are first ordered using constraints of rank one, then two, ...).

Note that, although S[N(,-)" ) is a partial order, we will induce from it a complete
pre-order that refines gw,-)_’ UL for the reason that users are more at ease with
complete orderings. However, we will use the fact that S[N(i), ) is a partial order to
differentiate negative and positive preferences. The procedure consists in building
iteratively an ordered partition {,..., 9} of 7. Rejected objects that do not
satisfy all constraints are put in %, while objects in J)s can be considered as the
most satisfactory.

In a preliminary step, Algorithm 1 rejects those objects of .7 that do not at all
satisfy some constraints.

Algorithm 1: Determination of .7, the set of rejected objects which will not
belong to the query result

Input: The set of objects .7 = {oy,...,0r}
Output: Ordered partition{ %, 7 \ %} of T
1 % =0;
2 foreach o, € 7 do
3 ifH,(l)ZOforsomeizl,...JSc\then
4 L To= U {Or} 5

Algorithm 2 describes how results are ordered within a subset of .7 \ % (called
77, according to constraints of a given rank. The whole procedure consists in build-
ing a partition of 7 \ 9. The partition is refined iteratively by applying, at every
rank i (i € [1,] <. |]), Algorithm 2 within each equivalence class of objects obtained
at the previous rank i — 1. When i = 1, the unique initial equivalence class .7 is
7\ . In every run of Algorithm 2, equivalence classes {.77,...,.7,'} are incre-
mentally built, starting from the worst (.7]') and ending with the best (.7). At each
step, the objects included and then suppressed from .7 are those objects that do
not dominate other objects (line 4), in the sense of <IN, )] This means that ob-
jects with imprecise evaluations (i.e., [N,(i) , H,(i)] with larger width) will be in lower
classes, along with objects having low evaluations (i.e., low H,(l)). This corresponds

to a pessimistic attitude towards imprecision, since imprecise evaluations are as-
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sociated with poorly satisfying objects. Such an attitude is coherent with negative
preferences, as the possibility of not satisfying a constraint is penalised.

Algorithm 2: Query result ordering for constraints of rank (i)

Input: 7' C .7\ % with J' an element of the partition issued from rank (i —1),
[N,(’).,H,(l)]c foreach o, € 7'
Output: Ordered partition{ .7}, ..., 7/} of 7’

1 K=9;j=1;

2 while K # 0 do

3 foreach o, € K do

4 if EOJ' €K st o E[N(")AH(")] 0j then
5 L Put o, in 7/

6 K=K\J/;
7 j=j+1

After having applied Algorithm 1 once and Algorithm 2 | <. | times, the complete
pre-order is further refined according to wishes by using Algorithm 3. There are two
main differences with Algorithm 1 and Algorithm 2. First, no objects are rejected,
as we are dealing with positive preferences (satisfying them is not compulsory).
Second, we start here from the best equivalence class and finish with the worst?,
and at each step the objects included and then suppressed from .7 are those objects
that are not dominated by other objects (line 7), in the sense of <IN, )] Contrary
to Algorithm 2, objects with imprecise evaluations will be in the upper classes. This
corresponds to an optimistic attitude towards imprecision, which is coherent with
positive preferences, as it promotes the possibility of satisfying more wishes. Note
that inconsistency problems between positive and negative information [1] do not
occur here, since constraints and wishes are treated separately and lexicographically.

The knowledge uncertainty is fully acknowledged through the use of the partial
order <y 7)) (Which considers both end-points of intervals [V 0, 11M7) in algo-
rithms 2 and 3 which allow us to make a clear distinction in the treatment of negative
and positive aspects of bipolar preferences. However, a possible drawback for huge
databases is the complexity that the use of these algorithms represents. Indeed, each
run of Algorithms 2 and 3 requires comparing each object with all the other ob-
jects of a same equivalence class. If n objects have to be ordered, then in the worst
case (| <. |+| <, |)n* comparisons are performed, assuming that no object strictly
dominates another for any rank of constraints or wishes. In the best case, i.e. when
objects are completely ordered after a first run, n> comparisons have to be made. It
must be noted that n is reduced to |7 \ Zp| thanks to Algorithm 1. Such complexi-
ties are quite acceptable for most databases, but could be problematic for databases
counting billions of objects. In such a case, it is possible to use other propositions
presenting a lower complexity where object ordering is solely based on one of the

5 The shift loop (Lines 3-5) is there to keep the same indexing of subsets T
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Algorithm 3: Query result ordering for wishes of rank (i)

Input: 7' C 7\ % with 7" an element of a partition issued from rank (i — 1), [N,<i>7H[(i)]w.
for each o; € T’
Output: Ordered partition{ .7}, ..., 7, } of 7’

1 K=9;j=0;

2 while K # 0 do

3 fori=j,...,1 (skipif j=0)do

4 L =7

5 T =0;

6 foreach o, € K do

7 if Ao; €K s.t. o Siv.10) 0J then
8 | Puto; in

9 K=K\7/;

10 | j=j+1;

two numbers N or IT¥) [19]. However, using orderings based on single numbers
means that the imprecision in [N @, 11 (’)] is not fully taken into account and some of
the information contained in the interval is lost.

Example 3. Let us consider a set .7 of six objects o1, . . ., 06, two ranks of constraints
and only one rank of wish. The intervals [N,(l),H,(l)]C (i={1,2}) and [N,(l),H,(l)]w
are summarized in Table 1.

[N,(])J_I;(I)]c [N,(2>,H,(2)](- [Nt(l)vljt(l)]w

o1 [0.1,04]  [0.8,1] [1,1]
0y 0508 [0.506] [0.6,0.9]
03 [03,1]  [04,08]  [0.2,0.5]
o4 [0.8,1] [0,0] [0.5,0.7]
o5 [1,1] 0.2,0.4] [0,0]
05 [0,1] 0.6,0.9]  [0.3,0.7]

Table 1 Example 3 evaluations for constraints and wishes.

Running Algorithm 1 gives % = {04}. 04 is the only rejected object, because

Hf) =0, even if it satisfies rank one constraints necessarily to a high degree. After
a first run of Algorithm 2, we obtain the following partition:

Jo =104} < T ={o1,06} < 2 ={02,03} < T3 = {05}

All elements potentially satisfy constraints in () (although o does not necessarily
satisfy them). Note that og, for which information is fully imprecise, is at the end of
the ordering (whereas it would have been at the front if we used Algorithm 3). Since
there are two ranks of constraints, a second run of Algorithm 2 gives
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Jo=H04} < 1 ={06} < S ={01} < 5 ={02,03} < T4 = {os}.

This second run refined the ordering between o1 and 0. Also note that the bad scores
of 05 w.r.t. constraints of rank two do not change its order, due to the constraint
preferences and the use of a lexicographic order. Finally, a run of Algorithm 3 gives

T =A{0a} < T1={o6} < A ={01} < B ={03} < Ta={02} < F5 ={os}.

Note that o5 is not rejected, since satisfying wishes is not a requirement.

2.4.2 Explaining the ordering

Answers provided by DSS, expert systems or multi-criteria decision making meth-
ods can be hard to interpret for end-users. It is therefore useful to provide them
with simple and understandable (e.g., expressed in natural language) elements of
explanation [24].

We therefore propose such explanations of our ordering. As Algorithms 1- 3 use
a lexicographic ordering implicitly based on pair-wise comparisons, such explana-
tions can only concern a single rank of constraint or wish and will therefore remain
simple. These explanations can be stored in an n X n matrix Expl where the element
Expl(¢,k) will contain the explanation of why object £ has been judged better/worse
than object k. This matrix is somehow anti-symmetric, as the reason Expl (¢, k) will
be the opposite of Expl(k,¢). Note that we do not need to consider objects in %, as
such objects will not be part of the answer received by the user.

Consider first Algorithm 2 and assume that we are running it on the ith rank of
constraints and that loop of lines 3-4 has just ended for the jth time (i.e., the set ﬂj’
has just been built). Then, for each oy, 0y such that o, € 9/ and o € K\ 9}-’ , We
propose the following explanation in Expl(¢,k):

o if N,El) > Hf'), then Expl({,k) = {o, is judged worse than o; because it is cer-
tainly worse on constraints of priority i, and they are indistinguishable on more
important constraints};

o clse, Expl({,k) = {oy is judged worse than o} because it is possibly worse on
constraints of priority i, and they are indistinguishable on more important con-
straints }.

Note that explanations make a distinction between the relation >y () and the
more constraining (but stronger) relation (known as interval dominance) that con-
sists in saying that o > oy if and only if N,El> > Hé(’).

Proposed explanations are similar for Algorithm 3, except that users should be
informed that wishes are now considered. Assume that we look at the ith rank of
wishes and that loop of lines 3-9 has just finished (the new set .7} has just been
built). Then, for each 07,0 such that o, € K\ .7} and o, € .7} , we propose the
following explanation in Expl(¢,k):
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o if N,E') > @, then Expl(¢,k) = {0, is judged worse than oy because it is certainly
worse on wishes of priority i, and both satisfy constraints in an indistinguishable
way };

o clse, Expl({,k) = {oy is judged worse than o} because it is possibly worse on
wishes of priority #, and both satisfy constraints in an indistinguishable way}.

For instance, in Example 3, the element Expl(6,1) would have been “Object 6
is judged worse than Object 1 because it is possibly worse on constraints of priority
2, and they are indistinguishable on more important constraints”. In practical appli-
cations, the names of attributes concerned by the constraints or wishes separating
two objects can be explicitly cited rather than giving ranks, as they will be more
meaningful to the user.

A possible inconvenience of this method is that values of Eq. (4) and (5) are
aggregated on many attributes, meaning that a detailed explanation on each attribute
of rank i cannot be given. Possible solutions to solve this issue are (1) to consider
complete orderings for <. and <, (i.e., | <, | =N, and | <, | = N,,) or (2) to
use decision strategies not based on aggregated values (e.g., a voting rule on each
constraint/wish of the same rank).

3 A new decision support system for food packaging design

In this section, we present a new decision support system (DSS) for fresh fruit and
vegetable packaging design in which the flexible bipolar querying approach plays a
central role. To the best of our knowledge, only one DSS for fresh fruits and vegeta-
bles packaging already exists (see [25]), but it does not take into account the criteria
ensuring a sustainable design (a critical issue in food science). Such a sustainable
design must satisfy, at least, three kinds of criteria: economic, environmental and
societal. An example of the economic aspect may be the cost of the packaging ma-
terial. Concerning environmental aspects, important criteria are the biodegradability
of the package or the optimization of product preservation at ambient temperature
(in order to decrease the use of the energy-greedy cold chain). Societal aspects can
concern the fact that consumers may reject the use of some additives or of nano-
technology in the packaging material because of the unknown consequences on their
health, or more simply they may prefer transparent rather than opaque packaging.
In our DSS, starting from a given fruit or vegetable, the user specifies his/her
needs in terms of several criteria (e.g., conservation temperature, transparency, ma-
terial cost, ...) in order to determine a list of packaging. These types of packaging
are ordered according to their degree of satisfaction of the criteria. The bipolar ap-
proach gives the user the possibility to specify in a flexible way what criteria must be
considered as constraints and what other criteria will be used to refine the ranking of
packaging satisfying the constraints. Starting from the user specifications, a flexible
bipolar query is executed against a database containing information about packag-
ing materials. This information has been collected from different sources which may
be technical descriptions of commercial packaging materials or data extracted from
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scientific publications concerning new packaging materials. This information may
be uncertain, due to the variability of engineered packaging and the biological vari-
ability of vegetables. The bipolar approach proposed in this paper deals with this
uncertainty. In Section 3.1, we present the global architecture of the DSS. A use
case concerning endive packaging will be presented in Section 3.2.

3.1 Decision support system architecture

Starting from the name of the vegetable/fruit of interest specified by the user (see
figure 6), the system scans in the first step the vegetable/fruit database in order
to retrieve the O respiration rate (and associated parameters) of the studied veg-
etable/fruit. In the second step, the optimal O, permeance® of the targeted pack-
aging is computed thanks to a model of gas exchanges inside the package called
PassiveMap (see [12] for more details about the model). In the third step, using the
targeted optimal O, permeance and the other user requirements about criteria of
various types (economical, environmental or societal), a query is executed against
the packaging database using the flexible bipolar querying engine, which is the cen-
tral part of the DSS. A list of packaging materials ordered according to the method
presented in the previous sections is finally presented to the user. The use case pre-
sented in the next section focuses on the DSS flexible bipolar querying engine.

specif

Vegetabie N

database
PassiveMap Packaging
simulation database

Flexible bipolar
querying

Ranked list of
pertinent

packagings

Fig. 6 Global architecture of the DSS

6 A measure of the ability of a package to conduct gas fluxes.
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3.2 Endive packaging use case

In this section, we present a use case of the DSS concerning the choice of a packag-
ing material for endives. The user has to specify a set of parameters needed by the
DSS to determine the optimal O, permeance of the targeted packaging: the mass
of the vegetable (500 grams), the surface, the volume and the thickness of the tar-
geted packaging (respectively 0.14 m?, 0.002 m> and Se-5 m), the shelf life of the
vegetable (7 days) and the storage temperature (20 °C). Using the O, respiration
rate (and associated parameters) retrieved from the vegetable database, an optimal
0, permeance of 3.65E-11 mol.m=2.s~'.Pa~! is computed. The optimal permeance
and the temperature will be considered as criteria to scan the package database.

We consider in this use case that the user is also interested in two other criteria:
the biodegradability and the transparency of the package. An extract of the packag-
ing database content is presented in Tables 2 and 3 and will be used to illustrate the
flexible bipolar querying process. Note that imprecise data are here reduced to de-
generated possibility distributions (given by the min — max permeance span), since
currently there is no possibilistic uncertainty in the database (however, such uncer-
tainty will be integrated in future evolutions of the DSS including robust design
methods [17]).

0iq PackagingType Permeance;y, Permeance Temperature
(mol.m™2.s7' Pa~1) (mol.m™2.s~' .Pa~') (°C)
01 Polyolefin 1,29E —13 1,29E —13 23
02 Polyolefin 4,05E — 11 4,05E — 11 23
03 Cellophane 1,55E — 14 1,55E— 14 23
04 Polyolefin 1,96E — 11 2,39F - 11 20
05 Cellulose 1,55E—14 1,55E — 14 23
06 Polyester 4,46F — 12 4,46F — 12 23
07 Polyolefin 1,50E —11 1,50E —11 23
03 Polyester 1,55E—13 1,55E—-13 23
09 Polystyrene 1,03E — 12 1,03E — 12 23
010 Polyester 6,23E — 12 6,23E — 12 23
011 Wheatgluten 1,55E—11 1,67E — 11 25
012 PolyVinylChloride 7,47E — 11 7,47E — 11 25

Table 2 Permeance at a given temperature for an extract of the packaging database

We will consider two examples of queries expressed by the user (in the current
case, they were given by one of the co-authors, V. Guillard). In the first one, the
user specifies one constraint and two wishes. The user first requires the package
to be transparent in order to be accepted by the consumer who wants to see the
endive through the package. It will be expressed as the first and unique constraint.
Concerning his/her wishes, the user would like to maximize the shelf life of the
product at an ambient temperature (and consequently to select a packaging whose
oxygen permeance is close to the optimal one). It will be expressed as the wishes,
here of equal rank.
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0jq  PackagingType Transparency Biodegradability

01 Polyolefin transparent no
0 Polyolefin transparent no
03 Cellophane transparent yes
04 Polyolefin transparent no
05 Cellulose transparent yes
06 Polyester transparent yes
07 Polyolefin transparent no
03 Polyester translucent yes
09 Polystyrene translucent no
010 Polyester translucent yes
011 Wheatgluten translucent yes
012 PolyVinylChloride transparent no

Table 3 Transparency and biodegradability for the same extract of the packaging database

In the second query, the user specifies two constraints and two wishes. To design
a sustainable package, the user expresses that the packaging must be biodegradable
as a first constraint (rank one) and must be made of renewable resources (i.e. con-
straint of rank two on the packaging type). Then, the user expresses as first wish
that the packaging should be transparent in order to be accepted by the consumer
and as second wish that it should maximize the shelf life of the product at an ambient
temperature for economic reasons.

As already said in Section 2.1, the user preferences are, for each criterion, ex-
pressed by a fuzzy set used as a general formalism which enables the representation
of fuzzy, interval or crisp values. Concerning the permeance criterion, 60% of vari-
ation is authorized around the optimal value computed by the PassiveMap subsys-
tem, with decreasing degrees of preferences. For the temperature, a total variation of
100% is authorized, with no preference for the different values. The fuzzy sets as-
sociated with the permeance and temperature preferences are presented in Figure 7.

permeance temperature

0 14GE-11 3.62E-11  9.84E-11 0 10 20 30

Fig. 7 Preferences for permeance and temperature

The fuzzy set associated with the transparency (resp. biodegradability) crite-
rion is Pre f,mmpa,em,:{(transparent,1),(translucent,O),(opaque,O)} (resp. the fuzzy
set Pre fyiodegradability=1(yes,1),(n0,0) }). They correspond to crisp requirements pro-
vided by the user, as the concept of graded biodegradability made little sense to the
user, while translucency is not graded in our current data. The hierarchical fuzzy set
associated with the packaging type is PrefpuckagingType=1(Biopolymers,1)}. It ex-
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presses that the user preferences are for renewable resources but without specifying
a specific type of biopolymer.
Using the notations introduced in Section 2.1, the first query is built as follows:

(5(1) = {Preftransparency} and 7/(]) = {Prefpermeance7Pr€ftemperature}-

[]v[(l)vrlf(l)]c [Nt(l)vnt(l)]w

o1 [la 1] [070}
02 [1,1] [0,817,0,817]
03 [la 1] [070}
04 [1,1] [0,228,0,427]
05 [l, 1] [0,0}
06 [1,1] [0,0]
07 [1,1] [0,021,0,021]
0 [0,0] [0,0]
09 [0,0] [0,0]
010 [0,0] [0,0]
o [0,0]  [0,043,0,008]
o [L1] 0.0]

Table 4 Evaluations for the constraint and the wishes of the first query.

Let us consider the set . = {o01,...,012} of the twelve packages whose char-
acteristics are given in Tables 2 and 3 and whose evaluations for the constraint and
wishes of query 1 are given in Table 4 (as the two wishes are of the same rank, they
have been aggregated in [N,U),Ht(l)}w according to Eq. (5)). After running Algo-
rithm 1, we obtain % = {0g,09,010,011 }. After running Algorithm 2 with 1), we
obtain the following partition:

T = {08,09,010,011} < T1 ={01,02,03,04,05,06,07,012}.
After running Algorithm 3 with %{;), we obtain the following partition:
To ={08,09,010,011} < 71 = {01,03,05,06,012} <

S ={01} < S ={04} < Ty = {02}

The second query is built as follows:
<€(1) = {Prefbiodegmdability}s <g(2) = {PrefpackagingType}s 7/(1) = {Preflransparency}a
W) = {Prefpermeance, Pre fremperature }- The first constraint is judged more impor-
tant than the second one: one wants biodegradable packaging to preserve the en-
vironment (first constraint) which is sustainable, thus made of renewable resource
(second constraint).The first wish is judged more important than the second one:
one wants transparent packaging to fulfill consumers’ preferences (first wish) and
optimized shelf life of the packed food thanks to a fine control of O, permeance
(second wish).

Consider again the set .7 of packages described in Tables 2 and 3 and whose
evaluations for the constraints and the wish of query 2 are given in Table 5. After
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Ve (v e v ), N ),
01 [070] [070] [17 1] [070]
07 [0,0] [0,0] [1,1] [0,817,0,817]
0y L] [0,0] ] 0,0]
04 [0,0] [0,0] [1,1] (0,228,0,427]
05 [1,1] [1,1] [1,1] [0,0]
06 [1,1] [0,0] [1,1] [0,0]
07 [0,0] [0,0] [1,1] [0,021,0,021]
08 [17 1] [OaO] [070] [0701
09 [0,0] [0,0] [0,0] [0,0]
010 [1,1] [0,0] [0,0] [0,0]
o011 [1,1] [1,1] [0,0] [0,043,0,098]
012 [0,0] [0,0] [1,1] [0,0]

Table S5 Evaluations for the constraints and the wish of the second query.

running Algorithm 1, we obtain % = {01,02,03,04,0¢,07,08,09,010,012 }. Pack-
aging which are not biodegradable have been discarded. Moreover, the hierarchi-
cal fuzzy set associated with the packaging type, PrefpackagingType, PEIMits tO €X-
press a generic constraint in a simple way: packaging which are not bio-sourced
have been discarded too. It must be noticed that the use of a classical fuzzy set for
Pre fpackagingType instead of a hierarchical fuzzy set would have delivered an empty
set of answers (all the objects in %) after running Algorithm 1. After the first run
of Algorithm 2 with (), we obtain the following partition:

% = {01702703704;0670770870970107012} < :71 = {05;011}-

The second run of Algorithm 2 with ¢y, ([Nl(z) 7I"I,(z)]c) keeps the partition un-
changed. After the first run of Algorithm 3 with %{;), we obtain the following par-
tition:

T =1{01,02,03,04,06,07,08,09,010,012} < T1 = {o11} < F = {os}.

The second run of of Algorithm 3 with %/, keeps the partition unchanged.

We can see with the result obtained for the second query, from which only two
results are retrieved, that the constraints may be very restrictive compared to the
content of the database. In those cases where no answer is found, we have proposed
in [14] an approach to provide to the users “best” answers among all the rejected
ones (i.e., answers that are the closest to satisfying the constraints).

4 Related works

There exist many works that propose to use fuzzy sets to introduce graded prefer-
ences and possibility distributions to handle uncertainty in databases. Our work can
be related to these two complementary propositions.
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The fuzzy set framework has been shown to be a sound scientific choice to model
flexible queries [3]. It is a natural way of representing the notion of preference using
a gradual scale. In [5], the semantics of a language called SQLf has been proposed
to extend the well-known SQL language by introducing fuzzy predicates processed
on crisp information. Other approaches have also been proposed to introduce pref-
erences into queries in the database community [8, 22, 13]. However, in all these
approaches, preferences are of the same nature. It is only recently that the concept
of bipolarity and its potential use in flexible queries has been studied [20, 21]. This
extended approach discriminates between two types of preferences, one acting as
compulsory constraints, the other acting as optional wishes. Several works have re-
cently been proposed in order to extend the relational algebra with this concept of
bipolarity [6, 7] or to propose a framework to deal with bipolarity in regular rela-
tional databases [31]. It should be noticed that, to the best of our knowledge, the
introduction in bipolar flexible querying of preferences expressed on a hierarchical
domain is an original point of our approach.

The second proposition is to use possibility distributions (whose formalism
is mathematically equivalent to that of fuzzy set) to represent uncertain values
[34]. Several authors have developed this approach in the context of databases
[26, 27, 4, 2, 29, 10]. To the best of our knowledge, the only other work dealing
with the concept of bipolarity in flexible querying of databases including uncertain
values, outside some research perspectives in [21], is that of G. De Tré et al. [30].
However, they deal with a different aspect of bipolar preferences, as they mainly
consider the use of interval-valued fuzzy sets (or similar models) to cope with im-
precisely defined preferences, and treat positive and negative preferences in a com-
mon framework, rather than considering them separately (as we do here).

5 Conclusion and perspectives

In this paper, we have introduced a method for querying a database when prefer-
ences are bipolar (contains both constraints and wishes), data are uncertain and can
be expressed on a hierarchical domain. We use fuzzy sets and possibility distribu-
tions to model preferences and uncertainty, respectively.

Using basic tools to evaluate query satisfaction, we have proposed methods al-
lowing us to (1) extend fuzzy sets to hierarchical fuzzy sets which put in adequacy
two order relations (the preference order relation and the ‘kind of” relation) to per-
mit a query enlargement (2) consider orderings between constraints or wishes and
(3) pre-order the results according to the bipolar preferences, thus presenting a list
of equivalence classes to the user.

The proposed approach is applied in a real-case problem, and is included in a
new support decision tool aiming at designing (optimal) packages for fresh fruits
and vegetables.

Concerning the method, perspectives include the handling of more generic kinds
of uncertainty models [15, 16] that could be included in the database, as well as
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methods that would allow to extract information concerning packages from the web
automatically [9], since manually entering this information is time-consuming and
can only be done by an expert.

Concerning the support decision tool, we are planning to link it with a prelimi-
nary step which will combine preferences expressed by the actors of the food pack-
aging chain, which can be potentially in conflict, using argumentation methods.
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