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Abstract: Azo-Schiff bases contain an azo photochrome showing isomerization accompanying with
color change, and an imine moiety (which can contribute to the metal complexation capability). The
syntheses of these molecules will be described, and their dyes applications will be discussed, such as
for fuel cells, as photometric or colorimetric sensors. In addition, liquid crystals and their antibacterial
efficiencies will also be discussed.
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1. Introduction

Azo-Schiff bases are molecules composed of azo systems coupled to Schiff bases
(Figure 1). The rich database of azo molecules gives numerous opportunities for synthetic
pathways [1,2]. Also, the complex possibilities of Schiff bases have made them molecules
of choice for various applications [3]. Indeed, azo dyes are a large family of photochromic
compounds which can reversibly switch from trans to cis form due to light or heat [4–6] and
have numerous applications including catalysis, antimicrobial and photopharmacological,
in food or as textile colorants [7–11]. Liquid crystals can be also modified by the trans/cis
isomerization of azo molecules [12–14]. Schiff bases are a sub-class of imines, being either
secondary ketimines/aldimines depending on their structure [15]. They were discovered
by Hugo Schiff [16]. They were enlarged to salen ligands (which also sometimes exhibit
photochromic and thermochitomic behavior) to complex cations [17–19].
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1. Introduction 
Azo-Schiff bases are molecules composed of azo systems coupled to Schiff bases (Fig-

ure 1). The rich database of azo molecules gives numerous opportunities for synthetic 
pathways [1,2]. Also, the complex possibilities of Schiff bases have made them molecules 
of choice for various applications [3]. Indeed, azo dyes are a large family of photochromic 
compounds which can reversibly switch from trans to cis form due to light or heat [4–6] 
and have numerous applications including catalysis, antimicrobial and photopharmaco-
logical, in food or as textile colorants [7–11]. Liquid crystals can be also modified by the 
trans/cis isomerization of azo molecules [12–14]. Schiff bases are a sub-class of imines, 
being either secondary ketimines/aldimines depending on their structure [15]. They were 
discovered by Hugo Schiff [16]. They were enlarged to salen ligands (which also some-
times exhibit photochromic and thermochitomic behavior) to complex cations [17–19]. 
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Figure 1. General representation of azobenzene and Schiff base.

2. Syntheses and Structures of Azobenzene-Containing Schiff-Bases
2.1. Schiff Base Synthesis
2.1.1. Main Imine Syntheses

M. A. Neelakantan et al. [20] synthesized Schiff bases from o-vanillin and primary
amines. The 2-amino-N-(2-pyridyl)-benzene sulfonamide and equal amounts of o-vanillin
were refluxed in ethanol for 8 h to produce imines. R. Ramesh et al. [21] synthesized
Schiff bases using the condensation reaction of salicylaldehyde with the primary amines
methylamine, cyclohexylamine and 2-aminopyridine. Eren Keskioglu et al. [22] synthesized
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two Schiff bases using primary amines. The first one was obtained by mixing 1,4-bis(3-
aminopropyl) piperazine dissolved in methanol at 40 ◦C with 2-hydroxy-1-naphthaldehyde
solution at 40 ◦C and refluxing for 2 h. Then, imines were obtained by refluxing 2-hydroxy-
1-naphthaldehyde with 1,8-diamino-p-menthane dissolved in methanol at 40 ◦C for 1 day.
Zahid H. Chohan et al. The authors of [23] synthesized amino acid Schiff bases using five
different amino acids (Scheme 1). The amino acids (1) employed were glycine, alanine,
phenylalanine, methionine and cysteine. The amino acid Schiff bases (3) were obtained by
dissolving each amino acid in methanol and adding equal molar amounts of salicylaldehyde
(2) to the amino acids.
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Scheme 1. Schiff bases from amino acids [23].

2.1.2. Aniline to Arylamines

Zahid H. Chohan et al. [24] synthesized four Schiff bases with different substituents.
2-Amino-5-hydroxypyridine dissolved in ethanol was mixed with an equivalent mole of
salicylaldehyde dissolved in ethanol. Then, several drops of sulfuric acid were added, and
the Schiff base was obtained by refluxing for 2 h. Schiff bases with different substituents
were obtained using the same reaction method as above with 2-aminopyridine having
nitro, methoxy and bromo groups. Narendrula Vamsikrishna et al. The authors of [25]
synthesized two Schiff bases with different substituents (Scheme 2). 6-Aminobenzothiazole
(4) and equal amounts of 5-nitrosalicylaldehyde or 5-chlorosalicylaldehyde (5) were mixed
in a warm methanol solution. The mixture was then refluxed for 4 hours, resulting in the
formation of a Schiff base with benzothiazoline (6). Rua Alnoman et al. [26] synthesized
Schiff bases with alkyl chains by refluxing equal molar amounts of 4-hydroxybenzaldehyde
and 4-hexyloxyaniline in ethanol solution.
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2.1.3. Two Aldehydes and Aniline

Santiago Zolezzi et al. [27] synthesized a salen-type of alkyl diamine structure by
adding a small amount of a methanol solution of 2 equivalents of salicylaldehyde to
a methanol solution of ethylene diamine or 1R,2R-(+)-,1S,2S-(−)-1,2-diphenylethylene
diamine and stirring. Gehad G. Mohamed [28] synthesized Schiff bases (9) by stirring 2,6-
pyridinedicarboxaldehyde (7) and two equivalents of 2-aminophenol (8) in ethanol solution
(Scheme 3). Rachid Souane et al. [29] synthesized four tridentate ligand complexes with dif-
ferent substituents. The Schiff-base ligands were obtained by adding 2,6-diacetylpyridine,
an excess amount of 2,6-dimethylaniline and a few drops of formic acid to methanol and
stirring at 50 ◦C. Ligands of other substituents were also synthesized with each reagent.
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The ligand and metal chloride were then added to THF and stirred at room temperature to
obtain the tridentate ligand complex.
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2.1.4. Unusual Imine Synthesis

This section describes synthetic methods for imine that are different from the methods
described so far. Paola Vicini et al. [30] reported a method for the synthesis of imines using
arylaldehydes and hetero 5-membered ring aromatic amines. Benzo[d]isothiazol-3-ylamine
or 5-methyl-benzo[d]isothiazol-3-ylamine and arylaldehyde and acetic acid were added to
ethanol and stirred to yield the imine. Jaegyeong Lee et al. [31] reported a method for the
synthesis of imines from five-membered ring aldehydes and amines (Scheme 4). Imines
with five-membered rings (12) were obtained by stirring 2-thiophene carboxaldehyde (10)
and N,N-dimethylethylenediamine (11) in dichloromethane solution for 24 h. There are
other syntheses of imines using thiophene carboxaldehyde. Hakan Kizilkaya et al. [32]
also synthesized imines with five-membered rings using 2-thiophenecarboxyaldehyde: a
methanol solution of 2-thiophenecarboxyaldehyde was added every 4 min to a methanol
solution of an equal volume of 4-aminopyridine. After addition, the imine was obtained
by refluxing for 12 h. Raafat M. Issa et al. [33] synthesized imines using 5-membered ring
amines and aldehydes, whereby 4-aminoantipyrine and equal amounts of aldehydes were
dissolved in ethanol and refluxed for several hours to give imines. Abdullah M. Asiri
et al. [34] similarly synthesized six imines with different substituents from five-membered
ring amines and various aldehydes. A. Xavier et al. [35] synthesized imines from diketones
and anilines. By stirring equal amounts of benzyl and aniline in ethanol for several hours,
they synthesized imines in which the two carbon–oxygen double bonds of benzyl were
converted to carbon–nitrogen double bonds. Aliasghar Jarrahpour et al. [36] synthesized
imines from cyclic ketones and amines. The imine was obtained by dissolving aromatic
diamines, two equivalents of Isatin and glacial acetic acid in ethanol and refluxing for
several hours.
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2.1.5. Complex Synthesis: Aldehyde Coordination First, Imine Synthesis on Metal

This is so-called ‘template’ synthesis associated with preparation of metal complexes.
Reinhard Paschke et al. [37] synthesized complexes by coordinating aldehydes to metals
and then imines (Scheme 5). The 4-n-alkyloxy-2-hydroxybenzaldehyde (13) and copper(II)
acetate monohydrate (14) were mixed in ethanol solution. The copper complex with imine
(16) was then synthesized by adding an equal volume of amine (15) diluted in ethanol
solution and stirring.
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2.2. Main Azo Schiff Base Synthetic Method
2.2.1. Azobenzene Synthesis by Mills Reaction

Numerous methods are used to synthesize azobenzene compounds for Schiff-base
complex formation. First, as for azo group formation, Mills reactions can be performed.
Estíbaliz Merino [38] synthesized azo compounds using the Mills reaction, in which aniline
reacts with aromatic nitroso derivatives in glacial acetic acid (Scheme 6). The aromatic
nitroso derivatives (18) were obtained by oxidation of aromatic methylhydroxylamine (17)
with tBuOCl at −78 ◦C. This was mixed with aniline (19) and stirred at room temperature
to yield azobenzene (20).
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Simona Fazekašová et al. [39] conducted the synthesis of azo compounds using the
Mills reaction. This involved the oxidation of ethyl 4-aminobenzoate, resulting in the
conversion of amino groups to nitroso groups. The azo compound was synthesized by
condensation of an amine to the nitroso group. Andreas Aemissegger et al. [40] also
synthesized azo compounds using the Mills reaction by utilizing a protecting group. 3-
Nitrophenylacetic acid was stirred with tert-butanol, Boc2O and DMAP to desorb the proton
of acetic acid to afford a compound with a tert-butyl attached and the nitro group was
reduced to a nitroso group. Next, 3-nitrobenzylamine hydrochloride, Fmoc-Cl and DIPEA
were stirred in a dichloromethane solution to produce a compound with Fmoc attached
to the hydrogen of the amino group. The nitro group in this compound was reduced
to an amino group. Using the compound containing the nitroso group and the amino
group, the azo compound was obtained using the Mills reaction. Finally, the tert-butyl
protection was removed and the azo compound containing a carboxylic acid was obtained
by carboxylic acid. In addition, Hidenori Nishioka et al. [41] synthesized azo compounds
using the Mills reaction with aniline after reducing the nitro group of the aromatic ring
to a nitroso group. Juliane Sørensen et al. [42] reduced the nitro group of the aromatic
ring to an amino group and synthesized azo compounds by azo coupling with aniline.
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Furthermore, etherification at the para-position of the azo compound gave azo compounds
containing ether bonds. Beate Priewisch et al. [43] oxidized the amino group of an aromatic
ring with oxone to a nitroso group. By reacting the nitroso group with the amino group
before oxidation, they synthesized azo compounds. Furthermore, Byung-Chan Yu et al. [44]
synthesized azo compounds by oxidizing the amino group of aniline to a nitroso group
with oxone, followed by azo coupling with p-iodoaniline. Click chemistry occurred at
the para position of the azo compound, and azo compounds with carbon–carbon triple
bonds and aromatic rings were synthesized. Ege Hosgor et al. [45] reduced the nitro
group of the aromatic ring to an amino group by Pd/C catalytic reduction followed by
CuBr-catalyzed azo coupling to synthesize azo compounds. Suju Fan et al. [46] synthesized
azobenzene compounds from aromatic compounds with amino groups by NaClO, while
Subhas Samanta et al. [47] used AgO as catalyst. Alford Antoine John et al. [48] synthesized
azo compounds in dichloromethane solution. They synthesized azo compounds in a new
way by using 2 equivalents of NCS/DBU as catalyst.

2.2.2. Azo Schiff Base Synthesis by Diazotization Method

The diazo coupling can also lead to azo-containing Schiff-base ligands for metal com-
plexes. For example, Octavia A. Blackburn et al. [49] synthesized azobenzene Schiff bases by
azo coupling of diazonium salts derived from anilines with aldehydes and the reaction of
the aldehydes with amines (Scheme 7). Hydrochloric acid and ethyl 4-aminobenzoate (21),
cooled in an ice bath, were stirred while being added to an aqueous sodium nitrite solution.
The solution was then added to an aqueous sodium hydroxide solution of salicylaldehyde
(22) and stirred, and crystals (23) were obtained by filtration. In this compound, equal
amounts of i-propylamine and glacial acetic acid were dissolved in ethanol and refluxed.
As a result, an azobenzene Schiff base (24) was obtained.
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Harmeet Kaur et al. [50] similarly synthesized azobenzene Schiff bases by diazotizing
aniline derivatives with hydrochloric acid and sodium nitrite, followed by reaction with
salicylic aldehyde. In a similar way, Siham Slassi et al. [51] synthesized azobenzene
compounds from amines by sodium nitrite and azobenzene Schiff bases by reaction of
aldehydes in azobenzene compounds with amines. o-Toluidine dissolved in hydrochloric
acid and water was cooled to 0 ◦C and sodium nitrite solution was added dropwise. This
solution was added dropwise to an aqueous sodium hydroxide solution of salicylaldehyde
and stirred to give the compound. This compound and benzaldehyde were dissolved in
methanol, propylamine was added, and refluxing for 2 h gave the azobenzene Schiff base.
Mehmet Gulcan et al. [52] also synthesized azobenzene Schiff bases and metal complexes
with azobenzene Schiff bases as ligands by reacting very large amines with aldehydes in azo
compounds obtained by azo coupling. Azo aldehydes were obtained by azo coupling with
salicylaldehyde and aniline. It was dissolved in ethanol and added to an equal volume of
N-aminopyrimidin-2-one dissolved in ethanol. The solution was refluxed for 4 h, resulting
in an azobenzene Schiff base ligand. Further, the various metals and ligands were dissolved
in a mixture of methanol and chloroform and refluxed for 1 h to yield the metal complexes.
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2.2.3. Structural Variations Due to Orientation When the Azo and Imine Groups Are in the
Same Benzene Ring

As for structural variations, this section states orientation where the azo and imine
groups are in the same benzene ring, azobenzene Schiff bases were synthesized at the
para, meta and ortho positions of the benzene ring. For example, Ti feng Jiao et al. [53]
synthesized azobenzene Schiff bases, which are an azobenzene and Schiff base bonded to
the para position of the benzene ring. Chao Gao et al. [54] also synthesized azobenzene
Schiff base with azobenzene and Schiff base bonded to the meta-position of the benzene
ring. Furthermore, Hiyam Hadi Alkam et al. [55] synthesized an azobenzene Schiff base
with azobenzene and the Schiff base bonded at the ortho position (Scheme 8). (5-methyl-1H-
indol-2- yl)methanamine (25) and equal amounts of 2-amino-5-chlorobenzophenone (26)
were dissolved in ethanol and mixed. Ethanol solution of K2CO3 was added to the solution
and then it was refluxed for 8 h. The resulting precipitate (27) was dissolved in a mixture
of water and ethanol containing sulfuric acid, to which was added aqueous sodium nitrite
solution. The resulting diazonium and sodium hydroxide solution were then added to an
ethanol solution of salicylaldehyde (28) and stirred at low temperature. As a result, an
azobenzene Schiff base (29) was obtained, in which the azobenzene and Schiff base were
bonded to the ortho position of the benzene ring.
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2.2.4. Azoaldehyde, Schiff Base and Complex Synthesis

Siham Slassi et al. [56] synthesized azobenzene Schiff bases using a pre-existing azo. 2-
hydroxy-5-(o-tolyldiazenyl)benzaldehyde was dissolved in methanol and added to an equal
volume of N-(3-Aminopropyl)imidazole. These were refluxed to afford the azobenzene
Schiff base. Sandeep Kaler et al. [57] synthesized azobenzene Schiff bases with differ-
ent substituents by using various salicylaldehydes with existing azobenzene compounds
(Scheme 9). They also synthesized metal complexes with these ligands. Azobenzene Schiff
bases were obtained by dissolving 4-phenyl(diazenyl)aniline (30) and salicylic aldehyde
(31) in ethanol and stirring. Azobenzene Schiff-base complexes (33) were obtained by
stirring the ligand (32) with Al(Me)3 or Zn(Et)2 in toluene at 1:2 or 1:1.

Ali M. Hassan et al. [58] similarly synthesized azobenzene Schiff bases through the con-
densation of a preexisting azobenzene compound with aldehydes. They also synthesized
metal complexes with these ligands. o-Vanillin and 4-aminoazobenzene were dissolved in
methanol, and the mixed solution was refluxed to produce the precipitate, i.e., the ligands.
The azobenzene Schiff-base complex was obtained by dissolving the ligand and hydrated
metal acetate in methanol and refluxing the mixture.
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2.2.5. If There Are More than One Amino Group, Can a Schiff Base Ligand Be
Formed First?

Yogesh Kumar et al. [59] formed a Schiff base with an aldehyde on one side with aniline
after the first step of azo coupling (Scheme 10). They synthesized a trans Schiff-base complex
with two bidentate chelates. 2-(Phenylthio)aniline (34) was stirred with hydrochloric acid
and sodium nitrite solution. Next, this was mixed with an aqueous alkaline solution in
which salicylic aldehyde (35) was dissolved and stirred to obtain an azo compound with
an aldehyde moiety (36). Furthermore, a methanol solution of the azo compound, aniline
(37), and acetic acid in equal volumes was refluxed to yield the azobenzene Schiff base (38).
Using this as a ligand, a trans form of bis(didentate)-type Schiff-base complex (39) was
obtained by dropping Zn(NO3)2-6H2O into the ligand solution.
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Nidhi Nigam et al. [60] introduce aniline and aldehyde simultaneously, but only azo
coupling occurs first. They synthesized azo-Schiff bases in which the remaining aldehyde
and a large glycosyl amine form a Schiff base.

2.2.6. Adjustment of the Number of Imines

Azobenzene Schiff bases with various structures can be synthesized by adjusting
the amino group. A. A. Jarrahpour et al. [61] synthesized azobenzene Schiff bases using
different aromatic amines (Scheme 11). First, azo compounds were obtained by azo coupling
(40) (41). They further obtained the azobenzene Schiff base by reacting the azo compound
with an aldehyde (42). In this process, azobenzene Schiff-base ligands were synthesized
that can form one-sided and two-sided Schiff bases by changing the amino and diamino.
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Khalil K. Abid et al. [62] also synthesized azobenzene Schiff bases using pre-existing
azo compounds. In that case, the diamines formed Schiff bases with aldehydes on both
sides. On the other hand, S. El-Sayed Saeed et al. [63] used diamine, but only one side
reacted with aldehyde to form Schiff base.

2.2.7. Unusual Reactions

An unusual method for the synthesis of azobenzene Schiff bases, which is different
from the previously described methods, was reported. Koichi Tanaka et al. [64] synthe-
sized azobenzene Schiff bases, which are closed cyclic molecules with alternating azo
and imine, by using azo and diamine with a preformed dialdehyde. Azobenzene-4,4′-
dicarbaldehyde and (1R,2R)-1,2-diaminocyclohexane were dissolved in dichloromethane,
resulting in the formation of macrocyclic Schiff bases. Khalid Jawad Al-Adilee et al. [65]
synthesized azobenzene Schiff base containing a five-membered ring (Scheme 12). 2-Amino-
5-methylthiazole (43) was dissolved in concentrated hydrochloric acid and a solution of
sodium nitrite was added. This solution was mixed with 3-amino phenol (44) in the pres-
ence of sodium hydroxide solution to give an azo compound with an amine group (45).
This was dissolved in ethanol, and 4-(dimethylamino)benzaldehyde (46) and glacial acetic
acid were added and refluxed at 80 ◦C for several hours. As a result, an azobenzene Schiff
base with an amine (47) at the phenyl on the azo group side and an aldehyde bound from
the outside was obtained.
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Manish Kumar et al. [66] synthesized Schiff bases by azo coupling followed by
formation of a five-membered ring, deprotection of the amino group and aldehyde. p-
Aminoacetanilide was used as raw material for azo coupling of the amino group. This was
added to a solution of methylhydrazine and Na2CO3 and stirred. Azo compounds with
five-membered rings were obtained. Furthermore, an azobenzene Schiff base was obtained
by stirring the azo compound and salicylic aldehyde in ethanol. Nagwa H. S. Ahmed
et al. [67] synthesized Schiff bases after azo coupling. The azo moiety is separated from the
Schiff base moiety by an ester bond that is then formed. Azo compounds were synthesized
from ethyl aminobenzoate and phenol. Various reactions with azo compounds yielded
compounds containing benzoic acid and azo moieties. Schiff bases were also obtained
from 4-hydroxybenzaldehyde and aniline. The benzoic acid-azo compound and Schiff base
were dissolved in dichloromethane, N,N′-dicyclohexylcarbodiimide and 4-(dimethylamino)
pyridine were added, and the mixture was stirred for 72 h. The result was a compound in
which the azo moiety and the Schiff base moiety were separated by an ester bond.

3. Azobenzene-Containing Schiff-Bases Applications

Colorants can have a positive impact on the study of chemical or biological interest,
such as metals posing an issue for health or pathogenic bacteria. But they can also play a
great role in the formation of liquid crystals [68–70]. In the case of ions sensors in water,
which may be dangerous for health, advanced research was made for easy tools for sensing
them, including colorants [71–74]. But azo moieties, known for their coloring properties
and coupled to Schiff bases known to complex ions, can give excellent results.

3.1. Sensors

Optical and colorimetric sensing of ions are of great interest, particularly when the
sensors demonstrate specificity towards certain ions over others. For example, H2L1–H2L3

(S1) ligands were synthesized (Figure 2) and showed changes upon the addition of F−, Hg2+

and Cd2+, but no changes on the addition of Cl−, Br−, NO3
−, OAc−, HSO4

−, H2PO4
−,

CN−, or Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ [75]. While functionalized with two
chlorines, these ligands can be selective for naked-eye detection of F− and Al3+ [76]. For
the detection of F−, Schiff base-linked arylazopyrazoles, S2 (Figure 2) shows a specific
photometric detection of fluoride ions. The chelation can be reversible upon the addition of
H+, but the spectrometric data at 488 nm showed a fatigue phenomenon [66]. Very simple
molecules can also lead to a selective colorimetric assessment of fluoride and acetate ions
in solution. This kind of sensor can be synthesized in only two steps to get what was called
by the authors receptors R1 and R2 (S3, Figure 2) [77]. In contrary, bis(azo) Schiff bases (S4,
Figure 2) can selectively complex aluminum ions [78]. A 1:1 stoichiometry binding between
the chemosensor and Al3+ ions has been confirmed from Job’s plot. This 1:1/Al3+:ligand
complexation stoichiometry was also found when the azo moiety beard a naphthalene
fluorophore [79]. An inhibition molecular logic gate has been constructed using the ligand
bis(azo) where Al3+ and EDTA act as inputs and fluorescence emission is the output. When
a tetradentate Schiff base based on a bis(azo) moiety is included in the preparation of a
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PVC membrane, this leads to a Al3+ selective electrode [80]. Selectivity can also depend on
detection methods. Indeed, when two cations can selectively be detected by two different
optical methods, this dual mode is of great interest. This is the case for example for the
dual mode H2L ligand (S5, Figure 2) which showed a selective fluorescence recognition of
Al3+ with a noticeable fluorescence enhancement and a colorimetric detection of Co2+ [81].
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The incorporation of Rhodamine into the sensor structure can result in the devel-
opment of probes capable of sensing multiple ions and facilitate imaging within human
lymphocyte cells (HLCs). Indeed, ligands can map the intracellular concentration of Al3+

and Cr3+ in HLCs. This holds true for the rhodamine–azobenzene-based single molecular
probe LS6 (Figure 3), which encompasses a Schiff base moiety capable of complexing with
cations [82]. It is noteworthy that the onset of photo-induced electron transfer (PET) process
is mainly responsible for ‘Turn-Off’ emissive behavior of the sensor. Again, the inhibition
of isomerization and appropriate complexation in presence of specific guest and functional
group attached to the fluorophore makes the PET process invalid and initiates the chelation-
enhanced fluorescence process (CHEF), arresting the previous electron transfer. This strong
‘Turn-On’ selectivity of sensor L was also observed when sensor solution was treated with
Al3+ or Cr3+ under UV lamp at 366 nm. Rhodamine can also be part of a tripodal probe (S7,
Figure 3) [83] which can recognize or discriminate F−, AcO− and H2PO4

− anions over a
wide range of pH (3 to 12).
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3.2. Liquid Crystals

Liquid crystal state [84] is a phase of matter observed between the liquid and crystal
phases. Amongst the various types of mesophase (which are phases specific to liquid
crystals and intermediate between the isotropic liquid and crystalline solid states,) the
nematic phase can be found. In this phase, molecules have no positional order but tend
to point in the same direction. Another type of mesophase is the smectic phase, where
molecules maintain a general direction such as in nematic phase, but also tend to align in
layers or planes (Figure 4).
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Figure 4. Representation of (a) nematic, (b) smectic A, (c) smectic C and (d) cholesteric phases of
liquid crystals.

The cholesteric phase and columnar phase are other possible types. Normally, calamitic
liquid crystals (calamitic liquid crystals, characterized by their elongated, rod-like shape
consisting of a rigid ring system, a connective linkage group, and a flexible terminal
group [85]) of low alkyl chain length are nematic, the medium length are nematic / smectic
and high members are entirely smectic. Upon heating and cooling, all the synthesized
azo Schiff-based LC1 series (Figure 5) exhibited two phase transitions, from crystal to
nematic and from nematic to isotropic while heating to 285 ◦C and reversely on cooling to
169 ◦C [86]. When two azobenzene Schiff base are linked by a propylenediamine moiety
(LC2, Figure 5), and are complexing lanthanides, smectic A phases are observed while
heating to 80 ◦C (Ligand alone), 90 ◦C (La(III) and Ce(III) complexes), 91 ◦C (Sm(III)
complex) and 75 ◦C (Gd(III) complex) [62]. When cholesteryl mono-, bis- or tripodal
molecules were performed with branched azobenzenes, it was shown that the liquid crystal
phase behavior was closely related to the number of mesogenic units and the rigidity and
flexibility of the structure. Indeed, the mesophase ranges were widened as the chain length
increased in the same series, or when de degree of branching increased [87]. Halogenated
(and especially fluorinated) compounds (LC3 series, Figure 5) can exhibit smectic A phase,
even with high chain length [88]. Terminal substituents can also play an important role
in the mesomorphism. That is how, for example, two series of alkyl-, methoxy- or halide-
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azobenzenes possessing links ester or imine to aryl moieties functionalized by C8 or C16
ethers were evaluated for their mesomorphic properties (LC4 series, Figure 5). It was
found that A1, A3, B1-B9 exhibited a nematic phase, while A2, A4-A10, B10, B11 organized
into smectic/nematic phases. Additionally, B12 exclusively exhibited a smectic phase [89].
Finally, Cu(II) or Ni(II) complexes with a M:L/1:2 stoichiometry were discussed. But this
time, it was shown that the mesophoric or phase transition was not only due to the ligand,
but also to the metal used. Indeed, for ligands from n = 5 to n = 11, upon heating, the
phases went from crystal to smectic A and then to nematic and then to isotropic. For ligands
having a longer chain length (n = 12, 14, 16), the phase went from crystal to smectic A
and then to isotropic. For the copper complexes (n = 5 to 11, 12, 14, 16) it was found that
the mesophoric phases went from crystal to smectic A and then to isotropic. And finally
for nickel complexes, only a transition phase from crystal to isotropic was found upon
heating [90].
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3.3. Enzymatic Fuel Cells and Electrode Mediators

Enzymatic fuel cells (EFC) play an important role in replacing non-selective metal
catalysts, currently used in low-temperature fuel cells, with enzymes as catalysts. The
process consists in the fuel oxidation by enzyme 1 (Figure 6), providing electrons and
protons, coupled to oxidant reduction by enzyme 2, consuming electrons and protons [91].
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ety (Figure 7). But the main point is the incorporation of the complexes in the hydrophobic 
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zyme to the surface. As the azobenzene moiety can switch from trans to cis reversibly 
within short time without degradation, a docking simulation in laccase is of great interest 
(OE2, Figure 7) [94] as well as the chirality of the oligopeptide linker, while the electron-
transfer between the cathode and the enzyme is improved by using Schiff base copper 
complexes with or without azobenzene moiety [95].  
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Figure 6. Representation of (a) an EFC with direct electron transfer (DET), and (b) mediated electron
transfer (MET) at the anode.

As an alternative to DET, synthetic redox substrates (mediators) can be used to shuttle
electrons between the enzyme and the electrode for a mediated electron transfer (MET,
Figure 6). For example, if laccase, a multi-copper oxidase [92], can be used in the cathodic
compartment of the enzymatic biofuel cells because of its low redox potential, new Cu(II)
complexes OE1 were designed and investigated as mediators [93]. The Schiff-base ligands
consisted of both a redox-active (anthraquinone) and a photochromic (azobenzene) moiety
(Figure 7). But the main point is the incorporation of the complexes in the hydrophobic
pocket site of the laccase surface, as well as the oligopeptide linker used to bind the enzyme
to the surface. As the azobenzene moiety can switch from trans to cis reversibly within
short time without degradation, a docking simulation in laccase is of great interest (OE2,
Figure 7) [94] as well as the chirality of the oligopeptide linker, while the electron-transfer
between the cathode and the enzyme is improved by using Schiff base copper complexes
with or without azobenzene moiety [95].
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3.4. UV-Protection and Anti-Corrosive Effect

Azobenzene Schiff base possesses excellent photochromic or thermochromic properties
based on intermolecular proton transfer or cis-trans isomerization. When applied to a
modified cellulosic fabric, it can not only protect the fibers or skin against UVs, but also
maintain the properties of the matter. For example, an azobenzene Schiff base containing
two reactive groups was synthesized (PRO1, Figure 8) and the functional cellulose fabrics
had UV-protection properties with (UPF = 31.7) [96]. When applied on polyester clothing,
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pyrazole–vanillin Schiff base disperse azo-dyed fabrics tested in an ultraviolet-protection-
factor test provided superior UV protection [97].
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Anticorrosive behavior of Azo-Schiff bases is also well known. For example, Azo
Schiff-base ligand PRO2 (Figure 9) on mild steel in HCl solution was investigated and
showed that the anticorrosive effect increased with concentration, but decreased with
increasing temperature [98]. It was also found that carbon steel can be protected from
corrosion in 1 M H2SO4, including at low concentration [99], by an azo Schiff base with the
surfactant Tween 80 was used to solubilize the inhibitor PRO3 (Figure 9) [100].
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3.5. Anticancer and Antibacterials

Azo-Schiff bases can exhibit good anticancer properties. For example, when Co-,
Cu-, Mn-, Ni- and pd-complexes were tested for their DNA-cleavage capabilities, all the
compounds showed two strand DNA cleaving properties [101]. Another results showed
significant augmentation of apoptosis in tumor cells treated with zinc–azo Schiff-base
complexes, showing their anti-tumor activity [102]. When agents are based of o-vanillin
and azo moieties, Schiff-base ligand and its Cu(II), Zr(IV) and Mn(II) complexes exhibited
the highest cytotoxic activity against HepG-2 and HCT compared to cisplatin as a reference
drug [58]. Whereas, when molecules are imidazole-based, Co(II) complex was the most
potent anticancer agent and exhibited high DNA Topo-II inhibitory activity [103].

But this kind of molecules can also, when complexing metals, inhibit the growth in
Gram-positive and Gram-negative bacteria (see comparisons in Table 1).

Indeed, by various ways of analyses, such as disc diffusion, or liquid-mediated tur-
bidity/optical densities, products were described to be effective against many bacteria
such as Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa,
Enterococcus faecalis, Bacillus subtilis or even Salmonella typhi. It is noticeable that not only
the metal used is important as it can act on the antibacterial activity (for example between
copper and zinc on B. subtilis with UV7, or between copper and nickel on E. coli with UV9a),
but also by using one metal, the variation of ligand can lower the antibacterial activity (for
example, using zinc with UV5a, UV5b and UV5c on E. coli, or S. aureus. . .). This shows
that all these parameters have to be taken into account for the antibacterial activity of
Azo-Schiff bases.
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Table 1. Bacterial growth inhibition. a disc inhibition zone (mm). b MICs values (µg/mL). c MICs
values (µMol/mL)—not tested on these bacteria.
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UV2 a 8 7 9 8 - - -
[104]Co(UV2)2

a 7 7 8 7 - - -
Cu(UV2)2

a 7 8 8 7 - - -
UV3(a) b 64 64 16 64 16 - -

[105]UV3(b) b 64 64 16 64 8 - -
CuUV3(a) b 32 32 16 32 16 - -
CuUV3(b) b 32 32 16 32 16 - -

UV4(a) a <6 <6 <6 <6 - <6 - [61]UV4(b) a <6 <6 9–12 <6 - >12 -
UV5(a) c - 250 32.25 - - 62.5 125

[106]
UV5(b) c - 250 3.90 - - 125 250
UV5(c) c - 250 7.81 - - 15.63 250

Zn(UV5(a))2
c - 62.5 7.81 - - 7.81 125

Zn(UV5(b))2
c - 250 15.63 - - 31.25 250

Zn(UV5(c))2
c - 62.5 3.90 - - 7.81 125

UV6 a - 0 5–10 10 - 0 -

[52]

Mn(UV6)2
a - 0 5–10 10–15 - 5–10 -

Ni(UV6)2
a - 0 0 10–15 - 0 -

Co(UV6)2
a - 10–15 10–15 10–15 - 0 -

Cu(UV6)2
a - 10–15 0 10–15 - 0 -

Zn(UV6)2
a - 0 0 20 - 0 -

Pd(UV6)OAc a - 15–20 10–15 10–15 - 10–15 -
UV7 b - 100 200 350 - 400 -

[107]
Co(UV7) b - 15 10 25 - 20 -
Ni(UV7) b - 25 30 20 - 80 -
Cu(UV7) b - 25 10 20 - 15 -
Zn(UV7) b - 45 90 100 - 200 -

UV8a a - 19 17 16 - 20 -
[108]UV8b a - 22 20 18 - 22 -

VO(UV8a)SO4
a - 24 22 22 - 24 -

VO(UV8b)SO4
a - 16 20 21 - 20 -

Co(UV9a)2
a 16.17 16.67 20.83 - - - -

[109]
Cu(UV9a)2

a 16.00 15.83 18.33 - - - -
Ni(UV9a)2

a 14.67 0 14.83 - - - -
Co(UV9b)2

a 16.17 15.50 16.83 - - - -
Cu(UV9b)2

a 15.83 14.83 14.50 - - - -
Ni(UV9b)2

a 16.67 0 15.17 - - - -
UV10a a 20 21 20 - - - -

[110]
UV10b a 19 18 18 - - - -
UV10c a 21 20 17 - - - -
UV10d a 20 49 45 - - - -
UV10e a 25 32 35 - - - -
UV11 a 9 6 12 - - - 15

[111]
CoUV11 a 9 18 16 - - - 18
NiUV11 a 11 22 22 - - - 20
CuUV11 a 17 27 19 - - - 20
CdUV11 a 17 24 25 - - - 21
ZnUV11 a 19 30 27 - - - 26

UV12 a - 21 23 - - - - [112]Ni(UV12)2
a - 21 17 - - - -

UV13 a - 19 17 16 - 20 -

[113]
Co(UV13)Cl a - 22 20 18 - 22 -
Ni(UV13)Cl a - 24 26 20 - 24 -
Pd(UV13)Cl a - 24 22 22 - 24 -
Pt(UV13)Cl3 a - 16 20 21 - 20 -

UV14 a 9 10 13 - 0 12 -
[114]Cu(UV14)2

a 12 12 20 0 15 17 -
Co(UV14)2

a 9 11 9 0 0 11 -
Ni(UV14)2

a 11 9 13 0 0 12 -
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4. Conclusions

Azo-Schiff bases are molecules containing an azo photochrome (which can be respon-
sible for the isomerization of the molecule, but also its color), and an imine moiety (which
can contribute to the metal complexation capability). For their syntheses, the chemoselec-
tivity was described, as when a salicylaldehyde compound and an aniline are introduced
simultaneously, the azobenzene is formed first, and then the remaining aldehyde can lead
to the imine formation. Another crucial aspect is the targeted number of imine bonds.
Indeed, depending on the experimental procedures, multiple imines or a single one can
be formed. Finally, the reaction demonstrates versatility that is considered uncommon.
The formation of Azo-Schiff bases opens up possibilities for a broad range of compounds,
and the diverse applications stemming from these compounds are very interesting. For
example, these molecules can lead to liquid crystals, fuel cells or even antibacterials, paving
the way to innovative, everyday-use devices for a better future.
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