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Abstract

This paper presents a study on the state of charge observation of lithium-Ion batteries for energy management in
embedded applications. The knowledge of the state of charge is fundamental for the safety and optimal usage of these
batteries. The study focuses on the development and implementation of a Kalman filter-based observer algorithm on
a Spartan 6 FPGA that can accurately estimate the state of charge of a battery, even if it is initialized differently from
its actual state. In this paper we have focused on the opportunities of FPGA for fast calculation which allow to use
the FPGA as a slave component in a BMS and allow to observe the SOC a great deal of cells with a low cost. The
implementation of this observer on a low-cost FPGA can lead to cost reduction for battery management systems in
various applications, such as electric cars and any other systems requiring the observation of the state of charge of
a battery pack. The observer model was validated through simulations and real-time testing. This study presents a
promising approach to accurately estimate the state of charge of Lithium-Ion batteries for efficient energy management
in various applications.

Keywords: Energy management; Lithium-Ion batteries; Battery Management System (BMS), State Of Charge (SOC
Estimation), Extended Kalman Filter (EKF) algorithms, Field Programmable Gate Arrays (FPGA Implementation),
Real-time Applications.

1. Introduction

Energy management is a crucial aspect of embedded applications, especially in battery-powered devices, as it af-
fects the battery life and the overall performance of the system [1-3]. Lithium-Ion batteries are widely used in various
applications due to their high energy density, low self-discharge rate, and long cycle life [4]. To ensure the safety and
efficiency of the battery-powered system, the state of charge (SOC) must be accurately estimated. Inaccurate SOC
estimation can lead to overcharging, undercharging, and premature battery failure. Accurate estimation of the SOC of
Lithium-Ion batteries is a challenging task due to their non-linear and time-varying characteristics [5, 6]. Therefore,
several SOC estimation methods have been proposed, including model-based and data-driven approaches [7, 8].

Battery management systems (BMSs) are an essential component of a battery pack, as they monitor the state of the
battery and control its charging and discharging processes [9]. Accurate state-of-charge (SOC) estimation is a crucial
function of BMSs, as it provides information on the amount of energy remaining in the battery and enables optimal
battery usage [10]. Moreover, reliable SOC estimation is necessary to prevent battery overcharging and undercharging,
which can significantly reduce battery life and safety [11]. In order to accurately estimate the SOC, the estimation
algorithm has to meet the following requirements: high precision to ensure coherent energy management, robustness
against some inaccuracies due to the use of low-end sensors in BMS, robustness against the misestimation of the
batteries’ parameters which highly depend on both temperature and battery degradation and low computational power
requirements that allow the use of microcontrollers in the estimation. To achieve accurate SOC estimation, various
modeling and estimation techniques have been developed, including electrochemical, equivalent circuit, and data-
driven approaches [12—15]. The electrochemical model is widely used due to its accuracy and ability to estimate the
internal states of the battery[16]. However, the electrochemical model is computationally expensive and requires a
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high level of expertise to implement. On the other hand, observer-based methods are relatively simple to implement
and provide good estimation accuracy.

Morever, SOC estimation methods can be divided into 2 groups: open loop and closed loop estimation. On the
one hand, the open loop group includes: the coulomb counting method that is widely used in SOC estimation. It’s
simple and easy to be implemented but needs a prior knowledge of the initial SOC. It also has slower dynamic and
poor reliability due to the integration. In addition, the open circuit voltage (OCV) method can also be used since it’s
of high accuracy but needs a long time for the battery to rest. On the other hand, the group of the closed loop methods
mainly includes the Model Predictive Control (MPC) which are one of the most effective techniques for cell-level
control of the battery packs since it takes into consideration constraints and refines the safety margins allowing the
battery to be fully used [17]. We can find a lot of SOC estimation methods based on MPC such as: the Extended
Kalman Filter (EKF), the Dual Extended Kalman Filter (DEKF), the Adaptive Extended Kalman Filter (AEKF), the
Adaptive Mix Algorithm (AMA), the state observers, the Generalized Extended State Observer (GESO), fuzzy logic
methods and neural networks, etc....[18, 19].

Besides, other estimation techniques can be found as well in the literature: In [20], an application of the H
infinity filter with the Ni-mH batteries is proposed along with the corresponding results. This method is based on
minimizing the H infinity norm of the estimation error. In [21-23], a novel method AMA (Adaptive Mix Algorithm)
is introduced, where a state observer is being implemented based on the difference between the output voltage and the
battery’s measured voltage. Moreover, the authors in [24] presented a new method called Generalized Extended State
Observer (GESO). Several other methods can be added to the previously cited techniques such as: the Sliding Mode
Observer (SMO) whose idea is explained in [25] and [26]. In order to get out of the box, techniques other than filters
are being used in the research domain. For example, a technique based on both neural networks and fuzzy logic can
be found in [14, 15, 27, 28]. A comparison between EKF, SMO, H infinity and Luenberger Observer is conducted in
[29]. Another estimation approach is used in [30] and [31] which is based on Particle Filter (PF). Additionally, another
comparison between PF and EKF is established in [32]. Other Variants of the Kalman Filter can also be deployed to
estimate the SOC such as: the Unscented Kalman Filter (UKF) and the Sigma Point Kalman Filter (SPKF) [33-36].

Several methods have been proposed for online estimation of SOC, with state observers, especially the Extended
Kalman Filter (EKF), being a popular choice due to their robustness [37-39]. In battery management, the EKF recur-
sive algorithm can be used to estimate the SOC by incorporating the battery model and the measurement data [40].
The cost of implementing sophisticated SOC estimation algorithms using microcontrollers can be high, particularly
for systems with hundreds of cells, and may not always be adequate. This BMS cost, including supervision and bal-
ancing, may reach up to 30% of the price of the battery pack. Therefore, this paper presents the interest of using Field
Programmable Gate Arrays (FPGA) to perform fast calculations of SOC estimation algorithms for EV batteries made
up of multiple cells connected in series [17, 18, 41, 42]. FPGA chips can be used not only with batteries, but they
proved high effectiveness in the industrial domain [42, 43].

In this paper, we present a study on the state of charge (SOC) observation of Lithium-Ion batteries using an
observer based on the Extended Kalman filter algorithm. The main goal is to implement this observer on a Spartan
6 FPGA, which is a low-cost and efficient solution for embedded systems. The proposed observer is capable of
correcting the estimated SOC in case it is initialized differently from the actual SOC of the battery. The fast observation
time makes it possible to observe multiple batteries simultaneously using the same FPGA, reducing the cost of BMS
in electric car systems or anv other svstem reauiring the observation of the SOC of a batterv pack [44, 45].
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Figure 1: Architecture and functions of a BMS.
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The rest of the paper is organized as follows. Section II provides a brief overview of the lithium-Ion battery
model used in this study and the observer design based on the Kalman filter algorithm. Section III presents the
implementation of the observer on a Spartan 6 FPGA. Section IV provides the simulation With Xilinx environment.
Section V describes the experimental results of the proposed observer. Finally, Section VI concludes the paper and
discusses future work.

2. State of charge observer

2.1. Battery model

Various approaches have been developed to accurately represent the dynamic behavior of an electrochemical cell.
One of these methods involves electrochemical models that use the solution of partial differential equations that de-
scribe the chemical reactions taking place within the cell. These models are useful for predicting cell performance
and understanding aging mechanisms. However, such an approach requires knowledge of the initial and boundary
conditions of the cell, which is not always available. Moreover, the computational complexity of this approach makes
it unsuitable for real-time applications. In order to overcome this problem, simplified models based on electric equiv-
alent circuits (EECs) have been developed [46, 47]. EECs provide an alternative solution for modeling polarization
due to the phenomena taking place within the battery during its use. EECs are suitable for non-electrochemists and
are fairly simple to deploy in real-time applications. However, electrochemical phenomena must be considered at the
cell level to simplify the identification of such a model.

Figure 2 depicts the electric equivalent circuit used to model the electrochemical dynamics of each cell within our
battery. The circuit includes a voltage source OCV (open-circuit voltage) that refers to the equilibrium potential of the
cell and is dependent on the state of charge. Additionally, a resistance Rq represents high-frequency phenomena such
as electrolyte and connection resistances, as well as the resistance of charge transfer phenomena. Finally, a parallel
circuit R;C; symbolizes low-frequency phenomena (diffusion phenomenon).
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Figure 2: Battery model used in the observer

To simplify the real-time calculations, we propose modeling the diffusion phenomenon with a single RC circuit.
This first-order representation is sufficient for simulating continuous charge or discharge. We assume a sampling
period of Te = 0.1 seconds to ensure computational efficiency by the Battery Management System (BMS). In com-
parison to the sampling period, the dynamic of the charge transfer phenomenon, which occurs at approximately 10
ms, is neglected. The cell model’s state equation, extended to the state of charge (SOC), is expressed in equation 1:
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where Q,,, is the nominal capacity, V; is the voltage across the circuit R;C, S OC is the state of charge, and Uy,
the terminal battery voltage.
The discrete state battery model extended to the SOC becomes:

Xee1 = f G, )
e o =8k, ) @

where x; = [V), SOC]" and uy = [ix].

2.2. Kalman filter based State of charge observer

Estimating the State of Charge (SOC) of a battery is a challenging task as it cannot be directly measured. To
address this issue, the Extended Kalman Filter (EKF) is widely used in the literature. The EKF requires an accurate
mathematical model of the battery and is capable of estimating SOC within a certain range of noise [48].

The EKF consists in initializing and predicting the state variables at a specific sample time Te. The state equation
of the cell model, which includes the SOC, is used for the prediction process (equation 1). The performance of the
observer depends on the confidence in both the measurements and the model. Therefore, to account for uncertainties in
the theoretical model, we consider an uncertainty wy for the model and an uncertainty v; for the voltage measurement
(Equation 3).

X1 = f Ok, ug) + wy 3)
i = g(xk, ux) + v

In this study, we consider model and measurement uncertainties as white, Gaussian, and centered noises, as
commonly assumed in the literature [37, 49]. To incorporate these uncertainties in the state and measurement noise
covariance matrices Q and R, respectively, we define Q = E {wkw,f} andR=F {vkv,{}.

However, the battery model extended to the SOC is nonlinear due to the SOC dependency of the open voltage
circuit extension. To utilize the Kalman algorithm, the nonlinear battery model extended to the SOC must be linearized
at each sample time through the computation of Jacobian matrices, as shown in Equation 4. This linearization step is
necessary to enable the use of the Kalman algorithm, which is established on a linear state space model.

Fp = % G, = W )
With Giis the state matrice with the term Zg% which is a lookup table in function of SOC.

After linearizing the discrete state space model, a Kalman gain is calculated in relation to the prediction of covari-
ance matrices.

T p-l
Ky = Px,k+1||ka+]Py’k+1||k )
Then, the covariance matrices are updated
Pyjiik = FiPogF{ + Q

_ T

Pyirik = GiPrxr1kGy + R (6)
_ T

Pyirtipr1 = Prsrrie — Kot Py e Ky

In the final step, the predicted state vector is corrected using the optimal gain K.

X1 = Xkt + Kot Oke1 = Trr1e) @)

The parameters of the Extended Kalman Filter are summarized in the Table 1.



Input variables for each cell | Output and stored variables
Cell voltage Upar,
Cell state of charge SOCy SOC41
Current i
Covariance matrices Pk Prok1yik P k1)1
Covariance matrices Py ik Py i1k
Stored constants for all cells
High frequency resistance Rq
Diffusion resistance Ry
Diftusion capacity C
Nominal capacity Qrom
Sampling period T,
Open circuit voltage lookup table OCV(SOCy)
Derivative of open circuit voltage gso%
in relation to SOC lookup table
State covariance matrice Q
Measurement noise covariance matrice R

Table 1: Parameters of the Kalman filter

3. FPGA implementation

3.1. FPGA-Based Architecture Design

FPGAs consist of two types of resources: processing resources, such as memories, logic, and registers, which
are grouped in logic blocks of different types, and programmable interconnection resources that link the logic blocks
together. To program a reconfigurable circuit, one must specify the functionality of each logic block and organize the
interconnection network to perform the requested function [50].

For this study, we are interested in programmable circuit architectures of the matrix type, in which logic blocks
are organized in a regular rectangular structure, with each block connected to the routing network by Programmable
Interconnection Points. The routing network is made up of horizontal and vertical channels that occupy the space
between the logic blocks.

FPGAs are made up of pre-designed elementary cells and interconnections that are entirely programmable by
the end user, allowing for the construction of specific hardware architectures that meet the requirements of the final
targeted application [51].

FPGAs have demonstrated their efficacy in the industrial domain, providing high throughput and low latency pro-
cessing through parallelism and optimized data paths. The flexibility of user-defined circuits enables the association
of different data types and precisions, enhancing performance and reducing costs. Additionally, FPGAs are scalable
for design improvement and system expansion [28, 52].

The use of FPGAs allows for the configuration of parallelism calculus to execute an algorithm, thereby reducing
the execution time of the algorithm. However, programming an FPGA requires the optimization of the physical
characteristics that are crucial for the implementation of the algorithm. This optimization is based on two tasks:
optimizing the time/area performances required to implement the algorithm and selecting the appropriate number of
bits for each data format (variables and coefficients) while maintaining the essential accuracy of the observer.

3.2. Equipments and software

For this study, the aim is to implement the Extended Kalman filter EKF that estimates the state of charge of the
pack on a real-time system. To achieve this goal, the MicroAutoBox II (MABXII) 1401/1511/1512 from dSPACE is
used, a robust and reliable hardware platform widely used for prototyping and testing in the automotive industry. The



Xilinx Spartan-6 FPGA (XC6SLX150) embedded in the MicroAutoBox II is employed for its high performance and
low power consumption
Table 2 summarizes some of the key specifications of this FPGA, which make it suitable for our application.

Process technology 45 nm
Number of Logic Cells (LCs) 147443
Configurable Logic Blocks (CLBs)
Slices 23038
Flip-Flops 184304
Max Distributed RAM (Kb) 1355
DSP48A1 Slices 180
Max user I/O 576
Memory 4824 Kb
Clock 80 MHz

Table 2: Main specifications of the FPGA

The SOC observer has been implemented on the FPGA of a dSPACE MicroAutoBox II. Moreover, It has under-
gone testing for estimating the SOC of individual Li-Ion cells within a battery pack consisting of 5 cells connected in
series, as depicted in Figure 3. This battery pack serves as a prototype to substantiate the efficacy of the SOC observer
method.

Figure 3: Battery pack made of 5 cells in series.

In our study, we have chosen to use the Samsung 25R 18650 Li-Ion cells, which are a blend of NCA (Nickel
Cobalt Aluminum) and NMC (Nickel Manganese Cobalt) chemistries at the positive electrode and with graphite as
the negative electrode. Each cell has a nominal capacity of Q,,, = 2.5 Ah. The battery pack is designed to operate at
a total nominal voltage of 18 V, with each individual cell having a nominal voltage of 3.6 V, and an overall capacity
of 2.5 Ah. In previous research, the parameters of the battery model were identified as a function of temperature,
SOC, and current using the Galvanostatic Intermittent Titration Technique (GITT) [53, 54]. Figure 4 illustrates the
identified impedance parameters at 25 °C.
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Figure 4: Graphic describing the evolution of the battery parameters in function of the State Of Charge at 25 °C

For the implementation, the battery’s temperature was assumed at 25 °C and that its parameters are constant
with temperature, SOC, and current. The EKF algorithm was developed using Simulink blocks for FPGA. Figure 5
shows a part of the EKF algorithm written with special Simulink blocks for FPGA which are recognizable by Xilinx’s

symbol. The design was optimized for performance and resource utilization by utilizing pipelining, time-division
multiplexing/folding, and customized precision.
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Figure 5: Part of EKF algorithm written with special Simulink blocks for Xilinx FPGA.

3.3. Time Division Multiplexing Technique

The battery pack used in this study comprises 5 Li-Ion cells arranged in series. To estimate the state of charge
of each cell, two primary approaches are available. The first approach involves developing a design that contains
five battery models. However, this method is unsuitable for real-time implementation due to the significant resource
demands, necessitating the use of a resource-rich, albeit more expensive FPGA.

The second approach is based on time-division multiplexing, as illustrated in Figure 6. At each sample time T¢’ =
0.02s, the battery pack’s current i(k) and cell voltages Vcelly(k) are digitized using the MicroAutoBox DSP board’s
analog-digital converter (ADC). Subsequently, a state machine sequentially addresses the data (I(k), Vcelly(k)) to the
FPGA, which executes the EKF algorithm. At the end of the EKF algorithm, the estimated and corrected S OC(k), as
well as other variables such as error covariance matrices (P x4k Py x+1) and diffusion voltage Vi, (denoted Vy;zs, in
Figure 6) required for the next sampling period, are sent to the DSP.
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In the forthcoming section,the focus will be on the validation of the observer through simulation. This step is
crucial in ensuring the accuracy and effectiveness of the observer prior to its deployment on the FPGA.

4. Validation of the observer with Xilinx

In this section, we describe the validation process of the algorithm using the system generator library specifically
designed for FPGA programming. This library allows for the FPGA to be programmed with Simulink blocks that
can process data in either floating-point mode or fixed-point mode. The results obtained depend on the representation
mode used, with greater accuracy requiring more resources in the FPGA. To strike a balance between result precision
and resource utilization, we have chosen the signed representation in fixed-point mode, specifically the Fix32_16
format, with 15 bits for the integer part, 16 bits for the decimal part, and one bit for the sign. The main advantage of
using this Xilinx library is the ease of implementation on FPGA without requiring VHDL programming, which can
be difficult.

In this study, the performance of the EKF-based observer was evaluated using a current profile corresponding to
a battery discharge with a current of 1C (2.5 A). The real SOC was initialized to 100%, while the initial estimated
value of the state of charge, S OCy, was set to 0%. It should be noted that S OC is a tunable parameter that allows
for a wide range of initialization of the estimated SOC. The SOC reference was obtained through a coulomb meter
initialized with the correct initial SOC and the nominal capacity.

To validate our designed estimator, we subjected it to a current profile corresponding to a battery discharge with a
current step of 1C (2.5 A).

The obtained results, as shown in Figure 7, indicate that despite being initialized to a value different from the real
SOC initial value, the estimated SOC converges towards the real state of charge of the cell. This suggests that the
EKF-based observer is capable of correcting a bad estimation of the SOC and enabling the estimated SOC to converge
to the real SOC. However, the fixedpoint representation used in the implementation limits the number of bits used,
leading to errors in the estimation. In addition, errors may accumulate during the current integration when predicting
the state variables, resulting in significant margins of error between the estimated and real variables. Nonetheless, as
long as the absolute error is less than 5%, the filter is considered efficient and capable of accurately estimating the
state variables.
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Figure 7: Validation results under Xilinx

5. Results of the real time implementation on FPGA

5.1. Real time validation using pre-recorded data

Prior to testing the developed observer on a real battery, an emulated test was conducted using pre-recorded
current/voltage data from the battery. The results of this test, presented in Figure 8, indicate that the observer performs
satisfactorily in real time. The current profile used corresponding to a battery discharge with a current step of 1C (2.5
A), and the SOC was initialized to 0%. The SOC reference was obtained using a coulomb meter initialized with
the correct initial SOC and nominal capacity. A comparison of the results obtained from the emulated test and those
from the simulation conducted under Xilinx, as shown in Figure 7, suggests that the observer performs similarly in
both cases. Moreover, the implemented Kalman filter on FPGA was successful in minimizing the error between the
measured voltage and the estimated voltage, enabling the estimated state of charge to converge to the exact value that
cannot be measured.
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Figure 8: Real time discharge validation using pre-recorded data

5.2. Experimental validation of the observer
Having validated the observer in real time using pre-recorded data, the next step is to test it on the actual battery
during discharge. To perform this experimental validation, we utilized the test bench shown in Figure 9. By subjecting
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the battery to a discharge cycle while running the observer, we can evaluate the accuracy of the observer’s SOC
estimates in a real-world scenario.

J_LI_I‘H"II ' [Md suppw‘ ()

Figure 9: (a) Experimental test bench (b) Scheme of the platform

In order to perform experimental testing of the estimator, a cycle of current pulses (as shown in Figure 10) was
generated and used as a set point for a programmable active load that was connected to the battery. The battery was
then discharged using this active load.
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Figure 10: Discharge current pulses cycle

The experimental results for the first cell are presented in Figure 11. At the beginning of the current cycle The
filter is able to correct the state of charge initialized at 0% . As the voltage decreases, the state of charge also decreases
and the system can correct its state of charge automatically. However, a few oscillations occur during the estimation
process, limiting the stabilization of the value. The oscillations are mainly due to the noise on the command and the
measurement provided by the sensors. Therefore, a smoother filter is required to obtain values without oscillations.
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Figure 11: Experimental results for one cell in discharge

After presenting the estimation results for a single cell, and because the battery used in this study is made up of
5 cells connected in series, we must test the developed estimator on the entire battery pack. To test the developed
estimator on the entire battery pack, the time division multiplexing technique illustrated in Figure 6 was added to the
Kalman filter model. A current pulse cycle with a period of 3200 s and an amplitude of -2.5 A, similar to the one
shown in Figure 10, was generated and used as a set point for a programmable active load H&H connected to the
battery to discharge the cells. The obtained results for the whole battery pack are presented in Figure 12. The results
demonstrate that the observer is able to estimate the voltage and SOC accurately not only for one cell but for the entire
battery pack. The SOC and voltage of each cell can be determined based on the five curves obtained. The observer’s
ability to accurately estimate the voltage and SOC of each cell in the battery pack provides a significant advantage
over previous studies that only estimated the voltage and SOC of the entire battery pack.
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Figure 12: Experimental results for the entire battery pack in discharge

The execution time of the SOC observer has been evaluated to 2.5 ps. Given that a typical sample period for SOC
observer is Te = 0.1 s, a Spartan 6 chip would have sufficient time to execute hundreds of SOC estimations during one
sampling period, leaving enough time to observe other states such as internal temperature.

The implementation on the FPGA did not consume significant resources, as indicated by Figure 13 which shows
the areas of resource usage.
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Figure 13: Mapping of the areas of use of the resources.

12



Table 3 summarizes the synthesis results of the FPGA resources used. It can be noticed that despite the complexity
of the program, we do not use all the resources available in our FPGA.

Used | Available | Utilization

Slice Logic Utilization
Number of Slice Registers (flip flops) | 15395 | 184304 8%
Number of Slice LUTs 11442 92152 12%

Slice Logic Distribution
Number of occupied Slices 4331 23038 18%
Number of MUXCY's 9148 46076 19%
I/O Utilization 180 498 36%
Number of DSP48A1s 94 180 52%

Table 3: Device Utilization Summary

6. Conclusion

Energy management in embedded applications is essential to optimize consumption and battery life. It requires
accurate monitoring of the state of charge of batteries. This study has focused on the development of a state observer
for estimating the voltage and state of charge of each cell in a lithium-Ion battery pack. The observer employs
Kalman filter algorithm for Lithium-Ion batteries, which can correct the estimated state of charge even when initialized
differently from the actual state of charge. The implementation of this complex algorithm on a low-cost Spartan 6
FPGA (< 20 euros) has been demonstrated to be highly efficient, enabling the observation of multiple batteries at once
and reducing the cost of battery management systems. Experimental results demonstrate that the observer accurately
estimates the voltage and state of charge of each cell, providing a significant advantage over previous studies that
only estimated the voltage and state of charge of the entire battery pack. The low execution time and resource
consumption of the observer make it a promising solution for real-time monitoring and control of lithium-Ion battery
packs in various applications. While there were challenges in the implementation process due to noisy data, this can be
addressed using appropriate filters to achieve accurate results. Overall, this study has provided a valuable contribution
to the field of battery management systems and paves the way for further research in this area.
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