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This paper presents a study on the state of charge observation of lithium-Ion batteries for energy management in embedded applications. The knowledge of the state of charge is fundamental for the safety and optimal usage of these batteries. The study focuses on the development and implementation of a Kalman filter-based observer algorithm on a Spartan 6 FPGA that can accurately estimate the state of charge of a battery, even if it is initialized differently from its actual state. In this paper we have focused on the opportunities of FPGA for fast calculation which allow to use the FPGA as a slave component in a BMS and allow to observe the SOC a great deal of cells with a low cost. The implementation of this observer on a low-cost FPGA can lead to cost reduction for battery management systems in various applications, such as electric cars and any other systems requiring the observation of the state of charge of a battery pack. The observer model was validated through simulations and real-time testing. This study presents a promising approach to accurately estimate the state of charge of Lithium-Ion batteries for efficient energy management in various applications.

Introduction

Energy management is a crucial aspect of embedded applications, especially in battery-powered devices, as it affects the battery life and the overall performance of the system [START_REF] May | Lead batteries for utility energy storage: A review[END_REF][START_REF] Morello | Advances in li-ion battery management for electric vehicles[END_REF][START_REF] Kebede | Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application[END_REF]. Lithium-Ion batteries are widely used in various applications due to their high energy density, low self-discharge rate, and long cycle life [START_REF] Baljit | Review of building integrated applications of photovoltaic and solar thermal systems[END_REF]. To ensure the safety and efficiency of the battery-powered system, the state of charge (SOC) must be accurately estimated. Inaccurate SOC estimation can lead to overcharging, undercharging, and premature battery failure. Accurate estimation of the SOC of Lithium-Ion batteries is a challenging task due to their non-linear and time-varying characteristics [START_REF] Nasser-Eddine | A two steps method for electrochemical impedance modeling using fractional order system in time and frequency domains[END_REF][START_REF] Collath | Aging aware operation of lithium-ion battery energy storage systems: A review[END_REF]. Therefore, several SOC estimation methods have been proposed, including model-based and data-driven approaches [START_REF] Wang | A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system[END_REF][START_REF] Liu | Bayesian information criterion based data-driven state of charge estimation for lithium-ion battery[END_REF].

Battery management systems (BMSs) are an essential component of a battery pack, as they monitor the state of the battery and control its charging and discharging processes [START_REF] Berecibar | Critical review of state of health estimation methods of li-ion batteries for real applications[END_REF]. Accurate state-of-charge (SOC) estimation is a crucial function of BMSs, as it provides information on the amount of energy remaining in the battery and enables optimal battery usage [START_REF] Wang | A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[END_REF]. Moreover, reliable SOC estimation is necessary to prevent battery overcharging and undercharging, which can significantly reduce battery life and safety [START_REF] Verani | Fpga accelerator for battery management systems in safety-critical applications[END_REF]. In order to accurately estimate the SOC, the estimation algorithm has to meet the following requirements: high precision to ensure coherent energy management, robustness against some inaccuracies due to the use of low-end sensors in BMS, robustness against the misestimation of the batteries' parameters which highly depend on both temperature and battery degradation and low computational power requirements that allow the use of microcontrollers in the estimation. To achieve accurate SOC estimation, various modeling and estimation techniques have been developed, including electrochemical, equivalent circuit, and datadriven approaches [START_REF] Hassan | A comprehensive review of battery state of charge estimation techniques[END_REF][START_REF] Li | Review of lithium-ion battery state of charge estimation[END_REF][START_REF] Guo | Online estimation of soh for lithium-ion battery based on ssa-elman neural network[END_REF][START_REF] Li | Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries[END_REF]. The electrochemical model is widely used due to its accuracy and ability to estimate the internal states of the battery [START_REF] Chen | Electrochemical model based state of charge estimation for lithium batteries with backstepping techniques[END_REF]. However, the electrochemical model is computationally expensive and requires a high level of expertise to implement. On the other hand, observer-based methods are relatively simple to implement and provide good estimation accuracy.

Morever, SOC estimation methods can be divided into 2 groups: open loop and closed loop estimation. On the one hand, the open loop group includes: the coulomb counting method that is widely used in SOC estimation. It's simple and easy to be implemented but needs a prior knowledge of the initial SOC. It also has slower dynamic and poor reliability due to the integration. In addition, the open circuit voltage (OCV) method can also be used since it's of high accuracy but needs a long time for the battery to rest. On the other hand, the group of the closed loop methods mainly includes the Model Predictive Control (MPC) which are one of the most effective techniques for cell-level control of the battery packs since it takes into consideration constraints and refines the safety margins allowing the battery to be fully used [START_REF] Madsen | An optimized fpga-based hardware accelerator for physics-based ekf for battery cell management[END_REF]. We can find a lot of SOC estimation methods based on MPC such as: the Extended Kalman Filter (EKF), the Dual Extended Kalman Filter (DEKF), the Adaptive Extended Kalman Filter (AEKF), the Adaptive Mix Algorithm (AMA), the state observers, the Generalized Extended State Observer (GESO), fuzzy logic methods and neural networks, etc.. . . [START_REF] Tian | Accelerating state-of-charge estimation in fpga-based battery management systems[END_REF][START_REF] Wu | SOC estimation of li-ion battery by adaptive dual kalman filter under typical working conditions[END_REF].

Besides, other estimation techniques can be found as well in the literature: In [START_REF] Yan | Battery state-of-charge estimation based on h filter for hybrid electric vehicle[END_REF], an application of the H infinity filter with the Ni-mH batteries is proposed along with the corresponding results. This method is based on minimizing the H infinity norm of the estimation error. In [START_REF] Morello | Hardware-in-theloop simulation of FPGA-based state estimators for electric vehicle batteries[END_REF][START_REF] Baronti | Parameter identification of li-po batteries in electric vehicles: A comparative study[END_REF][START_REF] Otero | FPGA implementation of an observer for state of charge estimation in lithium-polymer batteries[END_REF], a novel method AMA (Adaptive Mix Algorithm) is introduced, where a state observer is being implemented based on the difference between the output voltage and the battery's measured voltage. Moreover, the authors in [START_REF] Song | Robust and accurate state-of-charge estimation for lithium-ion batteries using generalized extended state observer[END_REF] presented a new method called Generalized Extended State Observer (GESO). Several other methods can be added to the previously cited techniques such as: the Sliding Mode Observer (SMO) whose idea is explained in [START_REF] Feng | Estimation of SoC of batteries using terminal sliding-mode observer[END_REF] and [START_REF] Abhinav | Observer based sliding mode control for 3 DOF helicopter system[END_REF]. In order to get out of the box, techniques other than filters are being used in the research domain. For example, a technique based on both neural networks and fuzzy logic can be found in [START_REF] Guo | Online estimation of soh for lithium-ion battery based on ssa-elman neural network[END_REF][START_REF] Li | Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries[END_REF][START_REF] Kumar | Advanced battery management system using MATLAB/simulink[END_REF][START_REF] Kumar | Fpga-based design of advanced bms implementing soc/soh estimators[END_REF]. A comparison between EKF, SMO, H infinity and Luenberger Observer is conducted in [START_REF] Unterrieder | Battery state estimation using mixed kalman/hinfinity, adaptive luenberger and sliding mode observer[END_REF]. Another estimation approach is used in [START_REF] Jiani | Li-ion battery SOC estimation using particle filter based on an equivalent circuit model[END_REF] and [START_REF] Shen | A state of charge estimation method based on APSO-PF for lithium-ion battery[END_REF] which is based on Particle Filter (PF). Additionally, another comparison between PF and EKF is established in [START_REF] Restaino | Comparing particle filter and extended kalman filter for battery state-of-charge estimation[END_REF]. Other Variants of the Kalman Filter can also be deployed to estimate the SOC such as: the Unscented Kalman Filter (UKF) and the Sigma Point Kalman Filter (SPKF) [START_REF] Pulavarthi | State of charge estimation in lithium-ion battery using model based method in conjunction with extended and unscented kalman filter[END_REF][START_REF] Shi | Application of unscented kalman filter in the SOC estimation of li-ion battery for autonomous mobile robot[END_REF][START_REF] Cui | A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[END_REF][START_REF] Laurin | State-of-charge and state-of-health online estimation of li-ion battery for the more electrical aircraft based on semi-empirical ageing model and sigma-point kalman filtering[END_REF].

Several methods have been proposed for online estimation of SOC, with state observers, especially the Extended Kalman Filter (EKF), being a popular choice due to their robustness [START_REF] Plett | Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part 3. state and parameter estimation[END_REF][START_REF] Pop | Battery management systems: Accurate state-of-charge indication for batterypowered applications[END_REF][START_REF] Wu | State of charge estimation of power lithium-ion battery based on an affine iterative adaptive extended kalman filter[END_REF]. In battery management, the EKF recursive algorithm can be used to estimate the SOC by incorporating the battery model and the measurement data [START_REF] Richardson | Sensorless battery internal temperature estimation using a kalman filter with impedance measurement[END_REF]. The cost of implementing sophisticated SOC estimation algorithms using microcontrollers can be high, particularly for systems with hundreds of cells, and may not always be adequate. This BMS cost, including supervision and balancing, may reach up to 30% of the price of the battery pack. Therefore, this paper presents the interest of using Field Programmable Gate Arrays (FPGA) to perform fast calculations of SOC estimation algorithms for EV batteries made up of multiple cells connected in series [START_REF] Madsen | An optimized fpga-based hardware accelerator for physics-based ekf for battery cell management[END_REF][START_REF] Tian | Accelerating state-of-charge estimation in fpga-based battery management systems[END_REF][START_REF] Baronti | Fpga implementation of the mix algorithm for state-of-charge estimation of lithium-ion batteries[END_REF][START_REF] Zhou | A reverse-boot enabled embedded computing system on soc-fpga for prognostics and health management: An application on li-ion batteries[END_REF]. FPGA chips can be used not only with batteries, but they proved high effectiveness in the industrial domain [START_REF] Zhou | A reverse-boot enabled embedded computing system on soc-fpga for prognostics and health management: An application on li-ion batteries[END_REF][START_REF] Noura | Online identification of battery internal resistance under extreme temperatures[END_REF].

In this paper, we present a study on the state of charge (SOC) observation of Lithium-Ion batteries using an observer based on the Extended Kalman filter algorithm. The main goal is to implement this observer on a Spartan 6 FPGA, which is a low-cost and efficient solution for embedded systems. The proposed observer is capable of correcting the estimated SOC in case it is initialized differently from the actual SOC of the battery. The fast observation time makes it possible to observe multiple batteries simultaneously using the same FPGA, reducing the cost of BMS in electric car systems or any other system requiring the observation of the SOC of a battery pack [START_REF] Babu | FPGA based model predictive controller for dynamic power management of a battery powered electric car[END_REF][START_REF] Song | FPGA-based implementation of lithium-ion battery SOH estimator using particle filter[END_REF]. The rest of the paper is organized as follows. Section II provides a brief overview of the lithium-Ion battery model used in this study and the observer design based on the Kalman filter algorithm. Section III presents the implementation of the observer on a Spartan 6 FPGA. Section IV provides the simulation With Xilinx environment. Section V describes the experimental results of the proposed observer. Finally, Section VI concludes the paper and discusses future work.

State of charge observer

Battery model

Various approaches have been developed to accurately represent the dynamic behavior of an electrochemical cell. One of these methods involves electrochemical models that use the solution of partial differential equations that describe the chemical reactions taking place within the cell. These models are useful for predicting cell performance and understanding aging mechanisms. However, such an approach requires knowledge of the initial and boundary conditions of the cell, which is not always available. Moreover, the computational complexity of this approach makes it unsuitable for real-time applications. In order to overcome this problem, simplified models based on electric equivalent circuits (EECs) have been developed [START_REF] Buller | Impedance-based simulation models of supercapacitors and li-ion batteries for power electronic applications[END_REF][START_REF] Do | Impedance observer for a li-ion battery using kalman filter[END_REF]. EECs provide an alternative solution for modeling polarization due to the phenomena taking place within the battery during its use. EECs are suitable for non-electrochemists and are fairly simple to deploy in real-time applications. However, electrochemical phenomena must be considered at the cell level to simplify the identification of such a model.

Figure 2 depicts the electric equivalent circuit used to model the electrochemical dynamics of each cell within our battery. The circuit includes a voltage source OCV (open-circuit voltage) that refers to the equilibrium potential of the cell and is dependent on the state of charge. Additionally, a resistance R Ω represents high-frequency phenomena such as electrolyte and connection resistances, as well as the resistance of charge transfer phenomena. Finally, a parallel circuit R 1 C 1 symbolizes low-frequency phenomena (diffusion phenomenon). To simplify the real-time calculations, we propose modeling the diffusion phenomenon with a single RC circuit. This first-order representation is sufficient for simulating continuous charge or discharge. We assume a sampling period of T e = 0.1 seconds to ensure computational efficiency by the Battery Management System (BMS). In comparison to the sampling period, the dynamic of the charge transfer phenomenon, which occurs at approximately 10 ms, is neglected. The cell model's state equation, extended to the state of charge (SOC), is expressed in equation 1:

i(t) R Ω C 1 R 1 OCV U bat V 1
                         V 1 k+1 = 1 - T e R 1 C 1 .V 1 k + T e C1 .i k S OC k+1 = S OC k + T e.100 Qnom .i k U bat k = OCV(S OC k ) + R Ω .i k + V 1 k                          (1) 
where Q nom is the nominal capacity, V 1 is the voltage across the circuit R 1 C 1 , S OC is the state of charge, and U bat the terminal battery voltage.

The discrete state battery model extended to the SOC becomes:

x k+1 = f (x k , u k ) y k = g(x k , u k ) (2) 
where

x k = [V 1 k S OC k ] T and u k = [i k ].

Kalman filter based State of charge observer

Estimating the State of Charge (SOC) of a battery is a challenging task as it cannot be directly measured. To address this issue, the Extended Kalman Filter (EKF) is widely used in the literature. The EKF requires an accurate mathematical model of the battery and is capable of estimating SOC within a certain range of noise [START_REF] Pritsker | Hybrid implementation of extended kalman filter on an fpga[END_REF].

The EKF consists in initializing and predicting the state variables at a specific sample time Te. The state equation of the cell model, which includes the SOC, is used for the prediction process (equation 1). The performance of the observer depends on the confidence in both the measurements and the model. Therefore, to account for uncertainties in the theoretical model, we consider an uncertainty w k for the model and an uncertainty v k for the voltage measurement (Equation 3).

x k+1 = f (x k , u k ) + w k y k = g(x k , u k ) + v k (3) 
In this study, we consider model and measurement uncertainties as white, Gaussian, and centered noises, as commonly assumed in the literature [START_REF] Plett | Extended kalman filtering for battery management systems of lipb-based hev battery packs: Part 3. state and parameter estimation[END_REF][START_REF] Gagneur | On-line adaptive tuning of a lithium-ion battery cell state of charge observer[END_REF]. To incorporate these uncertainties in the state and measurement noise covariance matrices Q and R, respectively, we define

Q = E{w k w T k } and R = E{v k v T k }.
However, the battery model extended to the SOC is nonlinear due to the SOC dependency of the open voltage circuit extension. To utilize the Kalman algorithm, the nonlinear battery model extended to the SOC must be linearized at each sample time through the computation of Jacobian matrices, as shown in Equation 4. This linearization step is necessary to enable the use of the Kalman algorithm, which is established on a linear state space model.

F k = ∂ f (x k ,u k ) ∂x G k = ∂g(x k ,u k ) ∂x (4)
With G k is the state matrice with the term ∂OCV ∂S OC which is a lookup table in function of SOC. After linearizing the discrete state space model, a Kalman gain is calculated in relation to the prediction of covariance matrices.

K k+1 = P x,k+1∥k G T k+1 P -1 y,k+1∥k (5) 
Then, the covariance matrices are updated

P x,k+1∥k = F k P x,k∥k F T k + Q P y,k+1∥k = G k P x,k+1∥k G T k + R P x,k+1∥k+1 = P x,k+1∥k -K k+1 P y,k+1∥k K T k+1 (6)
In the final step, the predicted state vector is corrected using the optimal gain K.

xk+1∥k+1 = xk+1∥k + K k+1 (y k+1 -ŷk+1∥k ) (7) 
The parameters of the Extended Kalman Filter are summarized in the Table 1.

Input FPGAs consist of two types of resources: processing resources, such as memories, logic, and registers, which are grouped in logic blocks of different types, and programmable interconnection resources that link the logic blocks together. To program a reconfigurable circuit, one must specify the functionality of each logic block and organize the interconnection network to perform the requested function [START_REF] Elkholy | Smart centralized energy management system for autonomous microgrid using fpga[END_REF].

For this study, we are interested in programmable circuit architectures of the matrix type, in which logic blocks are organized in a regular rectangular structure, with each block connected to the routing network by Programmable Interconnection Points. The routing network is made up of horizontal and vertical channels that occupy the space between the logic blocks.

FPGAs are made up of pre-designed elementary cells and interconnections that are entirely programmable by the end user, allowing for the construction of specific hardware architectures that meet the requirements of the final targeted application [START_REF] Monmasson | Fpgas in industrial control applications[END_REF].

FPGAs have demonstrated their efficacy in the industrial domain, providing high throughput and low latency processing through parallelism and optimized data paths. The flexibility of user-defined circuits enables the association of different data types and precisions, enhancing performance and reducing costs. Additionally, FPGAs are scalable for design improvement and system expansion [START_REF] Kumar | Fpga-based design of advanced bms implementing soc/soh estimators[END_REF][START_REF] Rodriguez-Andina | Advanced features and industrial applications of FPGAs-a review[END_REF].

The use of FPGAs allows for the configuration of parallelism calculus to execute an algorithm, thereby reducing the execution time of the algorithm. However, programming an FPGA requires the optimization of the physical characteristics that are crucial for the implementation of the algorithm. This optimization is based on two tasks: optimizing the time/area performances required to implement the algorithm and selecting the appropriate number of bits for each data format (variables and coefficients) while maintaining the essential accuracy of the observer.

Equipments and software

For this study, the aim is to implement the Extended Kalman filter EKF that estimates the state of charge of the pack on a real-time system. To achieve this goal, the MicroAutoBox II (MABXII) 1401/1511/1512 from dSPACE is used, a robust and reliable hardware platform widely used for prototyping and testing in the automotive industry. The Xilinx Spartan-6 FPGA (XC6SLX150) embedded in the MicroAutoBox II is employed for its high performance and low power consumption Table 2 summarizes some of the key specifications of this FPGA, which make it suitable for our application.

Process The SOC observer has been implemented on the FPGA of a dSPACE MicroAutoBox II. Moreover, It has undergone testing for estimating the SOC of individual Li-Ion cells within a battery pack consisting of 5 cells connected in series, as depicted in Figure 3. This battery pack serves as a prototype to substantiate the efficacy of the SOC observer method. In our study, we have chosen to use the Samsung 25R 18650 Li-Ion cells, which are a blend of NCA (Nickel Cobalt Aluminum) and NMC (Nickel Manganese Cobalt) chemistries at the positive electrode and with graphite as the negative electrode. Each cell has a nominal capacity of Q nom = 2.5 Ah. The battery pack is designed to operate at a total nominal voltage of 18 V, with each individual cell having a nominal voltage of 3.6 V, and an overall capacity of 2.5 Ah. In previous research, the parameters of the battery model were identified as a function of temperature, SOC, and current using the Galvanostatic Intermittent Titration Technique (GITT) [START_REF] Vendrame | Influence of aging on sei and charge transfer resistances and their dependence on current and temperature for a li-ion nca+nmc/graphite cell[END_REF][START_REF] Vendrame | Reduced model for fast simulation of a lithium-ion battery pack taking into account current and state of charge dispersion[END_REF]. Figure 4 For the implementation, the battery's temperature was assumed at 25 °C and that its parameters are constant with temperature, SOC, and current. The EKF algorithm was developed using Simulink blocks for FPGA. Figure 5 shows a part of the EKF algorithm written with special Simulink blocks for FPGA which are recognizable by Xilinx's symbol. The design was optimized for performance and resource utilization by utilizing pipelining, time-division multiplexing/folding, and customized precision. 

Time Division Multiplexing Technique

The battery pack used in this study comprises 5 Li-Ion cells arranged in series. To estimate the state of charge of each cell, two primary approaches are available. The first approach involves developing a design that contains five battery models. However, this method is unsuitable for real-time implementation due to the significant resource demands, necessitating the use of a resource-rich, albeit more expensive FPGA.

The second approach is based on time-division multiplexing, as illustrated in Figure 6. At each sample time T e ′ = 0.02s, the battery pack's current i(k) and cell voltages Vcell N (k) are digitized using the MicroAutoBox DSP board's analog-digital converter (ADC). Subsequently, a state machine sequentially addresses the data (I(k), Vcell N (k)) to the FPGA, which executes the EKF algorithm. At the end of the EKF algorithm, the estimated and corrected S OC(k), as well as other variables such as error covariance matrices (P x,k+1∥k P y,k+1∥k ) and diffusion voltage V 1 k (denoted V di f f k in Figure 6) required for the next sampling period, are sent to the DSP. In the forthcoming section,the focus will be on the validation of the observer through simulation. This step is crucial in ensuring the accuracy and effectiveness of the observer prior to its deployment on the FPGA.

Validation of the observer with Xilinx

In this section, we describe the validation process of the algorithm using the system generator library specifically designed for FPGA programming. This library allows for the FPGA to be programmed with Simulink blocks that can process data in either floating-point mode or fixed-point mode. The results obtained depend on the representation mode used, with greater accuracy requiring more resources in the FPGA. To strike a balance between result precision and resource utilization, we have chosen the signed representation in fixed-point mode, specifically the Fix32 16 format, with 15 bits for the integer part, 16 bits for the decimal part, and one bit for the sign. The main advantage of using this Xilinx library is the ease of implementation on FPGA without requiring VHDL programming, which can be difficult.

In this study, the performance of the EKF-based observer was evaluated using a current profile corresponding to a battery discharge with a current of 1C (2.5 A). The real SOC was initialized to 100%, while the initial estimated value of the state of charge, S OC 0 , was set to 0%. It should be noted that S OC 0 is a tunable parameter that allows for a wide range of initialization of the estimated SOC. The SOC reference was obtained through a coulomb meter initialized with the correct initial SOC and the nominal capacity.

To validate our designed estimator, we subjected it to a current profile corresponding to a battery discharge with a current step of 1C (2.5 A).

The obtained results, as shown in Figure 7, indicate that despite being initialized to a value different from the real SOC initial value, the estimated SOC converges towards the real state of charge of the cell. This suggests that the EKF-based observer is capable of correcting a bad estimation of the SOC and enabling the estimated SOC to converge to the real SOC. However, the fixedpoint representation used in the implementation limits the number of bits used, leading to errors in the estimation. In addition, errors may accumulate during the current integration when predicting the state variables, resulting in significant margins of error between the estimated and real variables. Nonetheless, as long as the absolute error is less than 5%, the filter is considered efficient and capable of accurately estimating the state variables. Prior to testing the developed observer on a real battery, an emulated test was conducted using pre-recorded current/voltage data from the battery. The results of this test, presented in Figure 8, indicate that the observer performs satisfactorily in real time. The current profile used corresponding to a battery discharge with a current step of 1C (2.5 A), and the SOC was initialized to 0%. The SOC reference was obtained using a coulomb meter initialized with the correct initial SOC and nominal capacity. A comparison of the results obtained from the emulated test and those from the simulation conducted under Xilinx, as shown in Figure 7, suggests that the observer performs similarly in both cases. Moreover, the implemented Kalman filter on FPGA was successful in minimizing the error between the measured voltage and the estimated voltage, enabling the estimated state of charge to converge to the exact value that cannot be measured. 

Experimental validation of the observer

Having validated the observer in real time using pre-recorded data, the next step is to test it on the actual battery during discharge. To perform this experimental validation, we utilized the test bench shown in Figure 9. By subjecting the battery to a discharge cycle while running the observer, we can evaluate the accuracy of the observer's SOC estimates in a real-world scenario. In order to perform experimental testing of the estimator, a cycle of current pulses (as shown in Figure 10) was generated and used as a set point for a programmable active load that was connected to the battery. The battery was then discharged using this active load. The experimental results for the first cell are presented in Figure 11. At the beginning of the current cycle The filter is able to correct the state of charge initialized at 0% . As the voltage decreases, the state of charge also decreases and the system can correct its state of charge automatically. However, a few oscillations occur during the estimation process, limiting the stabilization of the value. The oscillations are mainly due to the noise on the command and the measurement provided by the sensors. Therefore, a smoother filter is required to obtain values without oscillations. After presenting the estimation results for a single cell, and because the battery used in this study is made up of 5 cells connected in series, we must test the developed estimator on the entire battery pack. To test the developed estimator on the entire battery pack, the time division multiplexing technique illustrated in Figure 6 was added to the Kalman filter model. A current pulse cycle with a period of 3200 s and an amplitude of -2.5 A, similar to the one shown in Figure 10, was generated and used as a set point for a programmable active load H&H connected to the battery to discharge the cells. The obtained results for the whole battery pack are presented in Figure 12. The results demonstrate that the observer is able to estimate the voltage and SOC accurately not only for one cell but for the entire battery pack. The SOC and voltage of each cell can be determined based on the five curves obtained. The observer's ability to accurately estimate the voltage and SOC of each cell in the battery pack provides a significant advantage over previous studies that only estimated the voltage and SOC of the entire battery pack. The execution time of the SOC observer has been evaluated to 2.5 µs. Given that a typical sample period for SOC observer is Te = 0.1 s, a Spartan 6 chip would have sufficient time to execute hundreds of SOC estimations during one sampling period, leaving enough time to observe other states such as internal temperature.

The implementation on the FPGA did not consume significant resources, as indicated by Figure 13 which shows the areas of resource usage. 

Conclusion

Energy management in embedded applications is essential to optimize consumption and battery life. It requires accurate monitoring of the state of charge of batteries. This study has focused on the development of a state observer for estimating the voltage and state of charge of each cell in a lithium-Ion battery pack. The observer employs Kalman filter algorithm for Lithium-Ion batteries, which can correct the estimated state of charge even when initialized differently from the actual state of charge. The implementation of this complex algorithm on a low-cost Spartan 6 FPGA (< 20 euros) has been demonstrated to be highly efficient, enabling the observation of multiple batteries at once and reducing the cost of battery management systems. Experimental results demonstrate that the observer accurately estimates the voltage and state of charge of each cell, providing a significant advantage over previous studies that only estimated the voltage and state of charge of the entire battery pack. The low execution time and resource consumption of the observer make it a promising solution for real-time monitoring and control of lithium-Ion battery packs in various applications. While there were challenges in the implementation process due to noisy data, this can be addressed using appropriate filters to achieve accurate results. Overall, this study has provided a valuable contribution to the field of battery management systems and paves the way for further research in this area.
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Table 1 :

 1 variables for each cell Output and stored variables Parameters of the Kalman filter

	Cell voltage	U bat k	
	Cell state of charge	S OC k	S OC k+1
	Current	i k	
	Covariance matrices	P x,k||k P x,k+1||k	P x,k+1||k+1
	Covariance matrices	P y,k||k	P y,k+1||k
		Stored constants for all cells	
	High frequency resistance	R Ω	
	Diffusion resistance	R 1	
	Diffusion capacity	C 1	
	Nominal capacity	Q nom	
	Sampling period	T e	
	Open circuit voltage lookup table	OCV(S OC k )	
	Derivative of open circuit voltage	∂OCV ∂S OC	
	in relation to SOC lookup table		
	State covariance matrice	Q	
	Measurement noise covariance matrice	R	

3. FPGA implementation

3.1. FPGA-Based Architecture Design

Table 2 :

 2 Main specifications of the FPGA

	technology	45 nm
	Number of Logic Cells (LCs)	147443
	Configurable Logic Blocks (CLBs)	
	Slices	23038
	Flip-Flops	184304
	Max Distributed RAM (Kb)	1355
	DSP48A1 Slices	180
	Max user I/O	576
	Memory	4824 Kb
	Clock	80 MHz

Table 3

 3 summarizes the synthesis results of the FPGA resources used. It can be noticed that despite the complexity of the program, we do not use all the resources available in our FPGA.

		Used Available Utilization
	Slice Logic Utilization			
	Number of Slice Registers (flip flops) 15395	184304	8%
	Number of Slice LUTs	11442	92152	12%
	Slice Logic Distribution			
	Number of occupied Slices	4331	23038	18%
	Number of MUXCYs	9148	46076	19%
	I/O Utilization	180	498	36%
	Number of DSP48A1s	94	180	52%

Table 3 :

 3 Device Utilization Summary