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1. Introduction

With the development of smart materials [1] and the constant search for mass reduction, the use of
nanocomposites is constantly growing. Indeed, for very low volume fraction of reinforcements and con-
trary to classical composites, nanocomposites offer remarkable properties, especially mechanical ones.
These remarkable properties can be explained by a size effect induced by the nanometric dimension of
the reinforcements. The local phenomena present at the matrix-inclusion interface, which are negligible
in the case of classical composites, are no longer so in nano-reinforced materials where the ratio (matrix-
inclusion interface surface) / (material volume) becomes much larger. However, taking into account the
size effect in the modeling of the behavior of nanocomposites remains a great challenge at the present
time. In the context of linear elasticity, many works, taking into account a size effect of nano-fillers, have
been carried out by means of analytical approaches [2, 3, 4] using micromechanical models. Compared
to classical micromechanical model like the Mori-Tanaka scheme or the Hashin-shtrikman bounds, a
coherent interface is introduced on the matrix-inclusion interface and the equilibrium of this interface is
taken into account. The behavior of this interface is generally governed by an elastic law as presented by
Bottomley et al [5]:

o, =C"%: g (1

where C°® is the surface stiffness tensor of the interface, G is the surface tangent stress on the interface
and &; is the surface strain tensor on the interface given by :

e =PeP 2)
P is the second order projection operator on the interface :
P=I-n®n (3)

In addition to the classical bulk equilibrium, these analytical approaches take account the equilibrium of
the interface through the generalized Young-Laplace equation on the matrix-inclusion interface [6, 7, 8]:

div,es+ [o] ' n=0 Vx € I'; I being the matrix-inclusion interface. 4)

Because of analytical difficulties, micromechanical models accounting for the size effect of the nano-
inclusions are limited to spherical or cylindrical inclusions. To overcome this limitations, numerical



strategies have been developed [9, 10, 11, 12]. In this communication, we will present the finite element
models we propose in the context of both elastic and non-linear behaviors.

2. Problem definition

Figure 1: Two-phase material with imperfect matrix-inclusion interface.

Here we consider a bounded domain Q@ C R¢ (d =2 or 3) with boundary 0Q (9Q = 0Qr UdQ,, and 0Qr N
0Q, = ). ii is the outward unit normal to Q. The domain Q is made of of two phases Q) and
Q) corresponding respectively to the inclusion and the matrix. These 2 domains are separated by an
imperfect interface I" (Fig.1). We note n the unit normal vector to I, chosen from Q") to Q(2).

As considered in analytical micromechanical model accounting for the size effect of nano-inclusions, the
interface is assumed to be coherent, which means that the surface stresses are related to the jump of the
traction vector across the interface.

The equilibrium of the 2 phases Q") and Q) is given by the equation:

dive” +b=0 in QY 1=1,2, (5)

where © is the bulk Cauchy stress tensor and b is a volume force.
The Neumann and Dirichlet boundary conditions are applied on 0Q:

c-i=F surdQr et u=u surdQ,, 6)
The equilibrium of the coherent interface I" is governed by the gereneralized Young-Laplace equation
written in eq. (4).
3. Linear and non-linear behavior estimations

Using eq. (5) to eq. (4), assuming I closed and without any debonding between matrix and inclusions,
the weak form of the problem presented in section 2. can be expressed:

Vou VSSu:GdQ+/V§8u|F:GSdF—/ Bu-bdQ—/ ou-c-ndS=0. (7
Q\r r o\r 0

where Vi{e} = V*{e}P,
V*{e} being the symmetric gradient operator.
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Figure 2: Representative Volume Element (in plan (e;,e;) )

On a Representative Volume Element (RVE) (fig. 2) corresponding to the two-phase material prob-
lem presented in section 2., using finite element method in plane strain with interface elements, Xfem/level
set method or embedded-FEM, the weak form given in eq. (7) will be solved by considering linear
and non-linear behaviors in the bulk and elastic behavior on the matrix-inclusion interface. Different
diameters of the cylindrical inclusions will be considered to study the impact of their size on both macro-
scopic and microscopic response of the material. These results and first developments considering several
physics will be presented during the conference.
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