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1. Introduction

With the development of smart materials [1] and the constant search for mass reduction, the use of

nanocomposites is constantly growing. Indeed, for very low volume fraction of reinforcements and con-

trary to classical composites, nanocomposites offer remarkable properties, especially mechanical ones.

These remarkable properties can be explained by a size effect induced by the nanometric dimension of

the reinforcements. The local phenomena present at the matrix-inclusion interface, which are negligible

in the case of classical composites, are no longer so in nano-reinforced materials where the ratio (matrix-

inclusion interface surface) / (material volume) becomes much larger. However, taking into account the

size effect in the modeling of the behavior of nanocomposites remains a great challenge at the present

time. In the context of linear elasticity, many works, taking into account a size effect of nano-fillers, have

been carried out by means of analytical approaches [2, 3, 4] using micromechanical models. Compared

to classical micromechanical model like the Mori-Tanaka scheme or the Hashin-shtrikman bounds, a

coherent interface is introduced on the matrix-inclusion interface and the equilibrium of this interface is

taken into account. The behavior of this interface is generally governed by an elastic law as presented by

Bottomley et al [5]:

σs = C
s : εs (1)

where C
s is the surface stiffness tensor of the interface, σs is the surface tangent stress on the interface

and εs is the surface strain tensor on the interface given by :

εs = P.ε.P (2)

P is the second order projection operator on the interface :

P = I−n⊗n (3)

In addition to the classical bulk equilibrium, these analytical approaches take account the equilibrium of

the interface through the generalized Young-Laplace equation on the matrix-inclusion interface [6, 7, 8]:

divsσs + JσK ·n = 0 ∀x ∈ Γ ; Γ being the matrix-inclusion interface. (4)

Because of analytical difficulties, micromechanical models accounting for the size effect of the nano-

inclusions are limited to spherical or cylindrical inclusions. To overcome this limitations, numerical
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strategies have been developed [9, 10, 11, 12]. In this communication, we will present the finite element

models we propose in the context of both elastic and non-linear behaviors.

2. Problem definition

Figure 1: Two-phase material with imperfect matrix-inclusion interface.

Here we consider a bounded domain Ω⊂R
d (d = 2 or 3) with boundary ∂Ω (∂Ω= ∂ΩF ∪∂Ωu and ∂ΩF ∩

∂Ωu = ∅). ñ is the outward unit normal to ∂Ω. The domain Ω is made of of two phases Ω(1) and

Ω(2) corresponding respectively to the inclusion and the matrix. These 2 domains are separated by an

imperfect interface Γ (Fig.1). We note n the unit normal vector to Γ, chosen from Ω(1) to Ω(2).

As considered in analytical micromechanical model accounting for the size effect of nano-inclusions, the

interface is assumed to be coherent, which means that the surface stresses are related to the jump of the

traction vector across the interface.

The equilibrium of the 2 phases Ω(1) and Ω(2) is given by the equation:

divσ(l)+b = 0 in Ω
(l)
, l = 1,2 , (5)

where σ is the bulk Cauchy stress tensor and b is a volume force.

The Neumann and Dirichlet boundary conditions are applied on ∂Ω:

σ · ñ = F sur ∂ΩF et u = ū sur ∂Ωu , (6)

The equilibrium of the coherent interface Γ is governed by the gereneralized Young-Laplace equation

written in eq. (4).

3. Linear and non-linear behavior estimations

Using eq. (5) to eq. (4), assuming Γ closed and without any debonding between matrix and inclusions,

the weak form of the problem presented in section 2. can be expressed:

∀δu

∫
Ω\Γ

∇
s
δu : σdΩ+

∫
Γ

∇
s
sδu|Γ : σsdΓ−

∫
Ω\Γ

δu ·bdΩ−
∫

∂Ω

δu ·σ · ñdS = 0 . (7)

where ∇s
s{•}= ∇s{•}P,

∇s{•} being the symmetric gradient operator.
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Figure 2: Representative Volume Element (in plan (e1,e2) )

On a Representative Volume Element (RVE) (fig. 2) corresponding to the two-phase material prob-

lem presented in section 2., using finite element method in plane strain with interface elements, Xfem/level

set method or embedded-FEM, the weak form given in eq. (7) will be solved by considering linear

and non-linear behaviors in the bulk and elastic behavior on the matrix-inclusion interface. Different

diameters of the cylindrical inclusions will be considered to study the impact of their size on both macro-

scopic and microscopic response of the material. These results and first developments considering several

physics will be presented during the conference.
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