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Abstract. In the paper, we define a new parameter for tournaments
called degreewidth which can be seen as a measure of how far is the
tournament from being acyclic. The degreewidth of a tournament T de-
noted by ∆(T ) is the minimum value k for which we can find an ordering
⟨v1, . . . , vn⟩ of the vertices of T such that every vertex is incident to at
most k backward arcs (i.e. an arc (vi, vj) such that j < i). Thus, a tour-
nament is acyclic if and only if its degreewidth is zero. Additionally, the
class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly
the class of tournaments with degreewidth one.
We study computational complexity of finding degreewidth. We show it is
NP-hard and complement this result with a 3-approximation algorithm.
We provide a O(n3)-time algorithm to decide if a tournament is sparse,
where n is its number of vertices.
Finally, we study classical graph problems Dominating Set and Feed-
back Vertex Set parameterized by degreewidth. We show the for-
mer is fixed-parameter tractable whereas the latter is NP-hard even on
sparse tournaments. Additionally, we show polynomial time algorithm
for Feedback Arc Set on sparse tournaments.

Keywords: Tournaments · NP-hardness · graph-parameter · feedback
arc set · approximation algorithm · parameterized algorithms

1 Introduction

A tournament is a directed graph such that there is exactly one arc between
each pair of vertices. Tournaments form a very rich subclass of digraphs which
has been widely studied both from structural and algorithmic point of view [4].
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Unlike for complete graphs, a number of classical problems remain difficult in
tournaments and therefore interesting to study. These problems include Dom-
inating Set [14], Winner Determination [22], or maximum cycle packing
problems. For example, Dominating Set is W[2]-hard on tournaments with
respect to solution size [14]. However, many of these problems become easy on
acyclic tournaments (i.e. without directed cycle). Therefore, a natural question
that arises is whether these problems are easy to solve on tournaments that are
close to being acyclic. The phenomenon of a tournament being “close to acyclic”
can be captured by minimum size of a feedback arc set (fas). A fas is a collection
of arcs that, when removed from the digraph (or, equivalently, reversed) makes
it acyclic. This parameter has been widely studied, for numerous applications in
many fields, such as circuit design [19], or artificial intelligence [5,13]. However,
the problem of finding a minimum fas on tournaments (the problem is then called
FAST for Feedback Arc Set in Tournaments), remained opened for over a
decade before being proven NP-complete [3,10]. From the approximability point
of view, van Zuylen and Williamson [25] provided a 2-approximation of FAST,
and Kenyon-Mathieu and Schudy [21] a PTAS algorithm. On the parameterized-
complexity side, Feige [15] as well as Karpinski and Schudy [20] independently

proved an 2O(
√
k) + nO(1) running-time algorithm. Another way to define FAST

is to consider the problem of finding an ordering of the vertices ⟨v1, . . . , vn⟩ min-
imising the number of arcs (vi, vj) with j < i; such arcs are called backward
arcs. Then, it is easy to see that a tournament is acyclic if and only if it admits
an ordering with no backward arcs. Several parameters exploiting an ordering
with specific properties have been studied in this sense [18] such as the cutwidth.
Given an ordering of vertices, for each prefix of the ordering we associate a cut
defined as the set of backward arcs with head in the prefix and tail outside of it.
Then cutwidth is the minimum value, among all the orderings, of the maximum
size of any possible cut w.r.t the ordering (a formal definition is introduced in
next section). It is well-known that computing cutwidth is NP-complete [17], and
has an O(log2(n))-approximation on general graphs [23]. Specifically on tourna-
ments, one can compute an optimal ordering for the cutwidth by sorting the
degrees according to the in-degrees [16].

In this paper, we propose a new parameter called degreewidth using the con-
cept of backward arcs in an ordering of vertices. Degreewidth of a tournament
is the minimum value, among all the orderings, of the maximum number of
backward arcs incident to a vertex. Hence, an acyclic tournament is a tour-
nament with degreewidth zero. Furthermore, one can notice that tournaments
with degreewidth at most one are the same as the sparse tournaments intro-
duced in [8, 24]. A tournament is sparse if there exists an ordering of vertices
such that the backward arcs form a matching. It is known that computing a
maximum sized arc-disjoint packing of triangles and computing a maximum
sized arc-disjoint packing of cycles can be done in polynomial time [7] on sparse
tournaments.

To the best of our knowledge this paper is the first to study the parameter
degreewidth. As we will see in the next part, although having similarities with the
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cutwidth, this new parameter differs in certain aspects. We first study structural
and computational aspects of degreewidth. Then, we show how it can be used
to solve efficiently some classical problems on tournaments.
Our contributions and organization of the paper Next section provides the
formal definition of degreewidth and some preliminary observations. In Section 3,
we first study the degreewidth of a special class of tournaments, called regular
tournaments, of order 2k+1 and prove they have degreewidth k. We then prove
that it is NP-hard to compute the degreewidth in general tournaments. We
finally give a 3-approximation algorithm to compute this parameter which is
tight in the sense that it cannot produce better than 3-approximation for a class
of tournaments.

Then in Section 4, we focus on tournaments with degreewidth one, i.e., the
sparse tournaments. Note that it is claimed in [8] that there exists a polynomial-
time algorithm for finding such ordering, but the only available algorithm ap-
pearing in [24, Lemma 35.1, p.97] seems to be incomplete (see discussion Sub-
section 4.2). We first define a special class of tournaments that we call U -
tournaments. We prove there are only two possible sparse orderings for such
tournaments. Then, we give a polynomial time algorithm to decide if a tourna-
ment is sparse by carefully decomposing it into U -tournaments.

Finally, in Section 5 we study degreewidth as a parameter for some classical
graph problems. First, we show an FPT algorithm for Dominating Set w.r.t
degreewidth. Then, we focus on tournaments with degreewidth one. We design
an algorithm running in time O(n3) to compute a Feedback Arc Set on tour-
naments on n vertices with degreewidth one. However, we show that Feedback
Vertex Set remains NP-complete on this class of tournaments.
Due to paucity of space the missing proofs are deferred to full version [12].

2 Preliminaries

2.1 Notations

In the following, all the digraphs are simple, that is without self-loop and multiple
arcs sharing the same head and tail, and all cycles are directed cycles. The
underlying graph of a digraph D is an undirected graph obtained by replacing
every arc ofD by an edge. Furthermore, we use [n] to denote the set {1, 2, . . . , n}.

A tournament is a digraph where there is exactly one arc between each pair
of vertices. It can alternatively be seen as an orientation of the complete graph.
Let T be a tournament with vertex set {v1, . . . , vn}. We denote N+(v) the out-
neighbourhood of a vertex v, that is the set {u | (v, u) ∈ A(T )}. Then, T being
a tournament, the in-neighbourhood of the vertex v denoted N−(v) corresponds
to V (T ) \ (N+(v) ∪ {v}). The out-degree (resp. in-degree) of v denoted d+(v)
(resp. d−(v)) is the size of its out-neighbourhood (resp. in-neighbourhood).

A tournament T of order 2k + 1 is regular if for any vertex v, we have
d+(v) = d−(v) = k. Let X be a subset of V (T ). We denote by T − X the
subtournament induced by the vertices V (T )\X. Furthermore, when X contains
only one vertex {v} we simply write T − v instead of T − {v}. We also denote
by T [X] the tournament induced by the vertices of X. Finally, we say that T [X]
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dominates T if, for every x ∈ X and every y ∈ V (T ) \X, we have (x, y) ∈ A(T ).
For more definitions on directed graphs, please refer to [4].

Given a tournament T , we equip the vertices of T with is a strict total order
≺σ. This operation also defines an ordering of the set of vertices denoted by
σ := ⟨v1, . . . , vn⟩ such that vi ≺σ vj if and only if i < j. Given two distinct
vertices u and v, if u ≺σ v we say that u is before v in σ; otherwise, u is after v
in σ. Additionally, an arc (u, v) is said to be forward (resp. backward) if u ≺σ v
(resp. v ≺σ u). A topological ordering is an ordering without any backward
arcs. A tournament that admits a topological ordering does not contain a cycle.
Hence, it is said to be acyclic.

A pattern p1 := ⟨v1, . . . , vk⟩ is a sequence of vertices that are consecutive
in an ordering. Furthermore, considering a second pattern p2 := ⟨u1, . . . , uk′⟩
where {v1, . . . , vk} and {u1, . . . , uk′} are disjoint, the pattern ⟨p1, p2⟩ is defined
by ⟨v1, . . . , vk, u1, . . . , uk′⟩.
Degreewidth Given a tournament T , an ordering σ of its vertices V (T ) and a
vertex v ∈ V (T ), we denote dσ(v) to be the number of backward arcs incident
to v in σ, that is dσ(v) := |{u | u ≺σ v, u ∈ N+(v)} ∪ {u | v ≺σ u, u ∈ N−(v)}|.
Then, we define the degreewidth of a tournament with respect to the ordering
σ, denoted by ∆σ(T ) := max{dσ(v) | v ∈ V (T )}. Note that ∆σ(T ) is also the
maximum degree of the underlying graph induced by the backward arcs of σ.
Finally, we define the degreewidth ∆(T ) of the tournament T as follows.

Definition 1. The degreewidth of a tournament T , denoted ∆(T ), is defined as
∆(T ) := minσ∈Σ(T ) ∆σ(T ), where Σ(T ) is the set of possible orderings for V (T ).

As mentioned before, this new parameter tries to measure how far a tour-
nament is from being acyclic. Indeed, it is easy to see that a tournament T is
acyclic if and only if ∆(T ) = 0. Additionally, when degreewidth of a tournament
is one, it coincides with the notion of sparse tournaments, introduced in [8].
Remark. The definition of degreewidth naturally extends to directed graphs
and we hope it will be an exciting parameter for problems on directed graphs.
However, in this article we study this as a parameter for tournaments which
is well-studied in various domains [2, 9, 22]. Moreover, degreewidth also gives a
succinct representation of a tournament. Informally, sparse graphs5 are graphs
with a low density of edges. Hence, it may be surprising to talk about sparsity
in tournaments. However, if a tournament on n vertices admits an ordering σ
where the backward arcs form a matching, then it can be encoded by σ and
the set of backward arcs (at most n/2). Thus, the size of the encoding for such
tournament is O(n), instead of O(n2). For a tournament with degreewidth k,
the same reasoning implies that it can be encoded in O(kn) space.

2.2 Links to other parameters

Feedback arc/vertex set A feedback arc set (fas) is a collection of arcs that,
when removed from the digraph (or, equivalently, reversed) makes it acyclic. The

5 Not to be confused with sparse tournaments that has an arc between every pair of
vertices, hence, is not a sparse graph.
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size of a minimum fas is considered for measuring how far the digraph is from
being acyclic. In this context, degreewidth comes as a promising alternative.
Finding a small subset of arcs hitting all substructures (in this case, directed
cycles) of a digraph is one of the fundamental problems in graph theory. Note
that we can easily bound the degreewidth of a tournament by its minimum fas f .

Observation 1. For any tournament T , we have ∆(T ) ≤ |f |.
Note however that the opposite is not true; it is possible to construct tour-

naments with small degreewidth but large fas, see Figure 1(a).

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a) Example of a tournament with de-

greewidth one but fas (resp. fvs) |V (T )|
3

.

v1 v4 v5 v7 v2 v3 v6

(b) Example of a tournament T with

fvs one (v7) but degreewidth |V (T )|−3
2

.
The topological ordering of T − v7 is
⟨v1, v2, v3, v4, v5, v6⟩.

1

v1

2

v2

3

v3

3

v4

4

v5

5

v6

6

v7

(c) Example of a tournament with de-

greewidth one but cutwidth |V (T )|−1
2

.
Since the vertices are sorted by increasing
in-degrees (values inside the vertices), this
is an optimal ordering for the cutwidth.

Fig. 1 Link between degreewidth and other parameters. All the non-depicted
arcs are forward.

Similarly, a feedback vertex set (fvs) consists of a collection of vertices that,
when removed from the digraph makes it acyclic. However, – unlike the feedback
arc set – the link between feedback vertex set and degreewidth seems less clear;
we can easily construct tournaments with low degreewidth and large fvs (see
Figure 1(a)) as well as large degreewidth and small fvs (see Figure 1(b)).

Cutwidth Let us first recall the definition of the cutwidth of a digraph. Given an
ordering σ := ⟨v1, . . . , vn⟩ of the vertices of a digraph D, we say that a prefix of
σ is a sequence of consecutive vertices ⟨v1, . . . , vk⟩ for some k ∈ [n]. We associate
for each prefix of σ a cut defined as the set of backward arcs with head in the
prefix and tail outside of it. The width of the ordering σ is defined as the size of a
maximum cut among all the possible prefixes of σ. The cutwidth of D, ctw(D),
is the minimum width among all orderings of the vertex set of D.

Intuitively, the difference between the cutwidth and the degreewidth is that
the former focuses on the backward arcs going “above” the intervals between
the vertices while the latter focuses on the backward arcs coming from and to
the vertices themselves. Observe that for any tournament T , the degreewidth is
bounded by a function of the cutwidth. Formally, we have the following

Observation 2. For any tournament T , we have ∆(T ) ≤ 2ctw(T ).
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Note however that the opposite is not true; it is possible to construct tour-
naments with small degreewidth but large cutwidth, see Figure 1(c). We remark
that the graph problems that we study parameterized by degreewidth, namely,
minimising fas, fvs, and dominating set are FPT w.r.t cutwidth [1, 11].

3 Degreewidth

In this section, we present some structural and algorithmical results for the com-
putation of degreewidth. We first introduce the following lemma that provides
a lower bound on the degreewith.

Lemma 1. Let T be a tournament. Then ∆(T ) ≥ minv∈V (T ) d
−(v) and ∆(T ) ≥

minv∈V (T ) d
+(v).

3.1 Degreewidth of regular tournaments

Theorem 1. Let T be a regular tournament of order 2k + 1. Then ∆(T ) = k.
Furthermore, for any ordering σ, by denoting u and v respectively the first and
last vertices in σ, we have dσ(u) = dσ(v) = k.

Note that regular tournaments contain many cycles; therefore it is not sur-
prising that their degreewidth is large. This corroborates the idea that this pa-
rameter measures how far a tournament is from being acyclic.

3.2 Computational complexity

We now show that computing the degreewidth of a tournament is NP-hard by
defining a reduction from Balanced 3-SAT(4), proven NP-complete [6] where
each clause contains exactly three unique literals and each variable occurs two
times positively and two times negatively.

Let φ be a Balanced 3-SAT(4) formula with m clauses c1, . . . , cm and n
variables x1, . . . , xn. In the construction, we introduce several regular tourna-
ments of size W or W+1

2 + n+m, where W is value greater than n3 +m3. Note
that n+m is necessarily odd since 4n = 3m. By taking a value W = 3 mod 4,
we ensure that every regular tournament of size W or W+1

2 + n+m has an odd
number of vertices.

Construction 1. Let φ be a Balanced 3-SAT(4) formula with m clauses
c1, . . . , cm clauses and n variables x1, . . . , xn such that n is odd and m is even. Let
W = 3 mod 4 be an integer greater than n3 +m3. We construct a tournament
T as follows.
– Create two regular tournaments A and D of order W+1

2 +m + n such that
D dominates A.

– Create two regular tournaments B and C of order W such that A dominates
B ∪ C, B dominates C and B ∪ C dominates D.

– Create an acyclic tournament X of order 2n with topological ordering
⟨v1, v′1, . . . , vn, v′n⟩ such that A ∪ C dominates X and X dominates B ∪D.
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A true zone B U Y C false zone D H

Fig. 2 Example of a nice ordering. A rectangle represents an acyclic tourna-
ment, while a rectangle with rounded corners represents a regular tournament.
A plain arc between two patterns P and P ′ represents the fact that there is a
backward arc between every pair of vertices v ∈ P and v′ ∈ P ′. A dashed arc
means some backward arcs may exist between the patterns.

– Create an acyclic tournament Y of order 2m with topological ordering
⟨q1, q′1, . . . , qm, q′m⟩ such that B ∪D dominates Y and Y dominates A ∪ C.

– For each clause cℓ and each variable xi of φ,
• if xi occurs positively in cℓ, then {vi, v′i} dominates {qℓ, q′ℓ},
• if xi occurs negatively in cℓ, then {qℓ, q′ℓ} dominates {vi, v′i},
• if xi does not occur in cℓ, then introduce the paths (vi, qℓ, v

′
i) and (v′i, q

′
ℓ, vi).

– Introduce an acyclic tournament U = {up
i , ū

p
i | i ≤ n, p ≤ 2} of order 4n

such that U dominates A∪Y ∪C and B∪D dominates U . For each variable
xi, add the following paths,
• for all variable xk ̸= xi and all p ≤ 2, introduce the paths (vk, u

p
i , v
′
k)

and (v′k, ū
p
i , vk),

• introduce the paths (vi, u
1
i , v
′
i), (v

′
i, u

2
i , vi), (vi, ū

1
i , v
′
i) and (v′i, ū

2
i , vi).

– Finally, introduce an acyclic tournament H = {h1, h2} with topological or-
dering ⟨h1, h2⟩ and such that A ∪ B ∪ C ∪X ∪ Y ∪D dominates H and H
dominates U .

We call a vertex of X a variable vertex and a vertex of Y a clause vertex.
Furthermore, we say that the vertices (vi, v

′
i) (resp. (qℓ, q

′
ℓ)) is a pair of variable

vertices (resp. pair of clause vertices).

Definition 2. Let T be a tournament resulting from Construction 1. An order-
ing σ of T is nice if:

– ∆σ(A) = |A|−1
2 , ∆σ(B) = |B|−1

2 , ∆σ(C) = |C|−1
2 , and ∆σ(D) = |D|−1

2 ,
– σ respects the topological ordering of U ∪ Y ,
– A ≺σ B ≺σ U ≺σ Y ≺σ C ≺σ D ≺σ H, and
– for any variable xi, either A ≺σ vi ≺σ v′i ≺σ B or C ≺σ vi ≺σ v′i ≺σ D.

An example of a nice ordering is depicted in Figure 2. Let σ be a nice ordering,
we call the pattern corresponding to the vertices between A and B, the true
zone and the pattern after the vertices of C the false zone. Let (qℓ, q

′
ℓ) be a

pair of clause vertices and let (vi, v
′
i) be a pair of variable vertices such that

xi occurs positively (resp. negatively) in cℓ in φ. We say that the pair (vi, v
′
i)
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1

v1

2

v2

2

v3

3

v4

3

v5

2σapp: σopt: 1

v1

2

v4

2

v2

2

v3

3

v5

1 2 2 3

Fig. 3 Example of a tournament where the approximate algorithm can return
an ordering σapp (on the left) with degreewidth three while the optimal solution
is one in σopt (on the right). Coloured vertices are the ones incident to the
maximum number of backward arcs. all non-depicted arcs are forward arcs.

satisfies (qℓ, q
′
ℓ) if vi and v′i both belong to the true zone (resp. false zone). Note

that there is no backward arc between {qℓ, q′ℓ} and {vi, v′i} if and only if (vi, v
′
i)

satisfies (qℓ, q
′
ℓ). Notice also that for any pair of variable vertices (vi, v

′
i) such

that xi does not appear in cℓ and (vi, v
′
i) is either in the true zone or in the

false zone, then there is exactly two backward arcs between {qℓ, q′ℓ} and {vj , v′j}.
Let φ be an instance of Balanced 3-SAT(4) and T its tournament resulting
from Construction 1. We show that φ is satisfiable if and only if there exists an
ordering σ of T such that ∆σ(T ) < W +2m+3n+4, which yields the following.

Theorem 2. Given a tournament T and an integer k, it is NP-complete to
compute an ordering σ of T such that ∆σ(T ) ≤ k.

3.3 An approximation algorithm to compute degreewidth

In this subsection, we prove that sorting the vertices by increasing in-degree is a
tight 3-approximation algorithm to compute the degreewidth of a tournament.
Intuitively, the reasons why it returns a solution not too far from the optimal are
twofold. Firstly, observe that the only optimal ordering for acyclic tournaments
(i.e. with degreewidth 0) is an ordering with increasing in-degrees. Secondly, this
strategy also gives an optimal solution for cutwidth in tournaments.

Theorem 3. Ordering the vertices by increasing order of in-degree is a tight
3-approximation algorithm to compute the degreewidth of a tournament (see Fig-
ure 3).

4 Results on sparse tournaments

In this section, we focus on tournaments with degreewidth one, called sparse
tournaments. The main result of this section is that unlike in the general case,
it is possible to compute in polynomial time a sparse ordering of a tournament
(if it exists). We begin with an observation about sparse orderings (if it exists).

Lemma 2. Let T be a sparse tournament of order n > 4 and σ be an ordering of
its vertices. If σ is a sparse ordering, then for any vertex v such that d−(v) = i,
the only possible positions of v in σ are {i, i+ 1, i+ 2} ∩ [n].

Note that Lemma 2 gives immediately an exponential running-time algo-
rithm to decide if a tournament is sparse. However, we give in Subsection 4.2
a polynomial running-time algorithm for this problem. Before that we study a
useful subclass of sparse tournaments, we call the U -tournaments.
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U7:
v1 v2 v3 v4 v5 v6 v7

(a) The tournament U7.

Π1(U7):
v2 v1 v4 v3 v6 v5 v7

(b) The sparse ordering Π1(U7). Note
that v1 is the only vertex not incident to
any backward arc.

Π7(U7):
v1 v3 v2 v5 v4 v7 v6

(c) The sparse orderingΠ7(U7). Note that
v7 is the only vertex not incident to any
backward arc.

U8:
v1 v2 v3 v4 v5 v6 v7 v8

(d) The tournament U8.

Π(U8):
v1 v3 v2 v5 v4 v7 v6 v8

(e) The sparse ordering Π(U8). The
dashed forward arcs is a minimum feed-
back arc set of the tournament. Note that
all the vertices are incident to one back-
ward arc.

Π1,8(U8):
v2 v1 v4 v3 v6 v5 v8 v7

(f) The sparse ordering Π1,8(U8). Note
that v1 and v8 are the only vertices not
incident to any backward arc.

Fig. 4 The tournaments U7 and U8 and their sparse orderings. The non-depicted
arcs are forward arcs.

4.1 U-tournaments

In this subsection, we study one specific type of tournaments called U -tournaments.
Informally, they correspond to the acyclic tournaments where we reversed all the
arcs of its Hamiltonian path.

Definition 3. For any integer n ≥ 1, we define Un as the tournament on n
vertices with V (Un) = {v1, v2, . . . , vn} and A(Un) = {(vi+1, vi) | ∀i ∈ [n− 1]} ∪
{(vi, vj) | 1 ≤ i < n, i + 1 < j ≤ n}. We say that a tournament of order n is a
U -tournament if it is isomorphic to Un.

Figures 4(a) and 4(d) depict respectively the tournaments U7 and U8. This
family of tournaments seems somehow strongly related to sparse tournaments
and the following results will be useful later for both the polynomial algorithm to
decide if a tournament is sparse and the polynomial algorithm for minimum feed-
back arc set in sparse tournaments. To do so, we prove that each U -tournament
of order n > 4 has exactly two sparse orderings of its vertices that we formally
define.

Definition 4. Let P (k) = ⟨vk+1, vk⟩ be a pattern of two vertices of Un for some
integer k ∈ [n − 1]. For any integer n ≥ 2, we define the following special
orderings of Un:
– if n is even:

• Π(Un) is the ordering given by ⟨v1, P (2), P (4), . . . , P (n− 2), vn⟩.
• Π1,n(Un) is the ordering given by ⟨P (1), P (3), . . . , P (n− 2), P (n)⟩.

– if n is odd:
• Π1(Un) is the ordering given by ⟨P (1), P (3), . . . , P (n− 2), vn⟩.
• Πn(Un) is the ordering given by ⟨v1, P (2), P (4), . . . , P (n− 3), P (n− 1)⟩.
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Figures 4(b) and 4(c) (and Figures 4(e) and 4(f)) depict the orderingsΠ1(U7)
and Π7(U7) (resp. Π(U8) and Π1,8(U8)) of the tournament U7 (resp. U8). One
can notice that these orderings are sparse and the subscript of Π indicates the
vertex (or vertices) without a backward arc incident to it in this ordering. In
the following, we prove that when n > 4 there are no other sparse orderings of
Un. However, note that there are three possible sparse orderings of U3 (namely,
Π1(U3) and Π3(U3) defined previously, as well as Π2(U3) := ⟨v3, v2, v1⟩) and
three sparse orderings of U4 (namely, Π(U4), Π1,4(U4) as defined before, and
Π ′(U4) := ⟨v2, v4, v1, v3⟩).
Theorem 4. For each integer n > 4 there are exactly two sparse orderings of
Un. Specifically, if n is even, these two sparse orderings are Π(Un) and Π1,n(Un);
otherwise, the two sparse orderings are Π1(Un) and Πn(Un).

4.2 A polynomial time algorithm for sparse tournaments

We give here a polynomial algorithm to compute a sparse ordering of a tour-
nament (if any). First of all, let us recall a classical algorithm to compute a
topological ordering of a tournament (if any): we look for the vertex v with the
smallest in-degree; if v has in-degree one or more, we have a certificate that the
tournament is not acyclic. Otherwise, we add v at the beginning of the ordering,
and we repeat the reasoning on T − v, until V (T ) is empty.

The idea of the original “proof” in [24, Lemma 35.1, p.97] was similar: con-
sidering the set of vertices X of smallest in-degrees, put X at the beginning of
the ordering, and remove X from the tournament. However, potential backward
arcs from the remaining vertices of V \ X to X may have been forgotten. For
example, consider a tournament over 9 vertices consisting of a U5 (with ver-
tex set {v1, . . . , v5}) that dominates a U4 (with vertex set {u1, ..., u4}) except
for the backward arc (u4, v5). It is sparse (⟨Π5(U5), Π1,4(U4)⟩) but the algo-
rithm returns the (non-sparse) ordering ⟨Π1(U5), Π1,4(U4)⟩ (v5 is incident to
two backward arcs). The problem is that this algorithm is too “local”; it will
always prefer the sparse ordering Π1(U2k+1) over Π2k+1(U2k+1), but it may be
necessary to take the latter. Therefore, to correct this, we needed a much more
involved algorithm, requiring the study of the U-tournaments and the notion of
quasi-domination (see Definition 6). Indeed, unlike the algorithm for the topo-
logical ordering, we may have to look more carefully how the vertices with low
in-degrees are connected to the rest of the digraph. These correspond to the case
where there exists a U -sub-tournament of T which either dominates or “quasi-
dominates” (see Definition 6) the tournament T . Because of the latter possibility
(where a backward arc (a, b) is forced to appear), we need to look for specific
sparse orderings, called M -sparse orderings (where a or b should not be end-
vertices of other backward arcs). As all the sparse orderings for U -tournaments
have been described, we can derive a recursive algorithm.

Definition 5. Let T be a tournament, X be a subset of vertices of T , and M
be a subset of X. We say T [X] is M -sparse if there exists an ordering σ of X
such that ∆σ(T [X])(X) ≤ 1 and dσ(v) = 0 for all v ∈ M . In that case, σ is said
to be an M -sparse ordering of T [X].
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For example, U4[{v1, v2, v3}] is {v2}-sparse, because there exists a sparse
ordering σ := ⟨v3, v2, v1⟩ of U4[{v1, v2, v3}] such that dσ(v2) = 0. We remark
that T is sparse if and only if T is ∅-sparse. In fact, the algorithm described in
this section computes a ∅-sparse ordering of the given tournament (if any).

Definition 6 (see Figure 5). Given a tournament T and two of its vertices
a and b, we say that a subset of vertices X quasi-dominates T if:
– there exists an arc (b, a) ∈ A(T ) such that a ∈ X and b ̸∈ X,
– (u, v) ∈ A(T ) for every (u, v) ∈ (X × (V (T ) \X)) \ {(a, b)},
– d−(b) ≥ |X|+ 1, and
– the vertex a has an out-neighbour in X.

In this case, we also say X (b, a)-quasi-dominates T .

a a′ b′ b′′ b

X T −X

Fig. 5 An example where X (b, a)-
quasi-dominates T . Non-depicted arcs
are forward. The vertex a′ is an out-
neighbour of a in X, and b′, b′′ are in-
neighbours of b in T −X.

We can create the algorithm isUkMsparse which given (v1, . . . , vk) a U -
tournament and M a subset of these vertices, returns a boolean which is True
if and only if this tournament is M -sparse. We can also create the algorithm
getUsubtournament which given T a tournament, and X = (u1, . . . , uk) a list
of vertices such that d−(u1) = 1 and d−(ui) = i − 1 and (ui, ui−1) ∈ A(T ) for
all i ∈ {2, . . . , k}, returns a U -subtournament dominating or quasi-dominating
T . With these two previous algorithms, we can derive Algorithm 3 isMsparse.

Algorithm 1: getUsubtournament

Data: T a tournament, and X = (u1, . . . , uk) a list of vertices such that d−(u1) = 1 and

d−(ui) = i− 1 and (ui, ui−1) ∈ A(T ) for all i ∈ {2, . . . , k}.
Result: A U-subtournament dominating or quasi-dominating T .

1 w ←− a vertex of N−(uk) \X;

2 if d−(w) = d−(uk) then return X ∪ {w} /* this set dominates T */ ;

3 else if d−(w) = d−(uk) + 1 then return getUsubtournament(T,X ∪ {w}) ;
4 else return X /* this set (w, uk)-quasi-dominates T */ ;

Algorithm 2: isUkMsparse
Data: (v1, . . . , vk) a Uk tournament, M a subset of the vertices of Uk

Result: True if Uk is M-sparse and False otherwise
1 if k ≤ 2 then return True ;
2 else if k = 3 then return |M | ≤ 1 ;
3 else if k is even then return |M \ {v1, vk}| = 0 ;
4 else if k is odd then return (v1 ̸∈M or vk ̸∈M) and |M \ {v1, vk}| = 0 ;

Theorem 5. Algorithm 3 is correct. Hence, it is possible to decide if a tourna-
ment T with n vertices is sparse in O(n3) by calling isMsparse(T,∅).
Observe that we can easily modify Algorithm 3 to obtain a sparse ordering (if
exists). Next corollary follows from the above algorithm.
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Algorithm 3: isMsparse
Data: T a tournament, M a subset of the vertices of T
Result: True if T is M-sparse and False otherwise

1 if |V (T )| ≤ 1 then return True ;

2 else if minv∈V (T ) d
−(v) ≥ 2 then return False ;

3 else if minv∈V (T ) d
−(v) = 0 then

4 v ←− the vertex of in-degree 0;
5 return isMsparse(T − v,M \ {v});
6 else if |{v ∈ V (T ) : d−(v) = 1}| = 1 then
7 v, w ←− two vertices such that d−(v) = 1 and (w, v) ∈ A(T );
8 return v ̸∈M and isMsparse(T − v, (M ∪ {w}) \ {v});
9 else

10 v, w ←− two vertices of in-degree 1 such that (w, v) ∈ A(T );
11 X ←− getUsubtournament(T ,(v, w));
12 if X dominates T then
13 return (isUkMsparse(X,M ∩X) and isMsparse(T −X, M \X));
14 else
15 a, b←− the vertices such that X (b, a)-quasi-dominates T ;
16 return (isUkMsparse(X,(M ∪ {a}) ∩X) and isMsparse(T −X, (M ∪ {b}) \X));

Corollary 1. The vertex set of a sparse tournament on n vertices can be de-
composed into a sequence Un1

, Un2
, . . . , Unℓ

for some ℓ ≤ n such that each T [Uni
]

dominates or quasi-dominates T [ ∪
i<j≤ℓ

Unj ] and
∑

i∈[ℓ] ni = n.

5 Degreewidth as a parameter

5.1 Dominating set parameterized by degreewidth

A set of vertices X of a directed graph G is a dominating set (DS) if for each
vertex v ∈ V (G) \X, we have N+(v)∩X ̸= ∅. Observe that in graphs where de-
greewidth is zero, DS is of size one. Similarly, for tournaments with degreewidth
equals to one, the DS is of size at most two. That is, we have trivial solutions
for DS for acyclic and sparse tournaments. This motivates us to look for FPT
algorithm parameterized by degreewidth. In the following, we develop an FPT
algorithm for Dominating Set using universal families. Before that we observe
that size of a dominating is always bounded by the size of degreewidth.

Observation 3. The size of a minimum dominating set of a tournament T is
at most ∆(T ) + 1.

Theorem 6. Dominating Set is FPT in tournaments with respect to de-
greewidth.

5.2 FAST and FVST in sparse tournaments

A forbidden pattern corresponds to the patterns Π(U2k) for any k ≥ 1 as well
as Π ′(U4) := ⟨v2, v4, v1, v3⟩. An example of the forbidden pattern Π(U8) is
depicted in Figure 4(e). We say a sparse ordering has forbidden pattern if a
contiguous subsequence of the ordering is a forbidden pattern. Intuitively, the
problem of such patterns is that the set of their backward arcs is not a minimum
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fas. Hopefully, we can use Theorem 4 in such a way that if the pattern Π(U2k)
appears, we can restructure it into Π1,2k(U2k).

If a sparse ordering does not contain a forbidden pattern then its set of
backward arcs is a fas. Hence, we obtain the following result.

Theorem 7. FAST is solvable in time O(n3) in sparse tournaments on n ver-
tices.
For FVST, we show that the problem is difficult to solve on sparse tournaments.

Theorem 8. FVST is NP-complete on sparse tournaments.

6 Conclusion
In this paper, we studied a new parameter for tournaments, called degreewidth.
We showed that it is NP-hard to decide if degreewidth is at most k, for some natu-
ral number k and we proceeded to design a 3-approximation for the degreewidth.
One may ask if there is a PTAS for this problem. Then, we investigated sparse
tournaments, i.e., tournaments with degreewidth one and developed a polyno-
mial time algorithm to compute a sparse ordering. Is it possible to generalise
this result by providing an FPT algorithm to compute the degreewidth? We
also showed that FAST can be solved in polynomial time in sparse tournaments,
matching with the known result that Arc-Disjoint Triangles Packing and
Arc-Disjoint Cycle Packing are both polynomial in sparse tournaments [7].
Therefore, the question arise: can this parameter be used to provide an FPT
algorithm for FAST in the general case? Furthermore, we showed an FPT al-
gorithm for DS w.r.t degreewidth. Are there other domination problems e.g.,
perfect code, partial dominating set, or connected dominating set that is FPT
w.r.t degreewidth? Lastly, we also can wonder if this parameter is useful for
general digraphs.
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