open science

On the enumeration of non-dominated spanning trees with imprecise weights

Tom Davot, Sébastien Destercke, David Savourey

To cite this version:

Tom Davot, Sébastien Destercke, David Savourey. On the enumeration of non-dominated spanning trees with imprecise weights. 17th European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU 2023), Sep 2023, Arras, France. pp.348-358, 10.1007/978-3-031-45608-4_26 . hal-04155185

HAL Id: hal-04155185
https://hal.utc.fr/hal-04155185

Submitted on 7 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the enumeration of non-dominated spanning trees with imprecise weights

Tom Davot, Sébastien Destercke, David Savourey
Université de Technologie de Compiègne, CNRS, Heudiasyc (Heuristics and Diagnosis of Complex Systems), CS 60319-60203 Compiègne Cedex,
surname.name@hds.utc.fr

Abstract

Many works within robust combinatorial optimisation consider interval-valued costs or constraints. While most of these works focus on finding unique solutions such as minimax ones, a few consider the problem of characterising a set of non-dominated optimal solutions. This paper is situated within this line of work, and consider the problem of exactly enumerating the set of non-dominated spanning trees under interval-valued costs. We show in particular that each tree in this set can be obtained through a polynomial procedure, and provide an efficient algorithm to achieve the enumeration.

1 Introduction

Combinatorial optimisation problems under interval-valued costs have attracted some attention in the past (one can check, for instance, the book 6 for a good reference on the topic). While the greatest majority of works in this setting look for robust unique solutions to this problem, some of them look at the problem of enumerating, or at least characterising sets of possible solutions.

In this paper, we are interested in the specific yet practically important case of minimum spanning trees, the problem or its generalisations being routinely used in many applications [10].

Given its importance as a basic combinatorial optimisation problem, it is not a surprise that many authors have considered interval-valued edges in the minimum spanning tree problem. A number of works have focused on finding a robust solution to the problem, such as Yaman et al. [13] that provides a mixed integer programming (MIP) to compute a minimax solution, or 19512 that consider other notions of robust yet unique solution of the problem.

In this paper, our interest is not in providing one unique robust solution, but rather to consider the set of all non-dominated solutions, and to enumerate efficiently such solutions. Such a problem may be important if, e.g., one wants to browse the Pareto front of optimal solutions. Note that we are not the first one to explore such a problem, as for example [13] investigate the concept of weak (possible) and strong (necessary) edges, that is, edges that belong to at least one non-dominated solution and to every non-dominated solution, respectively. In [7], the authors defined a relation order on the set of feasible solutions and
generated a Pareto set using bi-objective optimisation, yet this relation order is different from the one we consider here, and will in general not include all non-dominated solutions.

Our paper is structured as follows ${ }^{1}$. next section presents some notation and introduces the problem. In Section 3, we develop some structural preliminary results. Our main result is described in Section 4 . we develop an algorithm that enumerates every non-dominated spanning tree. Finally, Section 5 is devoted to the presentation of some numerical experiments.

2 Notations and problem description

We present here the main notations used in the paper for graphs and set up our problem. The most important notions are illustrated in Figures 1 and 2.

2.1 Graph

Spanning tree. Let G be an undirected graph. We denote $V(G)$ the set of vertices of G and $E(G)$ the set of edges. A subgraph H of G is a graph such that $V(H) \subseteq$ $V(G)$ and $E(H) \subseteq E(G)$. In the following, we let n and m denote the number of vertices and edges in a graph, respectively. We denote $G-H$ the subgraph of G for which we delete every vertex of H in G, that is, $V(G-H)=V(G) \backslash V(H)$ and $E(G-H)=\{u v \mid u v \in E(G) \wedge u v \cap V(H)=\varnothing\}$. Let X be a set of edges of G, we denote $G-X$ the subgraph of G obtained by deleting every edge of X in G, that is $V(G-X)=V(G)$ and $E(G-X)=E(G) \backslash X$. A path between two vertices u and v is a sequence of distinct vertices $\left(x=v_{1}, \ldots, v_{k}=v\right)$ such that there is an edge between v_{i} and v_{i+1} for each $1 \leq i<k$. A cycle is a path $\left(v_{1}, \ldots, v_{k}\right)$ for which there is also an edge between v_{1} and v_{k}. A graph is connected if there is a path between each pair of vertices. A connected component H of G is a maximal connected subgraph of G, that is there is no vertex $v \in V(G) \backslash V(H)$ such that there is a path between v and a vertex $u \in V(H)$. Notice that G is connected if and only if G contains exactly one connected component. A tree is a connected graph without cycle. A spanning tree T of G is tree such that $V(T)=V(G)$ and $E(T) \subseteq E(G)$. We denote $S T(G)$ the set of spanning trees of G.

Cut. A cut $P=\left(V_{1}, V_{2}\right)$ of a graph G is a partition of its vertices into two disjoint subsets V_{1} and V_{2}, i.e. $V(G)=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\varnothing$. To each cut $P=\left(V_{1}, V_{2}\right)$, we associate a set of edges $X=\left\{u v \in E(G) \mid u \in V_{1}, v \in V_{2}\right\}$ called cut-set of P (or simply cut-set if P is not known). Notice that the deletion of X in G disconnects the graph, that is, $G-X$ contains at least one more connected component than G. The cut-set X is minimal if there is no $X^{\prime} \subset X$ such that X^{\prime} is also a cut-set. If G is connected, X is minimal if and only if $G-V_{1}$ and $G-V_{2}$ are connected. Let T be a spanning tree of G, notice that $E(T) \cap X \neq \varnothing$ since otherwise, T would not be connected. Let X be a cut-set and let $u v$ be an edge of X that does not belong to $E(T)$. Let p be the path between u and v

[^0]in T and let e be an edge in $X \cap E(p)$. Notice that e exists since otherwise X would not be a cut-set. We say that e is X-blocking for $u v$ in T. Note that it is possible to construct another spanning tree T^{\prime} by adding $u v$ and removing e in T, that is $E\left(T^{\prime}\right)=E(T) \cup\{u v\} \backslash\{e\}$. In the following, we call such operation swapping uv and e in T. It is possible to define a cut-set with a spanning tree and an edge as follows.

Definition 1 (Figure 1). Let G be a graph, let T be a spanning tree of G and let e be an edge of T. Let H_{1} and H_{2} be the two connected components of $T-e$. We say that the cut-set of the cut $\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$ is the cut-set induced by T and e.

Note that a cut-set can be induced by different spanning trees and different edges, as depicted by Figure 1. Also, a cut-set X is induced by T and e if and only if $E(T) \cap X=e$. Moreover, a cut-set induced by a spanning tree and an edge is always minimal.

Fig. 1. Left. Example of a cut $P=\left(V_{1}=\left\{v_{1}, \ldots, v_{4}\right\}, V_{2}=\left\{v_{5}, v_{6}\right\}\right)$ for a graph G. The vertices of V_{1} and V_{2} are depicted in yellow and red, respectively. The edges that belong to the cut-set X of P are depicted in blue. Center and Right. The cut-set X is induced by the spanning tree T_{1} (resp. T_{2}) and the edge $v_{3} v_{5}$ (resp. $v_{4} v_{5}$), depicted in green. The edge $v_{3} v_{5}$ is X-blocking for $v_{2} v_{6}$ and $v_{4} v_{5}$ in T_{1}. The edge $v_{4} v_{5}$ is X-blocking for $v_{2} v_{6}$ and $v_{3} v_{5}$ in T_{2}.

2.2 Imprecise weights and problem description

An imprecise weight $[\underline{\omega}, \bar{\omega}]$ is an interval of numbers. An imprecise weighted graph (G, Ω) is a graph with a function Ω that associates with each edge e an imprecise weight $\left[\underline{\omega}_{e}, \bar{\omega}_{e}\right]$. A realization $R: E(G) \mapsto \mathbb{R}$ of Ω is a function that associates with each edge e a weight $w \in\left[\underline{\omega}_{e}, \bar{\omega}_{e}\right]$. We denote \mathcal{R}_{Ω} the set of realizations of Ω.

Let H be a subgraph of G. Given a weight realization R, the weight of H, denoted $R(H)$ is the sum of the weights of its edges, that is, $R(H)=\Sigma_{e \in E(H)} R(e)$. Given two subgraphs H_{1} and H_{2}, we say that H_{1} dominates H_{2}, denoted by $H_{1} \succ H_{2}$ if,

$$
\forall R \in \mathcal{R}_{\Omega}, R\left(H_{1}\right)<R\left(H_{2}\right)
$$

Given two edges e_{1} and e_{2}, we say that e_{1} dominates e_{2} if $\bar{\omega}_{e_{1}}<\underline{\omega}_{e_{2}}$. In the following, we are interested in the set of non-dominated spanning trees

$$
\begin{equation*}
\mathcal{T}(G, \Omega):=\left\{T \in S T(G) \mid \nexists T^{\prime} \in S T(G), T^{\prime} \succ T\right\} \tag{1}
\end{equation*}
$$

In this article, we address the problem of enumerating every spanning tree of $\mathcal{T}(G, \Omega)$. We recall that computing a minimum spanning tree T for some realization R (i.e. such that $R(T)$ is minimum) can be done in polynomial time using a greedy algorithm. For example, Kruskal's algorithm computes a minimum spanning tree in $\mathcal{O}(m \log n)$ [8].

An edge e is possible if there is a tree $T \in \mathcal{T}(G, \Omega)$ such that $e \in E(T)$. An edge e is necessary if for every tree $T \in \mathcal{T}(G, \Omega)$, we have $e \in E(T)$. Yaman et al. shown that it is possible to determine if an edge is possible or necessary in polynomial time [13].

Theorem 1 ([13]). Let (G, Ω) be an imprecise weighted graph and let $e \in E(G)$ be an edge. Let $\epsilon>0$ be an infinitely small positive value.
(a) Let $R_{p} \in \mathcal{R}_{\Omega}$ such that $R_{p}(e)=\underline{\omega}_{e}-\epsilon$ and $\forall e^{\prime} \in E(G-e), R_{p}\left(e^{\prime}\right)=\bar{\omega}_{e^{\prime}}$. Let T be a minimum spanning tree under R_{p}, computed with a greedy algorithm. The edge e is possible if and only if $e \in E(T)$.
(b) Let $R_{n} \in \mathcal{R}_{\Omega}$ such that $R_{n}(e)=\bar{\omega}_{e}+\epsilon$ and $\forall e^{\prime} \in E(G-e), R_{p}\left(e^{\prime}\right)=\underline{\omega}_{e^{\prime}}$. Let T be a minimum spanning tree under R_{n}, computed with a greedy algorithm. The edge e is necessary if and only if $e \in E(T)$.

In other words, an edge e is possible (resp. necessary) if e belongs to a minimum spanning tree under the best (resp. worst) realization for e. The addition (resp. subtraction) of ϵ is needed so that in case of a tie between e and another edge in the greedy algorithm, e is considered first (resp. last). Notice that R_{p} and R_{p} are not feasible realizations for (G, Ω). However, any minimum spanning tree under R_{p} or R_{p} belongs to $\mathcal{T}(G, \Omega)$.

2.3 Partial solution

Let G be a graph for which we want to enumerate every non-dominated spanning trees. A partial solution S is a pair of sets of edges $\operatorname{in}(S)$ and $\operatorname{out}(S)$ such that there is a tree T in $\mathcal{T}(G, \Omega)$ with $\operatorname{in}(S) \subseteq E(T)$ and $\operatorname{out}(S) \cap E(T)=\varnothing$ and in that case, we say that T is associated to S. We denote $\mathcal{T}_{S}(G, \Omega)$ the set of trees of $\mathcal{T}(G, \Omega)$ associated to S. We denote S_{\varnothing} the empty partial solution for which $\operatorname{in}\left(S_{\varnothing}\right)=\operatorname{out}\left(S_{\varnothing}\right)=\varnothing$. Notice that $\mathcal{T}(G, \Omega)=\mathcal{T}_{S_{\varnothing}}(G, \Omega)$. An example of partial solution is depicted in Figure 2.

Let S be a partial solution. We extend the notion of possible and necessary edges for partial solutions as follows. An edge $e \notin \operatorname{in}(S) \cup o u t(S)$ is possible with respect to S if there is a tree $T \in \mathcal{T}_{S}(G, \Omega)$ such that $e \in E(T)$. Similary, e is necessary with respect to S if for all $T \in \mathcal{T}_{S}(G, \Omega)$, we have $e \in E(T)$. Notice that an edge e is possible (resp. necessary) if and only if e is possible (resp. necessary) with respect to S_{\varnothing}.

An important remark is that we cannot reuse Theorem 1 to determine if an edge is necessary with respect to some partial solution S. For example, consider the partial solution S_{2} given by Figure 2 the edge $v_{2} v_{5}$ is necessary with respect to S_{2}. However, if we consider the realization R_{n} for which $R\left(v_{2} v_{5}\right)=6+\epsilon$ and $R(e)=\underline{\omega}_{e}$ for any other edge, then the greedy algorithm returns $T=$ $G-\left\{v_{1} v_{4}, v_{2} v_{5}\right\}$ as a minimum spanning tree of $G-\operatorname{out}\left(S_{2}\right)$ which does not belong to $\mathcal{T}_{S_{2}}(G, \Omega)$. However, it is possible to reuse the same idea than in Theorem 1 to determine if an edge is possible with respect to a partial solution, as we do in this article.

Fig. 2. Left: An imprecise weighted graph (G, Ω). Center: The pair of edges sets $\operatorname{in}\left(S_{1}\right)$ and $\operatorname{out}\left(S_{1}\right)$, depicted in blue and red respectively, is not a partial solution. The tree spanning tree $T=G-\operatorname{out}\left(S_{1}\right)$ is the only spanning tree such that $\operatorname{in}\left(S_{1}\right) \subseteq E(T)$ and $E(T) \cap \operatorname{out}\left(S_{1}\right)=\varnothing$. We can observe that T is dominated by $G-\left\{v_{2} v_{5}, v_{3} v_{6}\right\}$. Right: Example of a partial solution S_{2} with edges of $\operatorname{in}\left(S_{2}\right)$ depicted in blue and edges of $\operatorname{out}\left(S_{2}\right)$ depicted in red. There are two associated trees $T_{1}=G-\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$ and $T_{2}=G-\left\{v_{1} v_{4}, v_{3} v_{6}\right\}$ in $\mathcal{T}_{S_{2}}(G, \Omega)$. The edges $v_{2} v_{5}$ and $v_{4} v_{5}$ are necessary with respect to S_{2} and the edges $v_{2} v_{3}$ and $v_{3} v_{6}$ are possible with respect to S_{2}.

3 Preliminary results

In this section, we present some structural results on partial solutions and cutset. We first introduce the key concept of core of a cut-set.

Definition 2. Let (G, Ω) be an imprecise weighted graph and let X be a cut-set in G. An edge $e \in X$ belongs to the core of X if there is no edge $e^{\prime} \in X$ such that e^{\prime} dominates e. We denote C_{X} the core of X. Formally,

$$
C_{X}=\left\{e \in X \mid \nexists e^{\prime} \in X, \bar{\omega}_{e^{\prime}}<\underline{w}_{e}\right\} .
$$

Let X be a cut-set, we denote e_{X} an edge such that $e_{X}=\arg \min \left\{\bar{w}_{e} \mid e \in\right.$ $X\}$. Notice that e_{X} dominates every edge e in $X \backslash C_{X}$.

We now introduce several structural properties regarding the cores of cut-sets and the non-dominated spanning trees. First, we show that every non-dominated spanning tree intersects the core of each cut-set.

Lemma 1. Let X be a minimal cut-set. For all tree $T \in \mathcal{T}(G, \Omega)$, we have $C_{X} \cap E(T) \neq \varnothing$.

Proof. Toward a contradiction, suppose there is a tree $T \in \mathcal{T}(G, \Omega)$ such that $C_{X} \cap E(T)=\varnothing$ and consider the edge e_{X}. Let e be an edge that is X-blocking for e_{X} in T. By hypothesis, $e \notin C_{X}$ and so, e is dominated by e_{X}. Thus, the tree obtained by swapping e_{X} and e in T dominates T contradicting T belonging to $\mathcal{T}(G, \Omega)$.

Corollary 1. Let X be the cut-set induced by a non-dominated spanning tree T and an edge $e \in E(T)$. We have $e \in C_{X}$.

Proof. By definition of a cut-set X induced from T and e, we have $E(T) \cap X=$ $\{e\}$. By Lemma 1, $E(T) \cap C_{X} \neq \varnothing$ which implies $e \in C_{X}$.

We now show that it is possible to construct a non-dominated spanning tree from another by swapping two edges that belong to the same core. This allows one, among other things, to simply build a new solution in $\mathcal{T}(G, \Omega)$ from an existing, fully specified one.

Lemma 2. Let T_{1} be a tree of $\mathcal{T}(G, \Omega)$ and let $e_{2} \notin E\left(T_{1}\right)$ be an edge that belongs to some core C_{X} of a cut-set. Let e_{1} be a X-blocking edge for e_{2} in T_{1}. The spanning tree T_{2} obtained by swapping e_{2} and e_{1} in T_{1} belongs to $\mathcal{T}(G, \Omega)$.

Proof. Toward a contradiction, suppose there is a tree $T_{3} \in \mathcal{T}(G, \Omega)$ that dominates T_{2}. Let e_{3} be an edge of $X \cap E\left(T_{3}\right)$ such that $e_{3}=e_{1}$ if $e_{1} \in E\left(T_{3}\right)$ or, e_{3} is an edge such that e_{1} is X-blocking for e_{3} in T_{1} otherwise. The edge e_{1} does not dominate e_{3} since otherwise, the tree obtained by swapping e_{3} and e_{1} in T_{3} dominates T_{3}, contradicting that T_{3} belongs to $\mathcal{T}(G, \Omega)$. Hence, e_{1} does not dominate e_{3}. Further, since $e_{2} \in C_{X}, e_{3}$ does not dominate e_{2}. So, $T_{3}-e_{3}$ dominates $T_{2}-e_{2}=T_{1}-e_{1}$. But then, since e_{1} does not dominate e_{3}, then T_{3} dominates T_{1}, contradicting that T_{1} belongs to $\mathcal{T}(G, \Omega)$. Hence, T_{2} is not dominated and belongs to $\mathcal{T}(G, \Omega)$.

Previous lemmas can be used to show some properties on possible/necessary edges with respect to a partial solution. Those properties will be essential in building our enumerating algorithms, as they allow to iteratively complete a current partial solution by adding possible edges to it.

Lemma 3. Let S be a partial solution and let e $\notin \operatorname{in}(S) \cup$ out (S) be an edge.
(a) e is necessary with respect to S if and only if there is a minimal cut-set X such that $C_{X} \backslash \operatorname{out}(S)=\{e\}$.
(b) e is possible with respect to S if and only if there is a minimal cut-set X such that $e \in C_{X}$ and $X \cap \operatorname{in}(S)=\varnothing$.

Proof. (a) Let X be a minimal cut-set such that $C_{X} \backslash o u t(S)=\{e\}$. Then for any tree $T \in \mathcal{T}_{S}(G, \Omega)$, we have $e \in E(T)$ since otherwise it contradicts Lemma 1 . Thus, e is necessary with respect to S. We now show the reciprocity. Let e_{1} not $\in \operatorname{in}(S) \cup \operatorname{out}(S)$ be an edge that is necessary with respect to S and let assume by contradiction there is no cut-set X such that $e_{1} \in C_{X} \backslash \operatorname{out}(S)$. Let T_{1} be a tree of $\mathcal{T}_{S}(G, \Omega)$ and let X be the cut-set induced by T_{1} and e_{1}.

By hypothesis, there is an edge $e_{2} \neq e_{1}$ in C_{X}. Let T_{2} be a tree such that $E\left(T_{2}\right)=\left(E\left(T_{1}\right) \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\}$. By Lemma 2, T_{2} belongs to $\mathcal{T}_{S}(G, \Omega)$ and since T_{2} does not contain e_{1}, we obtain a contradiction.
(b) Let X be a cut-set such that $X \cap i n(S)=\varnothing$ and let $e \in C_{X}$. Let T be a tree of $\mathcal{T}_{S}(G, \Omega)$. If $e \in E(T)$, then e is possible with respect to S. If $e \notin E(T)$, then let T^{\prime} be a tree obtained by swapping e and a X-blocking edge for e in T. By Lemma $2, T^{\prime}$ belongs to $\mathcal{T}(G, \Omega)$, and thus e is possible with respect to S. We now show the reciprocity. Let $e \notin \operatorname{in}(S) \cup \operatorname{out}(S)$ be an edge that is possible with respect to S and let T be a tree in $\mathcal{T}_{S}(G, \Omega)$. Let X be the cut-set induced by T and e. By Corollary 1, $e \in C_{X}$. Moreover, since $X \cap E(T)=\{e\}$ and $e \notin \operatorname{in}(S)$, we have $\operatorname{in}(S) \cap X=\varnothing$. Hence, there is cut-set X such that $e \in C_{X}$ and $X \cap i n(S) \neq \varnothing$.

4 Enumerating algorithm

Having stated our formal results, we are now ready to provide our enumerating algorithms relying on them.

4.1 Possible and necessary edges of partial solutions

In this section, we use Lemma 3 to develop two algorithms that determine if an edge e is possible/necessary with respect to a given partial solution. Informally, the principle of the algorithms is to observe if e closes a cycle in some specific subgraphs (see Figure 3).

Fig. 3. Subgraphs considered by Algorithms 1 and 2 when the graph (G, Ω) and partial solution S_{2} of Figure 2 is given. The edges of the subgraphs are depicted in black and the edge on which the algorithm is called is depicted in blue. (a) $v_{3} v_{6}$ is possible with respect to S_{2}, since v_{3} and v_{6} are in two different connected components in G^{\prime}. (b) $v_{2} v_{5}$ is necessary with respect to S_{2} since $v_{2} v_{5}$ and $v_{1} v_{4}$ lie between the two same connected components $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{4}, v_{5}, v_{6}\right\}$. (c) and (d) $v_{3} v_{6}$ is not necessary with respect to S_{2} since v_{3} and v_{6} belong to the same connected component in $G^{v_{1} v_{4}}$ and in $G^{v_{3} v_{6}}$.

```
Algorithm 1: is_possible
    Data: An imprecise weighted graph \((G, \Omega)\), a partial solution \(S\) and an edge
            \(u v\).
    Result: true if \(u v\) is possible with respect to \(S\), false otherwise.
    Let \(G^{\prime}\) such that \(E\left(G^{\prime}\right)=\{e \in E(G) \mid e\) dominates \(u v\} \cup i n(S)\);
    Let \(H_{1}\) be the connected component of \(G^{\prime}\) containing \(u\);
    Let \(H_{2}\) be the connected component of \(G^{\prime}\) containing \(v\);
    return \(H_{1} \neq H_{2}\);
```

Lemma 4. Algorithm 1 is correct. Hence, we can determine if an edge is possible with respect to a partial solution in $\mathcal{O}(m+n)$.

Proof. We show that Algorithm 1 returns true if and only if $u v$ is possible with respect to S. First, suppose that the algorithm returns true, that is H_{1} and H_{2} are two different connected components in G^{\prime}. Let X be the cut-set between $V\left(H_{1}\right)$ and $V\left(G-H_{1}\right)$ in G. Since G^{\prime} contains more than one connected component, $V\left(H_{1}\right) \neq V(G)$ and so, X is not empty. No edge $e \in X$ dominates $u v$ since otherwise, e would belong to G^{\prime} and H_{1}, contradicting the maximality of H_{1}. Hence, X contains a minimal cut-set X^{\prime} such that $u v \in C_{X^{\prime}}$ and $\operatorname{in}(S) \cap X^{\prime}=\varnothing$. By Lemma 3 b , $u v$ is possible with respect to S.

Now suppose that $u v$ is possible with respect to S. By Lemma 3(b), there is a cut-set X such that $u v \in C_{X}$ and $\operatorname{in}(S) \cap X=\varnothing$. That is, no edge of X dominates $u v$. Hence, by construction of G^{\prime}, no edge of X belongs to G^{\prime} which implies that u and v belong to two different connected components in G^{\prime}. Thus, the algorithm returns true.

Concerning the running complexity of the algorithm: G^{\prime} is constructed in $\mathcal{O}(m)$ and determining the connected components of a graph can be done in $\mathcal{O}(m+n)$, so we obtain a complexity in $\mathcal{O}(m+n)$.

Notice that, since there is no need to sort the edges by increasing order of weight, Algorithm 1 has a better time complexity than the one developed by Yaman et al. [13] to determine if an edge is possible (i.e. if we run Algorithm 1 with $\left.S:=S_{\varnothing}\right)$.

Lemma 5. Algorithm 2 is correct. Hence, we can determine if an edge is necessary with respect to a partial solution S in $\mathcal{O}((|\operatorname{out}(S)|+1) \cdot(n+m))$.

Proof. We show that Algorithm 2 returns true if and only if $u v$ is necessary with respect to S. First, suppose that the algorithm returns true. That is, there is an edge $x y \in \operatorname{out}(S) \cup\{u v\}$ that does not dominate $u v$ and such that:

- $H_{1}^{x y}$ and $H_{2}^{x y}$ are two different connected components in $G^{x y}$, and
$-x \in V\left(H_{1}^{x y}\right)$ and $y \in V\left(H_{2}^{x y}\right)$, or $x \in V\left(H_{2}^{x y}\right)$ and $y \in V\left(H_{1}^{x y}\right)$.
Suppose by symmetry that $x \in V\left(H_{1}^{x y}\right)$ and $y \in V\left(H_{2}^{x y}\right)$. Let X be the cut-set between $V\left(H_{1}^{x y}\right)$ and $V\left(G-H_{1}^{x y}\right)$. Since $G^{x y}$ contains more than one connected

```
Algorithm 2: is_necessary
    Data: An imprecise weighted graph \((G, \Omega)\), a partial solution \(S\) and an edge
            \(u v\).
    Result: true if \(u v\) is necessary with respect to \(S\), false otherwise.
    forall \(x y \in \operatorname{out}(S) \cup\{u v\}\) such that \(x y\) does not dominate \(u v\) do
        Let \(G^{x y}\) such that
        \(E\left(G^{x y}\right)=\{e \in E(G) \mid x y\) does not dominate \(e\} \backslash \operatorname{out}(S) ;\)
        Let \(H_{1}^{x y}\) be the connected component of \(G^{x y}-u v\) containing \(u\);
        Let \(H_{2}^{x y}\) be the connected component of \(G^{x y}-u v\) containing \(v\);
        if \(H_{1}^{x y} \neq H_{2}^{x y}\) then
            if \(x \in V\left(H_{1}^{x y}\right)\) and \(y \in V\left(H_{2}^{x y}\right)\) then
                return true;
            if \(x \in V\left(H_{2}^{x y}\right)\) and \(y \in V\left(H_{1}^{x y}\right)\) then
                return true;
    return false;
```

component, $V\left(H_{1}^{x y}\right) \neq V(G)$ and so, X is not empty. Moreover, since $x \in$ $V\left(H_{1}^{x y}\right)$ and $y \notin V\left(H_{1}^{x y}\right), x y$ belongs to X. By construction of $G^{x y}$, any edge $e \in X \backslash(\operatorname{out}(S) \cup\{u v\})$ is dominated by $x y$, since otherwise, e would belong to $G^{x y}$ and H_{1}, contradicting the maximality of H_{1}. So, since $x y \in X$, e does not belong to C_{X}. Hence, X contains a minimal cut-set X^{\prime} such that $\{u v\}=C_{X^{\prime}} \backslash$ out (S). So, by Lemma 3(a), $u v$ is necessary with respect to S.

Now suppose that $u v$ is necessary with respect to S. By Lemma 3a, there is a minimal set-cut X such that $\{u v\}=C_{X} \backslash \operatorname{out}(S)$. If $X \cap \operatorname{out}(S)=\varnothing$ or $u v=e_{X}$, then Algorithm 2 returns true when $x y=u v$ in the forall loop. Otherwise, there is an edge $e_{X} \neq u v$ that belongs to $X \cap \operatorname{out}(S)$. Consider the step of the forall loop for which $x y$ is equal to e_{X}. Toward a contradiction, suppose $x y$ does not link $H_{1}^{x y}$ and $H_{2}^{x y}$ in $G^{x y}$. Hence, either x or y belongs to a connected component H_{3} in $G^{x y}$, different from $H_{1}^{x y}$ and $H_{2}^{x y}$ in $G^{x y}-u v$. Let X^{\prime} be the cut-set between $V\left(H_{3}\right)$ and $V\left(G-H_{3}\right)$ in G. By construction of $G^{x y}$, every edge $e \in X^{\prime} \backslash \operatorname{out}(S)$ is dominated by $x y$, since otherwise e would belong to $G^{x y}$ and H_{3}, contradicting the maximality of H_{3}. That is, $e \notin C_{X^{\prime}}$. Thus, $C_{X^{\prime}} \backslash \operatorname{out}(S)=\varnothing$. It follows that it is not possible to construct a tree T associated to S that respects the property of Lemma 1 Hence, S is not a partial solution which is a contradiction. So, $x y$ links $H_{1}^{x y}$ and $H_{2}^{x y}$ in $G^{x y}-u v$. Further, every edge in $X \backslash C_{X}$ is dominated by $x y$ and thus, does not belong to $G^{x y}$. It follows that $X \cap E\left(G^{x y}\right)=\{u v\}$ and thus, $H_{1}^{x y} \neq H_{2}^{x y}$. Hence, the algorithm returns true.

Finally, concerning the time complexity of the algorithm: for each edge $x y$ in the forall loop, $G^{x y}$ is constructed in $\mathcal{O}(m)$ and determining the connected components of a graph can be done in $\mathcal{O}(m+n)$. Since this process is repeated is at most $|\operatorname{out}(S)|+1$ times, we obtain a complexity of $\mathcal{O}((\mid$ out $(S) \mid+1) \cdot(m+n))$.

Notice that, once again, since there is no need to sort the edges by increasing order of weight, Algorithm 2 has a better time complexity than the one developed by Yaman et al. [13] to determine if an edge is necessary. Indeed, if we run Algorithm 2 with $S:=S_{\varnothing}$, then the time complexity is $\mathcal{O}(m+n)$.

4.2 The enumerating algorithm

Now that we developed two polynomial-time algorithms to determine if an edge is possible/necessary with respect to some partial solution, we can enumerate every spanning trees of $\mathcal{T}(G, \Omega)$ with an exhaustive search as depicted by Algorithm 3 . Note that, for some partial solution S, an addition of an edge in out (S) or in $\operatorname{in}(S)$ does not change the set of possible or necessary edges with respect to S since it does not change $\mathcal{T}_{S}(G, \Omega)$.

Corollary 2 (Lemma 4 and Lemma 5). Algorithm 3 is correct. Hence, $\mathcal{T}(G, \Omega)$ can be enumerated in $\mathcal{O}\left(t\left(m^{3} n+m^{2} n^{2}\right)\right)$, where $t=|\mathcal{T}(G, \Omega)|$.

Proof. We show that the time complexity is correct. At each call of enumeration, the two functions is_possible and is_necessary are called on each edge in $E(G) \backslash$ $(\operatorname{out}(S) \cup \operatorname{in}(S))$. So, each call, without taking in account the recursive call, has a complexity of $\mathcal{O}(m(|\operatorname{out}(S)|(m+n)))=\mathcal{O}\left(m^{3}+m^{2} n\right)$. Since the number of edges in a spanning tree is $n-1$, we need $n-1$ recursive calls to display one non-dominated spanning tree, that is, a complexity of $\mathcal{O}\left(m^{3} n+m^{2} n^{2}\right)$. Finally, since there are t spanning trees to enumerate, we obtain a time complexity of $\mathcal{O}\left(t\left(m^{3} n+m^{2} n^{2}\right)\right)$.

```
Algorithm 3: enumeration
    Data: An imprecise weighted graph \((G, \Omega)\) and a partial solution \(S\left(S=S_{\varnothing}\right.\)
        by default).
    Result: Enumeration of \(\mathcal{T}(G, \Omega)\)
    forall \(e \in E(G)\) do
        if is_necessary \(((G, \Omega), e, S)\) then
            \(i n(S) \leftarrow i n(S) \cup\{e\} ;\)
    forall \(e \in E(G)\) do
        if not is_possible \(((G, \Omega), e, S)\) then
            \(\operatorname{out}(S) \leftarrow \operatorname{out}(S) \cup\{e\} ;\)
        if \(\operatorname{in}(S)\) is a tree then
            Display in \((S)\);
        else
            Let \(e \in E(G) \backslash(\operatorname{in}(S) \cup \operatorname{out}(S))\);
            \(S^{\prime} \leftarrow S\);
            \(i n\left(S^{\prime}\right) \leftarrow i n\left(S^{\prime}\right) \cup\{e\} ;\)
            enumeration \(\left((G, \Omega), S^{\prime}\right)\);
            \(S^{\prime} \leftarrow S\);
            \(\operatorname{out}\left(S^{\prime}\right) \leftarrow \operatorname{out}\left(S^{\prime}\right) \cup\{e\} ;\)
            enumeration \(\left((G, \Omega), S^{\prime}\right)\);
```


5 Numerical Experiments

In this section, we present some tests on random generated instances. The source code and the instances are available at https://gitlab.utc.fr/davottom/ enum-imst. We compare Algorithm 3 with the two following methods.

- Outer approximation. This method first compute a subgraph G^{\prime} constituted by the possible and necessary edges in the initial graph. Then, it enumerates every spanning trees of G^{\prime} that contains all necessary edges. Let t^{\prime} be the number of (not necessarily non-dominated) spanning trees of G^{\prime}. The complexity of the outer approximation is $\mathcal{O}(|S T(G)|)$. Note that the size of $S T(G)$ is not bounded by some polynomial function in the size of $\mathcal{T}(G, \Omega)$.
- Reduce. This method uses same algorithm than the outer approximation plus check for each spanning tree T of G^{\prime} if T is non-dominated. To check if a tree T is non-dominated, we use the same idea as the one described in Theorem 11 we compute a minimum spanning tree in the realization R where $R(e)=\underline{\omega}_{e}-\epsilon$ if $e \in E(T)$ and, $R(e)=\bar{\omega}_{e}$, otherwise. The complexity of the reduce algorithm is $\mathcal{O}(|S T(G)| \cdot m \log n)$.
In the following, we refer to Algorithm 3 as the exact method.

5.1 Instances

We generated imprecise weighted graphs with 10 vertices by varying the density of the graph and the weight function. We chose to generate the instances according three graph densities and three scenarios for the weight function. The three possible densities sparse, middle, dense for which the graph contains 15,25 and 35 edges, respectively. The graph is generated using the random generator of the library boost in $\mathrm{C}++$. If the graph is not connected, we add a random edge between two connected components until the graph is connected. For the generation of weight functions, given a scenario i for each edge e, we pick two random numbers $\ell \in[1,10] s \in\left[a_{i}, b_{i}\right]$, where a_{i} and b_{i} depend on the selected scenario. Then, we set $\Omega(e)=[\ell, \ell+s]$. For scenario 1 , we have $a_{i}=1$ and $b_{i}=10$, for scenario 2 , we have $a_{i}=7$ and $b_{i}=9$ and, for scenario 3 , we have $a_{i}=2$ and $b_{i}=3$. Note that scenario 1 generates intervals with quite varying sizes, while scenario 2 generates intervals that will very often overlap. For each scenario and each density, we generate 10 instances.

5.2 Results

The tests were run on a personal laptop with 16Go of RAM and with an Intel Core 7 processor 2.5 Ghz . The results are depicted in Tables 1 and 2 . Not surprisingly, the outer approximation is the fastest method. Although the theoretical time complexity of the exact method is better than the reduce method, the latter is faster on the generated dataset (except in Scenario 3). In particular, the worst case for the exact method occurs in the set of dense graphs with the scenario 2 where the maximum computation time for the exact method takes more than 1 minute whereas the reduce method uses only 18 seconds. Regarding the statistics on the number of trees enumerated, the denser the graph, the bigger the
cardinality of the enumerated sets for both methods. Samewise, the larger the intervals (i.e. in scenario 1), the bigger the cardinality of the enumerated sets. We can also observe than when the graph is not dense, the outer approximation seems reasonably close to the exact method.

Table 1. Time statistics. A set contains every graphs generated with the same density and scenario. For each set and each method, average, minimum and maximum times are depicted.

Setdensity scenario		Exact			Approx			Reduce		
		Avg	Min	Max	Avg	Min	Max	Avg	Min	Max
,	1	173 ms	93ms	22s	120 ms	82 ms	8 s	160 ms	109 ms	11s
ddle	1	40 ms	ms	401 ms	23 ms	ms	411 ms	31 ms	5 ms	530 ms
	1	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	2 ms	$<1 \mathrm{~ms}$	2 ms				
dense	2	6 s	13s	1 m 1 s	1 s	10s	14s	2s	13s	18 s
middle	2	89 ms	211 ms	1 s	35 ms	181 ms	400 ms	45 ms	229 ms	510 ms
rse	2	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	2 ms	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	1 ms	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	1 ms
dense	3	3 ms	1 ms	69 ms	39 ms	$<1 \mathrm{~ms}$	386 ms	48 ms	$<1 \mathrm{~ms}$	483 ms
middle	3	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	9 ms	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	29 ms	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	6ms
sparse	3	$<1 \mathrm{~ms}$								

Table 2. Result statistics on the number of enumerated trees. A set contains every graph generated with the same density and scenario. Exact and Approx: number of enumerated trees for the corresponding method. The Diff column is the difference of cardinality between the exact method and the outer approximation.

Set		Exact			Approx			Diff		
dens.	scen.	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max
dense	1	708,107	12,984	3.3 M	1.3 M	53,956	5 M	656,372	18,576	1.9 M
middle	1	23,548	1,476	84,936	56,837	3,012	29,6340	33,289	872	216,852
sparse	1	201	29	445	287	29	763	86	0	18
dense	2	5 M	1.6 M	8.2 M	7.7 M	6.3 M	8.6 M	2.7 M	241,424	$5,5 \mathrm{M}$
middle	2	151,517	36,426	227,902	231,516	135,185	296,340	80,000	0	157,855
sparse	2	581	264	944	682	354	944	100	0	224
dense	3	4,533	222	9,857	41,279	304	261,134	36,746	82	257,214
middle	3	464	24	2,445	3,024	48	23,135	2,560	22	20,690
sparse	3	46	8	175	82	11	286	36	2	111

6 Conclusions

In this paper, we have considered the problem of enumerating non-dominated spanning trees in the case of interval-valued weights, and have provided an efficient algorithm to do so.

There are at least two directions in which we would like to extend the results presented in this paper: a first one is to consider more general combinatorial optimisation problems such as matroids, as those mostly remain tractable when considering intervals [6]. A second one would be to consider more general uncertainty models, such as possibility distributions [4, belief functions [12] or credal sets 11|3.

References

1. Ionut D. Aron and Pascal Van Hentenryck. On the complexity of the robust spanning tree problem with interval data. Operation Research Letter, 32(1):36-40, 2004.
2. Nawal Benabbou and Patrice Perny. On possibly optimal tradeoffs in multicriteria spanning tree problems. In Algorithmic Decision Theory - 4 th International Conference, ADT 2015, Lexington, KY, USA, September 27-30, 2015, Proceedings, pages 322-337, 2015.
3. Sébastien Destercke and Romain Guillaume. Necessary and possibly optimal items in selecting problems. In Information Processing and Management of Uncertainty in Knowledge-Based Systems: 19th International Conference, IPMU 2022, Milan, Italy, July 11-15, 2022, Proceedings, Part I, pages 494-503. Springer, 2022.
4. Romain Guillaume, Adam Kasperski, and Paweł Zieliński. Distributionally robust possibilistic optimization problems. Fuzzy Sets and Systems, 454:56-73, 2023.
5. Mikita Hradovich, Adam Kasperski, and Pawel Zielinski. The recoverable robust spanning tree problem with interval costs is polynomially solvable. Optimization Letters, 11(1):17-30, 2017.
6. Adam Kasperski. Discrete optimization with interval data. Springer, 2008.
7. Galina L. Kozina and Vitaly A. Perepelitsa. Interval spanning trees problem: solvability and computational complexity. Interval Computations, 1(1):42-50, 1994.
8. Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1):48-50, 1956.
9. Roberto Montemanni and Luca M. Gambardella. A branch and bound algorithm for the robust spanning tree problem with interval data. European Journal of Operational Research, 161(3):771-779, 2005.
10. Petrică C Pop. The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances. European Journal of Operational Research, 283(1):1-15, 2020.
11. Erik Quaeghebeur, Keivan Shariatmadar, and Gert De Cooman. Constrained optimization problems under uncertainty with coherent lower previsions. Fuzzy Sets and Systems, 206:74-88, 2012.
12. Tuan-Anh Vu, Sohaib Afifi, Éric Lefèvre, and Frédéric Pichon. On modelling and solving the shortest path problem with evidential weights. In Belief Functions: Theory and Applications: 7th International Conference, BELIEF 2022, Paris, France, October 26-28, 2022, Proceedings, pages 139-149. Springer, 2022.
13. Hande Yaman, Oya Ekin Karaşan, and Mustafa Ç. Pınar. The robust spanning tree problem with interval data. Operations Research Letters, 29(1):31-40, 2001.

[^0]: ${ }^{1}$ We have provided proofs in the appendix for review purposes, as including them would exceed page limits. Appendices will not be part of the final version.

