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Abstract. Many works within robust combinatorial optimisation con-
sider interval-valued costs or constraints. While most of these works fo-
cus on finding unique solutions such as minimax ones, a few consider
the problem of characterising a set of non-dominated optimal solutions.
This paper is situated within this line of work, and consider the problem
of exactly enumerating the set of non-dominated spanning trees under
interval-valued costs. We show in particular that each tree in this set can
be obtained through a polynomial procedure, and provide an efficient al-
gorithm to achieve the enumeration.

1 Introduction

Combinatorial optimisation problems under interval-valued costs have attracted
some attention in the past (one can check, for instance, the book [6] for a good
reference on the topic). While the greatest majority of works in this setting look
for robust unique solutions to this problem, some of them look at the problem
of enumerating, or at least characterising sets of possible solutions.

In this paper, we are interested in the specific yet practically important case
of minimum spanning trees, the problem or its generalisations being routinely
used in many applications [10].

Given its importance as a basic combinatorial optimisation problem, it is
not a surprise that many authors have considered interval-valued edges in the
minimum spanning tree problem. A number of works have focused on finding a
robust solution to the problem, such as Yaman et al. [13] that provides a mixed
integer programming (MIP) to compute a minimax solution, or [1,9,5,2] that
consider other notions of robust yet unique solution of the problem.

In this paper, our interest is not in providing one unique robust solution,
but rather to consider the set of all non-dominated solutions, and to enumerate
efficiently such solutions. Such a problem may be important if, e.g., one wants to
browse the Pareto front of optimal solutions. Note that we are not the first one
to explore such a problem, as for example [13] investigate the concept of weak
(possible) and strong (necessary) edges, that is, edges that belong to at least
one non-dominated solution and to every non-dominated solution, respectively.
In [7], the authors defined a relation order on the set of feasible solutions and



generated a Pareto set using bi-objective optimisation, yet this relation order
is different from the one we consider here, and will in general not include all
non-dominated solutions.

Our paper is structured as follows1: next section presents some notation and
introduces the problem. In Section 3, we develop some structural preliminary
results. Our main result is described in Section 4: we develop an algorithm that
enumerates every non-dominated spanning tree. Finally, Section 5 is devoted to
the presentation of some numerical experiments.

2 Notations and problem description

We present here the main notations used in the paper for graphs and set up our
problem. The most important notions are illustrated in Figures 1 and 2.

2.1 Graph

Spanning tree. Let G be an undirected graph. We denote V (G) the set of vertices
of G and E(G) the set of edges. A subgraph H of G is a graph such that V (H) ⊆
V (G) and E(H) ⊆ E(G). In the following, we let n and m denote the number of
vertices and edges in a graph, respectively. We denote G−H the subgraph of G
for which we delete every vertex of H in G, that is, V (G−H) = V (G)\V (H) and
E(G−H) = {uv | uv ∈ E(G)∧uv∩V (H) = ∅}. Let X be a set of edges of G, we
denote G−X the subgraph of G obtained by deleting every edge of X in G, that
is V (G−X) = V (G) and E(G−X) = E(G) \X. A path between two vertices u
and v is a sequence of distinct vertices (x = v1, . . . , vk = v) such that there is an
edge between vi and vi+1 for each 1 ≤ i < k. A cycle is a path (v1, . . . , vk) for
which there is also an edge between v1 and vk. A graph is connected if there is a
path between each pair of vertices. A connected component H of G is a maximal
connected subgraph of G, that is there is no vertex v ∈ V (G) \ V (H) such that
there is a path between v and a vertex u ∈ V (H). Notice that G is connected if
and only if G contains exactly one connected component. A tree is a connected
graph without cycle. A spanning tree T of G is tree such that V (T ) = V (G) and
E(T ) ⊆ E(G). We denote ST (G) the set of spanning trees of G.

Cut. A cut P = (V1, V2) of a graph G is a partition of its vertices into two
disjoint subsets V1 and V2, i.e. V (G) = V1 ∪ V2 and V1 ∩ V2 = ∅. To each cut
P = (V1, V2), we associate a set of edgesX = {uv ∈ E(G) | u ∈ V1, v ∈ V2} called
cut-set of P (or simply cut-set if P is not known). Notice that the deletion of X
in G disconnects the graph, that is, G−X contains at least one more connected
component than G. The cut-set X is minimal if there is no X ′ ⊂ X such that
X ′ is also a cut-set. If G is connected, X is minimal if and only if G − V1 and
G−V2 are connected. Let T be a spanning tree of G, notice that E(T )∩X 6= ∅
since otherwise, T would not be connected. Let X be a cut-set and let uv be an
edge of X that does not belong to E(T ). Let p be the path between u and v

1 We have provided proofs in the appendix for review purposes, as including them
would exceed page limits. Appendices will not be part of the final version.
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in T and let e be an edge in X ∩ E(p). Notice that e exists since otherwise X
would not be a cut-set. We say that e is X-blocking for uv in T . Note that it is
possible to construct another spanning tree T ′ by adding uv and removing e in
T , that is E(T ′) = E(T ) ∪ {uv} \ {e}. In the following, we call such operation
swapping uv and e in T . It is possible to define a cut-set with a spanning tree
and an edge as follows.

Definition 1 (Figure 1). Let G be a graph, let T be a spanning tree of G and
let e be an edge of T . Let H1 and H2 be the two connected components of T − e.
We say that the cut-set of the cut (V (H1), V (H2)) is the cut-set induced by T
and e.

Note that a cut-set can be induced by different spanning trees and different
edges, as depicted by Figure 1. Also, a cut-set X is induced by T and e if and
only if E(T ) ∩ X = e. Moreover, a cut-set induced by a spanning tree and an
edge is always minimal.
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Fig. 1. Left. Example of a cut P = (V1 = {v1, . . . , v4}, V2 = {v5, v6}) for a graph G.
The vertices of V1 and V2 are depicted in yellow and red, respectively. The edges that
belong to the cut-set X of P are depicted in blue. Center and Right. The cut-set X
is induced by the spanning tree T1 (resp. T2) and the edge v3v5 (resp. v4v5), depicted in
green. The edge v3v5 is X-blocking for v2v6 and v4v5 in T1. The edge v4v5 is X-blocking
for v2v6 and v3v5 in T2.

2.2 Imprecise weights and problem description

An imprecise weight [ω, ω] is an interval of numbers. An imprecise weighted graph
(G,Ω) is a graph with a function Ω that associates with each edge e an imprecise
weight [ωe, ωe]. A realization R : E(G) 7→ R of Ω is a function that associates
with each edge e a weight w ∈ [ωe, ωe]. We denote RΩ the set of realizations of
Ω.

Let H be a subgraph of G. Given a weight realization R, the weight of H, de-
noted R(H) is the sum of the weights of its edges, that is, R(H) = Σe∈E(H)R(e).
Given two subgraphs H1 and H2, we say that H1 dominates H2, denoted by
H1 � H2 if,

∀R ∈ RΩ , R(H1) < R(H2).
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Given two edges e1 and e2, we say that e1 dominates e2 if ωe1 < ωe2 . In the
following, we are interested in the set of non-dominated spanning trees

T (G,Ω) := {T ∈ ST (G) |6 ∃T ′ ∈ ST (G), T ′ � T}. (1)

In this article, we address the problem of enumerating every spanning tree of
T (G,Ω). We recall that computing a minimum spanning tree T for some re-
alization R (i.e. such that R(T ) is minimum) can be done in polynomial time
using a greedy algorithm. For example, Kruskal’s algorithm computes a mini-
mum spanning tree in O(m log n) [8].

An edge e is possible if there is a tree T ∈ T (G,Ω) such that e ∈ E(T ). An
edge e is necessary if for every tree T ∈ T (G,Ω), we have e ∈ E(T ). Yaman et
al. shown that it is possible to determine if an edge is possible or necessary in
polynomial time [13].

Theorem 1 ([13]). Let (G,Ω) be an imprecise weighted graph and let e ∈ E(G)
be an edge. Let ε > 0 be an infinitely small positive value.

(a) Let Rp ∈ RΩ such that Rp(e) = ωe−ε and ∀e′ ∈ E(G−e), Rp(e′) = ωe′ . Let
T be a minimum spanning tree under Rp, computed with a greedy algorithm.
The edge e is possible if and only if e ∈ E(T ).

(b) Let Rn ∈ RΩ such that Rn(e) = ωe+ε and ∀e′ ∈ E(G−e), Rp(e′) = ωe′ . Let
T be a minimum spanning tree under Rn, computed with a greedy algorithm.
The edge e is necessary if and only if e ∈ E(T ).

In other words, an edge e is possible (resp. necessary) if e belongs to a mini-
mum spanning tree under the best (resp. worst) realization for e. The addition
(resp. subtraction) of ε is needed so that in case of a tie between e and another
edge in the greedy algorithm, e is considered first (resp. last). Notice that Rp
and Rp are not feasible realizations for (G,Ω). However, any minimum spanning
tree under Rp or Rp belongs to T (G,Ω).

2.3 Partial solution

Let G be a graph for which we want to enumerate every non-dominated spanning
trees. A partial solution S is a pair of sets of edges in(S) and out(S) such that
there is a tree T in T (G,Ω) with in(S) ⊆ E(T ) and out(S) ∩ E(T ) = ∅ and
in that case, we say that T is associated to S. We denote TS(G,Ω) the set of
trees of T (G,Ω) associated to S. We denote S∅ the empty partial solution for
which in(S∅) = out(S∅) = ∅. Notice that T (G,Ω) = TS∅(G,Ω). An example
of partial solution is depicted in Figure 2.

Let S be a partial solution. We extend the notion of possible and necessary
edges for partial solutions as follows. An edge e 6∈ in(S)∪out(S) is possible with
respect to S if there is a tree T ∈ TS(G,Ω) such that e ∈ E(T ). Similary, e is
necessary with respect to S if for all T ∈ TS(G,Ω), we have e ∈ E(T ). Notice
that an edge e is possible (resp. necessary) if and only if e is possible (resp.
necessary) with respect to S∅.
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An important remark is that we cannot reuse Theorem 1 to determine if an
edge is necessary with respect to some partial solution S. For example, consider
the partial solution S2 given by Figure 2: the edge v2v5 is necessary with respect
to S2. However, if we consider the realization Rn for which R(v2v5) = 6 + ε
and R(e) = ωe for any other edge, then the greedy algorithm returns T =
G − {v1v4, v2v5} as a minimum spanning tree of G − out(S2) which does not
belong to TS2

(G,Ω). However, it is possible to reuse the same idea than in
Theorem 1 to determine if an edge is possible with respect to a partial solution,
as we do in this article.
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Fig. 2. Left: An imprecise weighted graph (G,Ω). Center: The pair of edges sets
in(S1) and out(S1), depicted in blue and red respectively, is not a partial solution. The
tree spanning tree T = G− out(S1) is the only spanning tree such that in(S1) ⊆ E(T )
and E(T ) ∩ out(S1) = ∅. We can observe that T is dominated by G − {v2v5, v3v6}.
Right: Example of a partial solution S2 with edges of in(S2) depicted in blue and
edges of out(S2) depicted in red. There are two associated trees T1 = G− {v1v4, v2v3}
and T2 = G − {v1v4, v3v6} in TS2(G,Ω). The edges v2v5 and v4v5 are necessary with
respect to S2 and the edges v2v3 and v3v6 are possible with respect to S2.

3 Preliminary results

In this section, we present some structural results on partial solutions and cut-
set. We first introduce the key concept of core of a cut-set.

Definition 2. Let (G,Ω) be an imprecise weighted graph and let X be a cut-set
in G. An edge e ∈ X belongs to the core of X if there is no edge e′ ∈ X such
that e′ dominates e. We denote CX the core of X. Formally,

CX = {e ∈ X |6 ∃e′ ∈ X,ωe′ < we}.

Let X be a cut-set, we denote eX an edge such that eX = arg min{we | e ∈
X}. Notice that eX dominates every edge e in X \ CX .

We now introduce several structural properties regarding the cores of cut-sets
and the non-dominated spanning trees. First, we show that every non-dominated
spanning tree intersects the core of each cut-set.

Lemma 1. Let X be a minimal cut-set. For all tree T ∈ T (G,Ω), we have
CX ∩ E(T ) 6= ∅.
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Proof. Toward a contradiction, suppose there is a tree T ∈ T (G,Ω) such that
CX ∩ E(T ) = ∅ and consider the edge eX . Let e be an edge that is X-blocking
for eX in T . By hypothesis, e 6∈ CX and so, e is dominated by eX . Thus, the tree
obtained by swapping eX and e in T dominates T contradicting T belonging to
T (G,Ω).

Corollary 1. Let X be the cut-set induced by a non-dominated spanning tree T
and an edge e ∈ E(T ). We have e ∈ CX .

Proof. By definition of a cut-set X induced from T and e, we have E(T )∩X =
{e}. By Lemma 1, E(T ) ∩ CX 6= ∅ which implies e ∈ CX .

We now show that it is possible to construct a non-dominated spanning tree
from another by swapping two edges that belong to the same core. This allows
one, among other things, to simply build a new solution in T (G,Ω) from an
existing, fully specified one.

Lemma 2. Let T1 be a tree of T (G,Ω) and let e2 6∈ E(T1) be an edge that
belongs to some core CX of a cut-set. Let e1 be a X-blocking edge for e2 in T1.
The spanning tree T2 obtained by swapping e2 and e1 in T1 belongs to T (G,Ω).

Proof. Toward a contradiction, suppose there is a tree T3 ∈ T (G,Ω) that dom-
inates T2. Let e3 be an edge of X ∩ E(T3) such that e3 = e1 if e1 ∈ E(T3) or,
e3 is an edge such that e1 is X-blocking for e3 in T1 otherwise. The edge e1
does not dominate e3 since otherwise, the tree obtained by swapping e3 and e1
in T3 dominates T3, contradicting that T3 belongs to T (G,Ω). Hence, e1 does
not dominate e3. Further, since e2 ∈ CX , e3 does not dominate e2. So, T3 − e3
dominates T2 − e2 = T1 − e1. But then, since e1 does not dominate e3, then
T3 dominates T1, contradicting that T1 belongs to T (G,Ω). Hence, T2 is not
dominated and belongs to T (G,Ω).

Previous lemmas can be used to show some properties on possible/necessary
edges with respect to a partial solution. Those properties will be essential in
building our enumerating algorithms, as they allow to iteratively complete a
current partial solution by adding possible edges to it.

Lemma 3. Let S be a partial solution and let e 6∈ in(S) ∪ out(S) be an edge.
(a) e is necessary with respect to S if and only if there is a minimal cut-set X

such that CX \ out(S) = {e}.
(b) e is possible with respect to S if and only if there is a minimal cut-set X

such that e ∈ CX and X ∩ in(S) = ∅.

Proof. (a) Let X be a minimal cut-set such that CX\out(S) = {e}. Then for any
tree T ∈ TS(G,Ω), we have e ∈ E(T ) since otherwise it contradicts Lemma 1.
Thus, e is necessary with respect to S. We now show the reciprocity. Let
e1 not ∈ in(S) ∪ out(S) be an edge that is necessary with respect to S and
let assume by contradiction there is no cut-set X such that e1 ∈ CX \out(S).
Let T1 be a tree of TS(G,Ω) and let X be the cut-set induced by T1 and e1.
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By hypothesis, there is an edge e2 6= e1 in CX . Let T2 be a tree such that
E(T2) = (E(T1) \ {e1}) ∪ {e2}. By Lemma 2, T2 belongs to TS(G,Ω) and
since T2 does not contain e1, we obtain a contradiction.

(b) Let X be a cut-set such that X ∩ in(S) = ∅ and let e ∈ CX . Let T be a tree
of TS(G,Ω). If e ∈ E(T ), then e is possible with respect to S. If e 6∈ E(T ),
then let T ′ be a tree obtained by swapping e and a X-blocking edge for e in
T . By Lemma 2, T ′ belongs to T (G,Ω), and thus e is possible with respect
to S. We now show the reciprocity. Let e 6∈ in(S) ∪ out(S) be an edge that
is possible with respect to S and let T be a tree in TS(G,Ω). Let X be
the cut-set induced by T and e. By Corollary 1, e ∈ CX . Moreover, since
X ∩ E(T ) = {e} and e 6∈ in(S), we have in(S) ∩ X = ∅. Hence, there is
cut-set X such that e ∈ CX and X ∩ in(S) 6= ∅.

4 Enumerating algorithm

Having stated our formal results, we are now ready to provide our enumerating
algorithms relying on them.

4.1 Possible and necessary edges of partial solutions

In this section, we use Lemma 3 to develop two algorithms that determine if an
edge e is possible/necessary with respect to a given partial solution. Informally,
the principle of the algorithms is to observe if e closes a cycle in some specific
subgraphs (see Figure 3).
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Fig. 3. Subgraphs considered by Algorithms 1 and 2 when the graph (G,Ω) and partial
solution S2 of Figure 2 is given. The edges of the subgraphs are depicted in black and
the edge on which the algorithm is called is depicted in blue. (a) v3v6 is possible with
respect to S2, since v3 and v6 are in two different connected components in G′. (b) v2v5
is necessary with respect to S2 since v2v5 and v1v4 lie between the two same connected
components {v1, v2} and {v4, v5, v6}. (c) and (d) v3v6 is not necessary with respect to
S2 since v3 and v6 belong to the same connected component in Gv1v4 and in Gv3v6 .
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Algorithm 1: is possible

Data: An imprecise weighted graph (G,Ω), a partial solution S and an edge
uv.

Result: true if uv is possible with respect to S, false otherwise.
1 Let G′ such that E(G′) = {e ∈ E(G) | e dominates uv} ∪ in(S);
2 Let H1 be the connected component of G′ containing u;
3 Let H2 be the connected component of G′ containing v;
4 return H1 6= H2;

Lemma 4. Algorithm 1 is correct. Hence, we can determine if an edge is possible
with respect to a partial solution in O(m+ n).

Proof. We show that Algorithm 1 returns true if and only if uv is possible with
respect to S. First, suppose that the algorithm returns true, that is H1 and
H2 are two different connected components in G′. Let X be the cut-set between
V (H1) and V (G−H1) in G. Since G′ contains more than one connected compo-
nent, V (H1) 6= V (G) and so, X is not empty. No edge e ∈ X dominates uv since
otherwise, e would belong to G′ and H1, contradicting the maximality of H1.
Hence, X contains a minimal cut-set X ′ such that uv ∈ CX′ and in(S) ∩X ′ = ∅.
By Lemma 3(b), uv is possible with respect to S.

Now suppose that uv is possible with respect to S. By Lemma 3(b), there
is a cut-set X such that uv ∈ CX and in(S) ∩ X = ∅. That is, no edge of X
dominates uv. Hence, by construction of G′, no edge of X belongs to G′ which
implies that u and v belong to two different connected components in G′. Thus,
the algorithm returns true.

Concerning the running complexity of the algorithm: G′ is constructed in
O(m) and determining the connected components of a graph can be done in
O(m+ n), so we obtain a complexity in O(m+ n).

Notice that, since there is no need to sort the edges by increasing order of
weight, Algorithm 1 has a better time complexity than the one developed by
Yaman et al. [13] to determine if an edge is possible (i.e. if we run Algorithm 1
with S := S∅).

Lemma 5. Algorithm 2 is correct. Hence, we can determine if an edge is nec-
essary with respect to a partial solution S in O((|out(S)|+ 1) · (n+m)).

Proof. We show that Algorithm 2 returns true if and only if uv is necessary
with respect to S. First, suppose that the algorithm returns true. That is, there
is an edge xy ∈ out(S) ∪ {uv} that does not dominate uv and such that:

– Hxy
1 and Hxy

2 are two different connected components in Gxy, and
– x ∈ V (Hxy

1 ) and y ∈ V (Hxy
2 ), or x ∈ V (Hxy

2 ) and y ∈ V (Hxy
1 ).

Suppose by symmetry that x ∈ V (Hxy
1 ) and y ∈ V (Hxy

2 ). Let X be the cut-set
between V (Hxy

1 ) and V (G−Hxy
1 ). Since Gxy contains more than one connected
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Algorithm 2: is necessary

Data: An imprecise weighted graph (G,Ω), a partial solution S and an edge
uv.

Result: true if uv is necessary with respect to S, false otherwise.
1 forall xy ∈ out(S) ∪ {uv} such that xy does not dominate uv do
2 Let Gxy such that

E(Gxy) = {e ∈ E(G) | xy does not dominate e} \ out(S);
3 Let Hxy

1 be the connected component of Gxy − uv containing u ;
4 Let Hxy

2 be the connected component of Gxy − uv containing v ;
5 if Hxy

1 6= Hxy
2 then

6 if x ∈ V (Hxy
1 ) and y ∈ V (Hxy

2 ) then
7 return true;
8 if x ∈ V (Hxy

2 ) and y ∈ V (Hxy
1 ) then

9 return true;

10 return false;

component, V (Hxy
1 ) 6= V (G) and so, X is not empty. Moreover, since x ∈

V (Hxy
1 ) and y 6∈ V (Hxy

1 ), xy belongs to X. By construction of Gxy, any edge
e ∈ X\(out(S)∪{uv}) is dominated by xy, since otherwise, e would belong toGxy

and H1, contradicting the maximality of H1. So, since xy ∈ X, e does not belong
to CX . Hence, X contains a minimal cut-set X ′ such that {uv} = CX′ \ out(S).
So, by Lemma 3(a), uv is necessary with respect to S.

Now suppose that uv is necessary with respect to S. By Lemma 3(a), there
is a minimal set-cut X such that {uv} = CX \ out(S). If X ∩ out(S) = ∅ or
uv = eX , then Algorithm 2 returns true when xy = uv in the forall loop.
Otherwise, there is an edge eX 6= uv that belongs to X ∩ out(S). Consider the
step of the forall loop for which xy is equal to eX . Toward a contradiction,
suppose xy does not link Hxy

1 and Hxy
2 in Gxy. Hence, either x or y belongs to

a connected component H3 in Gxy, different from Hxy
1 and Hxy

2 in Gxy − uv.
Let X ′ be the cut-set between V (H3) and V (G−H3) in G. By construction of
Gxy, every edge e ∈ X ′ \ out(S) is dominated by xy, since otherwise e would
belong to Gxy and H3, contradicting the maximality of H3. That is, e 6∈ CX′ .
Thus, CX′ \ out(S) = ∅. It follows that it is not possible to construct a tree
T associated to S that respects the property of Lemma 1. Hence, S is not a
partial solution which is a contradiction. So, xy links Hxy

1 and Hxy
2 in Gxy−uv.

Further, every edge in X \ CX is dominated by xy and thus, does not belong
to Gxy. It follows that X ∩ E(Gxy) = {uv} and thus, Hxy

1 6= Hxy
2 . Hence, the

algorithm returns true.

Finally, concerning the time complexity of the algorithm: for each edge xy
in the forall loop, Gxy is constructed in O(m) and determining the connected
components of a graph can be done in O(m+n). Since this process is repeated is
at most |out(S)|+ 1 times, we obtain a complexity of O((|out(S)|+ 1) · (m+n)).
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Notice that, once again, since there is no need to sort the edges by increasing
order of weight, Algorithm 2 has a better time complexity than the one developed
by Yaman et al. [13] to determine if an edge is necessary. Indeed, if we run
Algorithm 2 with S := S∅, then the time complexity is O(m+ n).

4.2 The enumerating algorithm

Now that we developed two polynomial-time algorithms to determine if an edge is
possible/necessary with respect to some partial solution, we can enumerate every
spanning trees of T (G,Ω) with an exhaustive search as depicted by Algorithm 3.
Note that, for some partial solution S, an addition of an edge in out(S) or in
in(S) does not change the set of possible or necessary edges with respect to S
since it does not change TS(G,Ω).

Corollary 2 (Lemma 4 and Lemma 5). Algorithm 3 is correct. Hence,
T (G,Ω) can be enumerated in O(t(m3n+m2n2)), where t = |T (G,Ω)|.

Proof. We show that the time complexity is correct. At each call of enumeration,
the two functions is possible and is necessary are called on each edge in E(G)\
(out(S)∪ in(S)). So, each call, without taking in account the recursive call, has
a complexity of O(m(|out(S)|(m + n))) = O(m3 + m2n). Since the number of
edges in a spanning tree is n − 1, we need n − 1 recursive calls to display one
non-dominated spanning tree, that is, a complexity of O(m3n+m2n2). Finally,
since there are t spanning trees to enumerate, we obtain a time complexity of
O(t(m3n+m2n2)).

Algorithm 3: enumeration

Data: An imprecise weighted graph (G,Ω) and a partial solution S (S = S∅
by default).

Result: Enumeration of T (G,Ω)
1 forall e ∈ E(G) do
2 if is necessary((G,Ω), e, S) then
3 in(S)← in(S) ∪ {e};
4 forall e ∈ E(G) do
5 if not is possible((G,Ω), e, S) then
6 out(S)← out(S) ∪ {e};
7 if in(S) is a tree then
8 Display in(S);
9 else

10 Let e ∈ E(G) \ (in(S) ∪ out(S));
11 S′ ← S;
12 in(S′)← in(S′) ∪ {e};
13 enumeration((G,Ω),S′);
14 S′ ← S;
15 out(S′)← out(S′) ∪ {e};
16 enumeration((G,Ω),S′);
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5 Numerical Experiments

In this section, we present some tests on random generated instances. The source
code and the instances are available at https://gitlab.utc.fr/davottom/

enum-imst. We compare Algorithm 3 with the two following methods.
– Outer approximation. This method first compute a subgraph G′ con-

stituted by the possible and necessary edges in the initial graph. Then, it
enumerates every spanning trees of G′ that contains all necessary edges. Let
t′ be the number of (not necessarily non-dominated) spanning trees of G′.
The complexity of the outer approximation is O(|ST (G)|). Note that the
size of ST (G) is not bounded by some polynomial function in the size of
T (G,Ω).

– Reduce. This method uses same algorithm than the outer approximation
plus check for each spanning tree T of G′ if T is non-dominated. To check
if a tree T is non-dominated, we use the same idea as the one described in
Theorem 1: we compute a minimum spanning tree in the realization R where
R(e) = ωe− ε if e ∈ E(T ) and, R(e) = ωe, otherwise. The complexity of the
reduce algorithm is O(|ST (G)| ·m log n).

In the following, we refer to Algorithm 3 as the exact method.

5.1 Instances

We generated imprecise weighted graphs with 10 vertices by varying the den-
sity of the graph and the weight function. We chose to generate the instances
according three graph densities and three scenarios for the weight function. The
three possible densities sparse, middle, dense for which the graph contains 15, 25
and 35 edges, respectively. The graph is generated using the random generator
of the library boost in C++. If the graph is not connected, we add a random
edge between two connected components until the graph is connected. For the
generation of weight functions, given a scenario i for each edge e, we pick two
random numbers ` ∈ [1, 10] s ∈ [ai, bi], where ai and bi depend on the selected
scenario. Then, we set Ω(e) = [`, ` + s]. For scenario 1, we have ai = 1 and
bi = 10, for scenario 2, we have ai = 7 and bi = 9 and, for scenario 3, we have
ai = 2 and bi = 3. Note that scenario 1 generates intervals with quite varying
sizes, while scenario 2 generates intervals that will very often overlap. For each
scenario and each density, we generate 10 instances.

5.2 Results

The tests were run on a personal laptop with 16Go of RAM and with an Intel
Core 7 processor 2.5Ghz. The results are depicted in Tables 1 and 2. Not surpris-
ingly, the outer approximation is the fastest method. Although the theoretical
time complexity of the exact method is better than the reduce method, the latter
is faster on the generated dataset (except in Scenario 3). In particular, the worst
case for the exact method occurs in the set of dense graphs with the scenario 2
where the maximum computation time for the exact method takes more than 1
minute whereas the reduce method uses only 18 seconds. Regarding the statis-
tics on the number of trees enumerated, the denser the graph, the bigger the
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cardinality of the enumerated sets for both methods. Samewise, the larger the
intervals (i.e. in scenario 1), the bigger the cardinality of the enumerated sets.
We can also observe than when the graph is not dense, the outer approximation
seems reasonably close to the exact method.

Table 1. Time statistics. A set contains every graphs generated with the same density
and scenario. For each set and each method, average, minimum and maximum times
are depicted.

Set Exact Approx Reduce
density scenario Avg Min Max Avg Min Max Avg Min Max
dense 1 173ms 93ms 22s 120ms 82ms 8s 160ms 109ms 11s
middle 1 40ms 7ms 401ms 23ms 4ms 411ms 31ms 5ms 530ms
sparse 1 <1ms <1ms 2ms <1ms <1ms <1ms <1ms <1ms 2ms
dense 2 6s 13s 1m1s 1s 10s 14s 2s 13s 18s
middle 2 89ms 211ms 1s 35ms 181ms 400ms 45ms 229ms 510ms
sparse 2 <1ms <1ms 2ms <1ms <1ms 1ms <1ms <1ms 1ms
dense 3 3ms 1ms 69ms 39ms <1ms 386ms 48ms <1ms 483ms
middle 3 <1ms <1ms 9ms <1ms <1ms 29ms <1ms <1ms 36ms
sparse 3 <1ms <1ms <1ms <1ms <1ms <1ms <1ms <1ms <1ms

Table 2. Result statistics on the number of enumerated trees. A set contains every
graph generated with the same density and scenario. Exact and Approx: number of
enumerated trees for the corresponding method. The Diff column is the difference of
cardinality between the exact method and the outer approximation.

Set Exact Approx Diff
dens. scen. Avg Min Max Avg Min Max Avg Min Max

dense 1 708,107 12,984 3.3M 1.3M 53,956 5M 656,372 18,576 1.9M
middle 1 23,548 1,476 84,936 56,837 3,012 29,6340 33,289 872 216,852
sparse 1 201 29 445 287 29 763 86 0 18
dense 2 5M 1.6M 8.2M 7.7M 6.3M 8.6M 2.7M 241,424 5,5M
middle 2 151,517 36,426 227,902 231,516 135,185 296,340 80,000 0 157,855
sparse 2 581 264 944 682 354 944 100 0 224
dense 3 4,533 222 9,857 41,279 304 261,134 36,746 82 257,214
middle 3 464 24 2,445 3,024 48 23,135 2,560 22 20,690
sparse 3 46 8 175 82 11 286 36 2 111

6 Conclusions

In this paper, we have considered the problem of enumerating non-dominated
spanning trees in the case of interval-valued weights, and have provided an effi-
cient algorithm to do so.
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There are at least two directions in which we would like to extend the results
presented in this paper: a first one is to consider more general combinatorial
optimisation problems such as matroids, as those mostly remain tractable when
considering intervals [6]. A second one would be to consider more general uncer-
tainty models, such as possibility distributions [4], belief functions [12] or credal
sets [11,3].
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