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Abstract. In our modern societies, a certain number of people do not
own a car, by choice or by obligation. For some trips, there is no or few
alternatives to the car. One way to make these trips possible for these
people is to be transported by others who have already planned their
trips. We propose to model this problem using as path-finding problem
in a list edge-colored graph. This problem is a generalization of the s− t-
path problem, studied by Böhmová et al. We consider two optimization
functions: minimizing the number of color changes and minimizing the
number of colors. We study for the previous problems, the classic com-
plexity (polynomial-case, NP-completeness, hardness of approximation)
and parameter complexity (W[2]-hardness) even in restricted cases. We
also propose a lower bound for exact algorithm. On the positive side
we provide a polynomial-time approximation algorithm and a FPT al-
gorithm.

Keywords: Complexity · Approximation · List edge coloring

1 Introduction

Shared mobility received a lot of attention in the last decades, both from indus-
try and academics. The motivation behind this is ecological awareness, savings
and social benefits. The rise of this kind of transportation is traduced by the
apparition of mobility platforms and the emergence of scientific studies focusing
on the different various relative questions. In particular, researchers in the field
of operational research have been interested in studying various optimization
problems resulting from shared mobility systems. In these systems, we seek to
match people having similar itineraries on the same dates. A survey on ride-
sharing systems can be found in [11]. The authors present a classification of
different existing ride-sharing systems and identify some challenges. In [20], the
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authors present dynamic ride-sharing systems. The authors show the need of
optimization technologies for the success of this type of ride-sharing systems.

Different types of mobilities sharing systems exist. Carpooling is proposed
by large companies to encourage their employees to share itineraries to and from
work, in order to reduce the use of private cars. In dial-a-ride problems (DARP)
[6, 7, 13], schedules and vehicles routes are designed based on user requests. In
Vanpool problem [13], passengers drive to a park-and-ride location then they
share their trips with a van to the target location. An exhaustive survey on
optimization for shared mobility can be found in [19].

In this paper, we consider a problem where one person aims to travel from
a place to another and can not make the trip by their own means. This can be
due to several reasons: disability, absence of driving license, personal choice... In
order to make the trip possible, we can use the help of drivers that have already
planned their travel and offer to transport another person. We aim to match one
or more driver that can share its/their trip. We model this problem as an s− t-
path problem on list edge-colored digraph. We consider two objective functions.
The first objective function is a color minimization which is a common objective
for optimization problems on colored graphs. The second function, rather less
classical, is to minimize the number of color changes along the path.

Results and related works Similar problems have been studied in the literature.
In [2], the authors showed that the Minimum Label Path/Cycle Problem in undi-
rected graph is NP-hard. The authors also provide some exact exponential-time
and approximation algorithms to solve the problem. Another approximation al-
gorithm and approximation hardness results have been presented in [12]. Some
parameterized intractability results for minimum label path and other differ-
ent minimum labeling problems have been presented in [9]. Other optimization
problems on edge-labeled graphs have been considered in the literature. The
minimum labeling spanning tree is widely studied [4, 5, 16]. The objective is
to find a spanning tree such that the number of labels is the smallest possi-
ble. Another variant of the problem is considered in [22]. The problem is called
Label-Constrained Minimum Spanning Tree Problem and the objective is to find
the minimum weight spanning tree using at most k labels.

The number of problems in the literature using an edge-coloring or a list edge-
coloring is large. We can cite the classic proper edge-coloring as example [3]. A
close related problem has been proposed by Broersma et al. [2]: the aim is to find
a path/cycle in a colored graph with a minimum number of colors. This problem
is NP-hard even in bipartite planar. The authors also propose several exact and
approximation algorithms. Finally, the complexity of the exact algorithms and
the performance ratio of the approximation algorithms are also analyzed.

Our problem is equivalent to finding a path from s to t, using at most k
colors, in an oriented graph G with a list of allowed colors for each arc. Each
color represents a driver. It is a generalization of the st-Path problem studied
by Böhmová et al.[1]. Whereas in the version studied by Böhmová et al. each
subgraph induced by a color must be a path (representing a subway line), we have
chosen not to put any restriction on these subgraphs in the problem formulation.



This enables us to model the route options that drivers could propose. However,
in most of our results this restriction still holds.

Always in [1], some complexity results related to a subway network are pre-
sented: they propose an efficient algorithm for finding a st-route according to
the number of line changes plus one. A non-approximation result, for the min-
imization of the used lines is proposed. Lastly, a polynomial-time algorithm is
developed for the problem of enumerating all st-paths with a bounded length.

In the following we extend the complexity results of Böhmová et al. [1] by
considering severals topologies or restricted cases.

Organization of the article. The next section is dedicated to notation and to the
presentation of the two problems studied in this article. In Section 3, we present
some restricted polynomial cases. Section 4 is devoted to the computational
complexity according to the topology of the input graph (bipartite, planar, . . .),
the length of colored-path and the number of colors associated to each arc. In
Section 5 we propose two negative results concerning the approximation and
the parametrization. We develop a polynomial-time approximation algorithm in
Section 6 and in Section 7, we show lower bounds for Exact algorithms. Finally,
in Section 8, we present an FPT algorithm running in time O(

(
k
C

)
· n) with

parameter the total number of colors in the graph, where k is the number of
colors in the path, C is the number of colors in the graph and n is the number
of vertices.

2 Problems description

2.1 Notation

Let P(N) be the powerset of naturals. In this article, we consider a specific
oriented graph called list arc-colored graph. A list arc-colored graphG = (V,A, χ)
is a graph with a set of vertices V , a set of arcs A and a function χ : A 7→
P(N) \ {∅} that associates a (sub-)set of colors to each arc. We denote by n and
m the numbers of vertices and arcs of G, respectively. A path P = (e1, . . . , ek)
is a sequence of arcs such that there is a sequence of vertices (v1, . . . , vk+1) such
that for each i ≤ k, ei is an output arc of vi and an input arc of vi+1. For each
color i, we denote Gi = (Vi, Ai) the subgraph induced by the arcs colored with
color i. Formally, Ai = {e | i ∈ χ(e)} and Vi = {v | ∃uv ∈ Ai∨∃vu ∈ Ai}. Notice
that the two extremities of an arc colored with color i belong to Vi. Let G̃i be
the transitive closure of Gi (i.e. the arc uv belongs to G̃i if and only if there is
a path from u to v in Gi) and we denote G̃ = ∪iG̃i.

In the problems studied in this paper, given a list arc-colored graph G, the
aim is to construct a colored path π = (P, λ) where P is an oriented path of G
and λ : P 7→ N is an arc-coloring function. For each arc e of P , we attribute
a unique color among χ(e), that is, λ(e) ∈ χ(e). The number of colors of π is
denoted λ#(π) = |{λ(e) | e ∈ P}|. The number of color changes, denoted λc(π) is
the number of pairs of consecutive arcs of π that have different colors. Formally,
let P = (e1, . . . , ek) be a path, we have λc(π) = |{(ei, ei+1) | λ(ei) 6= λ(ei+1)}|.



Problem Topology Complexity

k-colored path

Gi is a bounded-length path NP-C Theorem 3
Planar NP-C Theorem 5

Bipartite NP-C Theorem 4
Planar and bipartite NP-C Theorem 7

General LOG-APX-Hard See [1]
Path LOG-APX-Hard Corollary 3

Gi is strongly connected P Theorem 2
Gi is a path of length two P Lemma 2

k-color change path General P Theorem 1
Table 1. Overview of complexity results

Finally, we denote by π[i] the subgraph of π induced by the arcs with color i.
For simplicity, we sometimes denote π[i] as the subgraph induced by the color i.

2.2 Objective functions

In this article, we consider two objective functions consisting of minimizing the
number of colors or the number of color changes of a colored path. Hence, we
define the two following problems.

k-colored path (k-CP)
Input: A list arc-colored oriented graph G = (V,A, χ), two given ver-

tices s and t and a positive integer k.
Question: Is there a colored path π between s and t in G such that

λ#(π) ≤ k?

k-color change path (k-CCP)
Input: A list arc-colored oriented graph G = (V,A, χ), two given ver-

tices s and t and a positive integer k.
Question: Is there a colored path π between s and t such that λc(π) ≤

k?

We study the complexity of these problems according to some graph topolo-
gies. An overview of the result is available in Table 1.

3 Polynomial cases

We present in this section some polynomial time algorithms for some specific
cases related to the connectivity of colored subgraphs Gi,∀i. For this, we show
that the research for a shortest path in the modified graph G̃ guarantees obtain-
ing an optimal solution.

Theorem 1. k-color change path admits a polynomial-time algorithm in
O(n3) time.



Algorithm 1 Polynomial-time Algorithm for k-color change path and k-
colored path
Require: A list arc-colored graph G = (V,A, χ), two vertices s and t.
Let Gi = (Vi, Ai) be the subgraph induced by the arcs colored with color i.
Let G̃i be the transitive closure of Gi.
Let G̃ = ∪iGi be the input graph.
Apply Dijkstra algorithm on the graph G̃ with s and t.

Proof. Let G be a list arc-colored oriented graph. First, note that G̃ can be
constructed in O(n3). We show that G contains a colored path π between s and
t with λc(π) = k if and only if there is an oriented path p of length at most k+1
between s and t in G̃.

– Let π be a colored path between s and t in G. For each monochromatic sub-
path (u, . . . , v) of π, introduce the arc uv in p (uv exists in G̃ by definition).
Since λc(π) = k, it exists (k + 1) monochromatic subpaths in π. Thus, we
construct a oriented path of length k + 1 in G̃.

– Let p be an oriented path of length k+1 between s and t in G̃. For each arc uv
of p, it exists a monochromatic path p′ between u and v in G, by construction
of G̃. We add p′ in π. Therefore, we obtain a colored path π between s and
t in G that is constituted by at most k + 1 maximal monochromatic paths.
Hence, we obtain a path π with λc(π) = k.

Thus, we can construct an optimal colored path in G by computing a shortest
path in G̃ and then apply the transformation described above. Since, a short-
est path can be computed in O(n2) using Dijkstra’s algorithm [10], the overall
complexity is O(n3).

We propose to extend the previous result to k-colored path in some re-
stricted case. So, we introduce the following lemma.

Lemma 1. Let G be a list arc-colored oriented graph. k-colored path can be
solved in time O(n3) if it exists an optimal colored path π such that for each
color i, π[i] is connected.

Proof. Let G be a list arc-colored oriented graph. Using the same argument
as in the proof of Theorem 1, we can show that G contains a colored path π
respecting lemma’s property with λ#(π) = k between s and t if and only if there
is a path p of length at most k between s and t in G̃. Hence, we can derive an
optimal colored path in G by computing a shortest path in G̃ and by applying
the transformation described in the proof of Theorem 1.

Theorem 2. k-colored path admits an O(n3) time algorithm if for each color
i of χ, Gi is strongly connected.

Proof. Let G be a list arc-colored oriented graph such that each subgraph Gi is
strongly connected and let π be a colored path between s and t. If there is a color



i such that π[i] contains two non-connected subpaths (u, . . . , v) and (u′, . . . , v′),
then since Gi is strongly connected, we can replace the subpath (u, . . . , v′) in
π by a path in Gi from u to v′ without increasing λ#(π). By doing that, we
ensure that for each color i, π[i] is connected. Thus, by Lemma 1, we conclude
that k-colored path can be solved in O(n3)-time in G.

Corollary 1. k-color change path in a non-oriented graph G admits a
polynomial-time algorithm if ∀i, Gi is connected.

Hereafter, we propose a polynomial-time algorithm for the case of each sub-
graph Gi induced by a color i is a path of length at most two.

Lemma 2. k-colored path can be solved in O(n3)-time in graphs for which
each color induces a path of length at most two.

Proof. Let π be an optimal colored path. Suppose that there is a color i such
that π[i] is not connected. Let (v1, v2, v3) be the path constituting Gi. Since both
arcs v1v2 and v2v3 appears in π, then π is not an elementary path, contradicting
its optimality. Hence, for each color i, π[i] is connected and by Lemma 1, k-
colored path can be solved in O(n3) in G.

4 Computational hardness

In this section, we consider k-color change path problem in which each graph
induced by a color is a path. We show that in that case, k-color change path
is NP-complete. We then show that it remains NP-complete even if the graph
is bipartite or planar.

4.1 Each color induces a path of bounded length

We now show that k-colored path is NP-complete. We use a similar idea
as the proof proposed for the NP-completeness of the problem of minimizing
the number of used colored in an edge-colored graph [2]. We reduce from the
following classical NP-complete problem.

3-SAT
Input: A Boolean formula ϕ where each clause contains exactly three

literals
Question: Is ϕ satisfiable?

Construction 1 Let ϕ be an instance of 3-SAT with m′ clauses C0, . . . , Cm′−1
and n′ variables x0, . . . , xn′−1. For each variable xi, let ψi (resp. ψi) be the list
of clauses where xi appears positively (resp. negatively). We construct a list arc-
colored graph G = (V,A, χ) as follows:

– create a vertex Qm,
– for each variable xi, create a vertex vi,



– for each clause Cj create a vertex Qj and create a vertex qij, for each literal
`i of Cj,

– for each variable xi and for each clause Cj in which xi appears, introduce an
oriented path (Qj , q

i
j , vi, vi+1) (or (Qj , q

i
j , vn−1, Q0) if i = n − 1) with color

cij,
– for each variable xi and for each pair of clauses (Cj , Ck) in ψi (resp. ψi)

such that j < k, introduce an oriented path (Qk, q
i
k, q

i
j , Cj+1) with color tij,k,

and
– finally, for each variable xi, let Cj be the last clause of ψi (resp. ψi), introduce

the arc (qij , Qj+1) with color zi (resp. z̄i).

Notice that the graph induced by each color is a path of length exactly one or
three.

Theorem 3. k-color change path remains NP-complete even if each color
induces a path of length at most three.

Proof. Let ϕ be 3-SAT formula and G the graph obtained by Construction 1.
Clearly, k-color change path is in NP. We show that ϕ is satisfiable if and
only if it exists a colored path between v0 and Qm with λ#(π) = n+m.

– Suppose that ϕ is satisfiable and consider φ a satisfying assignment for ϕ.
Let fφ : {C0, . . . , Cm−1} 7→ {x0, . . . , xn−1} be a function that assigns to each
clause Cj a unique variable xi such that the assignment of xi satisfies Cj .
We suppose that f−1φ (xi) is an ordered list sorted in ascending order of the
indices. We construct π as follows. For each variable xi and for each clause
Cj ∈ f−1φ (xi):
• If Cj is the first clause of f−1φ (xi), add in π the outgoing arc of xi with

color cij and the arc (Cj , q
i
j) with color cij . Otherwise, let Ck be the clause

that precedes Cj in f−1φ (xi), add in π the two arcs (qik, Ck+1) and (Cj , q
i
j)

with color tkj .
• If Cj is the last clause of f−1φ (xi), add in π the arc (qij , Cj+1) with color
zj .

Since each clause Cj belongs to a list f−1φ , we construct a path between x0
and Cm using n+m colors.

– Let π be a path between x0 and Cm using n+m colors. Consider the function
gπ : {x0, ..., xn−1} 7→ P({C0, . . . , Cm−1}) defined by gπ(xi) = {Cj | qij ∈ π}.
First, by construction for each vertex xi ∈ π, we have xi+1 ∈ π (or C0

if i = n − 1). Thus, π contains the subpath Pliterals = (x0, . . . , xn−1, C0)
and uses clearly n colors in it. Moreover, always by construction, for each
vertex Cj ∈ π, the only way to reach a vertex Ck, with k > j from Cj
is to take a path (Cj , q

i
j , Cj+1). Thus, by extension, π contains a subpath

Pclauses = (C0, q
i
0, C1, q

i′

1 , . . . , Cm) and so, each clause is contained in a set
gπ(xi). Clearly, π uses a new color for each arc (qij , Cj+1).
Hence, since π can not use more than m colors in Pclauses, each arc aj =
(Cj , q

i
j) is colored with a color already used in the subpath (x0, . . . , Cj).



Hence, if λ(aj) = tkj , then (qik, Ck+1) ∈ π and therefore, by construction, we
have {Ck, Cj} ⊆ ψi or {Ck, Cj} ⊆ ψi. If λ(aj) = cij , then the arc (xi, xi+1)

is colored with cij in π. Since only one outgoing arc of xi appears in π, by
induction, we have gπ(xi) ⊆ ψi or gπ(xi) ⊆ ψi. If gπ(xi) ⊆ ψi, we assign
xi = true in φ and xi = false otherwise. The assignment of xi satisfies
every clause in gπ(xi) and since for each clause Cj , g−1π (Cj) is defined, then
φ is a satisfying assignment of ϕ.

v0 v1 v5 v6 vn′−2 vn′−1

Q0

q10

q50

q70

Q1Qm−1

q3m′−1

q5m′−1

q9m′−1

Qm′ {z5}

{c50}{t50,m′−1}

{c50, c5m′−1}

{t50,m′−1, c
5
m′−1}

Fig. 1. Illustration of Construction 1. In this example, the literal x5 appears in
clauses C0 = (x1, x5, x7) and Cm′−1 = (x̄3, x5, x̄9). For simplicity, backward arcs
(q50 , v5), (q5m′−1, v5) and (q5m′−1, q

5
0) are not drawn.

From Construction 1, it is easy to extend this result for the case where each
path induced by a color has length exactly three: if a path has length one, we can
extend it by adding two new vertices. Samewise, we can show that this problem
remains NP-complete if every graph Gi is a disjoint union of arcs, by simply
removing the backward arcs in the construction.

Corollary 2. k-color change path remains NP-complete even if:

– each color induces a path of length exactly three, or
– each color induces a collection of disjoint arcs.

4.2 In more restricted cases

In the following, we reuse Construction 1 to extend the previous hardness result
to even more restricted cases.

Let G be a graph resulting of Construction 1. We can make it bipartite by
applying the following transformation.



Rule 1 Let P1 and P2 be any partition of the vertices of G. For each arc a =
(v1, v2) such that v1 ∈ P1 and v2 ∈ P2, we introduce a new vertex x and replace
a by the arcs (v1, x) and (x, v2).

Notice that since it is possible to apply this transformation only to some
backward arcs of G, the length of each path induced by a color is bounded by
four. Hence, we obtain the following result.

Theorem 4. k-color change path is NP-complete even in bipartite graphs
where each color induces a path of length at most four.

Further, if we draw G as in Figure 1, only backward arcs can cross. In order
to make such graph planar, we apply the classical technique consisting of adding
a vertex for each arc intersection.

Rule 2 Let (u, u′) and (v, v′) be two intersecting backward arcs with color i and
j respectively. We introduce a new vertex v, remove (u, u′) and (v, v′) and we
construct two paths (u, x, u′) and (v, x, v′) with color i and j, respectively.

By using the previous rule, we add at most O(m′2) vertices to the construction.
Notice that the lengths of the paths induced by a color are no longer bounded.

Theorem 5. k-color change path is NP-complete in planar graphs.

Finally, we can show that this problem remains hard even if for each arc e
we have |χ(e)| = 1. We introduce the following rule.

Rule 3 Let G be a list arc-colored graph. Let (u, v) be any arc such |χ(u, v)| ≥ 1
and let c be a color in χ(u, v). Emplace a new vertex v and construct the path
(u, x, v) with color c. Finally, set χ(u, v) := χ(u, v) \ {c}.

An example of this rule is given in Rule 3.

u v u

x

v

{1, 2, 3}

{1} {1}

{2, 3}

Fig. 2. Example of application of Rule 3.

Hence, we obtain the following theorem.

Theorem 6. k-color change path is NP-complete in list arc colored graphs
where |χ(a)| = 1 for each arc a.

Finally, by combining the previous techniques, we obtain the following result.

Theorem 7. k-color change path remains NP-complete in planar bipartite
list arc colored graphs where for each arc a, we have |χ(a)| = 1.



5 Hardness of approximation

We now show that k-color change path in paths is equivalent to the classical
problem Set Cover, defined as follows.

Set Cover (SC)
Input: A univers U = (e1, . . . , en′) of n′ elements, a collection

C = {S1, . . . , Sm′} of m′ subsets of U and a positive integer k.
Question: Is there a collection C ′ ⊆ C such that

⋃
Si∈C′ Si = U and

|C ′| ≤ k?

Construction 2 Let (U,C) be an instance of Set Cover, we construct a list-
arc colored graph G as follows:

– construct an oriented path (v1, vn′+1), and
– for each subset Sj ∈ C and each element ei ∈ Sj, color the arc (vi, vi+1)

with color j.

An example of graph produced by Construction 2 is depicted in Figure 3.

v1 v2 v3 v4 v5

{1, 2} {1} {2} {1, 3}

Fig. 3. Example of graph produced by Construction 2 on the univers containg the sets
S1 = {1, 2, 4}, S2 = {1, 3} and S3 = {4}.

Theorem 8. The optimization version of k-colored path is LOG-APX-hard
even in paths.

Proof. Let (U,C) be an instance of Set Cover and let G be its list arc-colored
graph resulting from Construction 2. We show that (U,C) admits a set cover
of size k if and only if G contains a colored path π between v1 and vn′+1 with
λ#(π) = k.

– Let C ′ be a minimal set cover of (U,C) of size k. We construct π as follows.
For each element ei, let Sj ∈ C ′ containing xi. Add the arc vivi+1 with color
j in π. Clearly π cannot use more colors than |C ′|, thus we obtain a colored
path π between v1 and vn′+1 with λ#(π) ≤ |C ′|.

– Let π be a colored path between v1 and vn′+1 such that λ#(π) = k. We
construct the following set cover C ′ = {Sj | λ(vivi+1) = j}. Since G is
an oriented path, for each vertex vi, the arc vivi+1 belongs to π. Thus, by
construction, for each element ei ∈ U , ei is contained in the subset Sj , where
λ(xi, xi+1) = j . Hence, C ′ is a set cover of (C,U).



Suppose it exists a polynomial-time algorithmA that can approximate k-colored
path with a factor R(G). Then, we can obtain a polynomial-time algorithm with
the same approximation factor for Set Cover by applying successively Con-
struction 2, A and the transformation to obtain a set cover from a colored path
described above. Lund and Yannakakis show that Set Cover can not be approx-
imated with a factor better than a logarithmic function [18] if P 6= NP. Hence,
it implies that k-colored path can not be approximated in polynomial-time
with a factor better than a logarithmic function if P 6= NP.

We now reduce k-colored path in paths to Set Cover.

Construction 3 Let G be a list-arc colored path on the vertices (v1, . . . , vn).
We construct an instance of Set Cover (U,C) as follows:

– construct the univers U = {e1, . . . , en−1},
– for each color j, introduce a set Sj, and
– for each arc a = (vi, vi+1) and each color j ∈ χ(a), emplace the element ei

in Sj.

Notice, that the previous construction is the inverse function of Construc-
tion 2. Thus, we can reuse the same argument as in Theorem 8 to show the
following.

Lemma 3. Let G be a list-arc colored path and (U,C) be its instance of Set
Cover resulting of Construction 3. It exists a colored path π between v1 and vn
with λ#(π) = k if and only if it exists a set cover of (U,C) of size k.

Corollary 3. Set Cover ≡ k-colored path in paths.

Recall that Set Cover isW [2]-hard when parameterized by the score of the
solution [8]. We can use Construction 2 to show that k-colored path is W [2]-
hard when parameterized by the number of used colors in the path. We recall
that a parameterized problem (Π1, κ1) is FPT -reductible to another problem
(Π2, κ2) if it exists two applications f and g such that:

– given an instance (I1, k1) of (Π1, k1), f constructs in FPT-time an instance
(I2, k2) of (Π2, κ2) such that (I2, k2) is a yes-instance if and only if (I1, k1)
is a yes-instance,

– g : N 7→ N is a computable function such that k2 ≤ g(k2).

We now show the following

Theorem 9. k-colored path is W [2]-hard when parameterized by k.

Proof. Let (U,C) be an instance of Set Cover and let G be the list-arc colored
produced by Construction 2. First, note that G is constructed in O(|U | + |C|)
time. Second, for any value k, it exists a set cover of size k for (U,C) if and
only if G contains a path between v1 and vn′+1 with k colors. Hence, we can
set the function g as the function g(k) = k to show that Construction 2 is a
FPT-reduction.



6 Approximation results

In the following, we consider the problem in which each subgraph Gi is an
oriented path of length at most `i ≤ `.

We develop a polynomial-time approximation algorithm based on the com-
putation of a shortest path in G̃. As for the algorithms of Section 3, the overall
time complexity of this approximation algorithm is O(n3).

Lemma 4. Let G be a list arc-colored graph such that each subgraph Gi is an
oriented path of length at most ` and let π be a colored path between s and t. For
each color i, π[i] contains at most d `2e connected components.

Proof. Let vivj be an arc of π colored with color c. Let vjvk be the outgoing
arc of vj in Gi. Since π is elementary, either π contains the subpath (vi, vj , vk),
or π does not contain vjvk. Hence, two consecutive arcs of Gi cannot appear
in different connected components of π[i] and then π[i] contains at most d `2e
connected components.

Theorem 10. Let G be a list arc-colored graph such that each subgraph Gi is
an oriented path of length at most `. An optimal solution of k-color change
path in G is a d l2e-approximation of k-color change path.

Proof. Let π be a colored path between s and t. By Lemma 4, we have

λc(π) ≤ d `
2
e · λ#(π). (1)

Let πopt be an optimal solution of k-color change path and πapp be an
optimal solution of k-color change path. We have

λ#(πapp) ≤ λc(πapp) (2)

and
λc(πapp) ≤ λc(πopt). (3)

Thus,

λ#(πapp)
(2)

≤ λc(πapp)
(3)

≤ λc(πopt)
(1)

≤ d `
2
e · λ#(πopt). (4)

Therefore, we obtain
λ#(πapp)

λ#(πopt)
≤ d `

2
e.

7 Lower bounds for Exact algorithms

We propose some negative results for k-color change path about the existence
of subexponential-time algorithms under ETH [14, 15].



Corollary 4. There is no 2o(n) (resp. 2o(
√
n+m))-time algorithm for the opti-

mization version of k-colored path even in graphs where each color induces
a path of length at most three or in bipartite graphs where each color induces a
path of length at most four (resp. in bipartite planar graphs).

Proof. Let ϕ be a 3-SAT formula with n′ variables and m′ clauses and G be
its list arc-colored graph resulting from Construction 1. By construction, the
number of arcs and vertices of G is O(n′ + m′), even if we make the graph
bipartite. Thus, since 3-SAT does not admit a 2o(n

′+m′)-time algorithm, k-
colored path does not admit a 2o(n+m)-time algorithm [14, 17, 21]. Making the
graph planar as described for Theorem 5 adds O(m′2) vertices in G. Thus, we can
conclude that k-colored path does not admit a 2o(

√
|V |+|E|)-time algorithm

in bipartite planar graphs.

8 Fixed-parameter tractable algorithm for k-CP

In this section, we describe fixed-parameter tractable algorithm for k-Colored
Path, parameterized by the total number of colors C = |

⋃
e∈A χ(e)| in the graph

G = (V,A, χ). We first introduce some specific notations and definitions. Let `
and `′ be two color sets. We say that `′ is dominated by ` if ` ⊆ `′. Notice that
it is a transitive relation: given l1, l2 and l3, if l1 dominates l2 and l2 dominates
l3, then l1 dominates l3. Let π be a colored path. We denote by λ(π) the colors
used in π, that is, λ(π) =

⋃
a∈π λ(a).

For our algorithm, we use the following semantic: for each vertex v, we in-
troduce a list of color sets L(v) such that for each color set ` of L(v) it exists a
colored path p between s and v such that χ(p) = `.

Lemma 5. Algorithm 2 returns true if and only if there is a solution for k-CP
and runs in O(

(
k
C

)
· n) time.

Proof. First, note that a vertex u can be added to V ′ by a vertex v if L′ contains
a set of colors of size at most k that is not dominated by a set of colors of L′(u).
Hence, we have |L(u)| ≤

(
k
C

)
and u can be added to V ′ at most |L(u)| times. It

follows that the while loop is not endless and thus, the algorithm stops.
Further, we show that Algorithm 2 returns true if and only it exists a colored

path π with λ#(π) ≤ k.

“⇒” Suppose that the algorithm returns true. We show by induction that for
any vertex u and for any color set ` ∈ L(u), there is a colored path π between
s and u with λ(π) = `. First, it is clear that there is an empty path from s to
itself using no color. Later, let u be any vertex and `′ ∈ L(u). Let v be the
vertex considered by the while loop when `′ is added to L(u) (line 17). Then,
it exists a color set ` ∈ L(v) and a color c ∈ χ(v, u) such that ` ∪ {c} = `′.
By induction hypothesis, there is a colored path π between s and v with
λ(π) = `. Let π′ = π ∪{(v, u)} with λ(v, u) = c, we have λ(π′) = λ(π)∪{c}.
Thus, π′ is a colored path from s to u with λ(π′) = `′. Finally, the algorithm



Algorithm 2 FPT Algorithm
Require: A list arc-colored graph (G,χ), two vertices s and t and an integer k. V ′ ←
{t}
for all v ∈ V (G) do

L(v) = ∅
end for
while V ′ 6= ∅ do

if v == t then
return true;

end if
end while
v ← any element of V ′;
V ′ ← V ′ − v;
for all u ∈ N+(v) do

L′ ← {` ∪ {c} | ` ∈ L(v), c ∈ χ(v, u)};
for all `′ ∈ L′ do

if |`′| > k or ∃` ∈ L(u), ` ⊆ `′ then
L′ ← L′ − `′;

end if
end for
if L′ 6= ∅ then

L(u)← L(u) ∪ L′;
V ′ ← V ′ ∪ {u};

end if
return false;

end for



returns true the first time t is considered by the while loop. In that case,
L(t) is non-empty. Hence, it exists a color set ` ∈ L(t) with |`| ≤ k and by
the above property, there is a colored path between s and t using less than
|`| colors.

“⇐” Let π = (v1, . . . , vi) be a colored path such that v1 = s and vi = t. We
show by induction that, if the algorithm does not return true before, for
each vertex vj ∈ π, there is a state in which L(vj) contains a color set `
that dominates λ(v1, . . . , vj). Clearly, the property is true for v1. Let vj ∈ π.
By induction hypothesis, there L(vj−1) contains a color set ` that dominates
λ(v1, . . . , vj−1). Moreover, when ` is added to L(vj−1) (line 17), vj−1 is added
to V ′ (line 18) in the same loop iteration. Hence, vj−1 is considered by the
while loop when ` ∈ L(vj−1). Further, let `′ = ` ∪ λ(vj−1, vj), when vj−1 is
considered, two cases can happen: either `′ is added to L(vj) or L(vj) already
contains a color set that dominates `′. In any case, L(vj) contains a color set
that dominates λ(v1, . . . , vj). Hence, it exists a state in which L(vi) contains
a color set ` that dominates λ(π). Moreover, since L(t) is not empty, t is
considered by the while loop and in that case, the algorithm returns true
(line 5).

9 Conclusion

In this paper, we tackle the trip sharing problem in complexity and approxima-
tion viewpoints. We show that in the case of each input colored graph, for a fixed
color, has a length at most two, the problem is polynomial whereas the problem
becomes NP-complete for each colored path has length three. The complexity
results are supplemented by hardness results according to topology (planar, bi-
partite and bipartite planar). On positive side, we develop a polynomial-time
approximation algorithm a ratio at most d l2e with l the length of each input
colored path. We also propose some lower bounds according to ETH, and pa-
rameter complexity viewpoint. Finally, we present a FPT algorithm running in
time in O(

(
k
C

)
· n). The challenge consists in finding a O(log n)-approximation

for the problem of minimizing the number of colors. In such case k-colored
path would be in Log-APX-complete.
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