
HAL Id: hal-04047964
https://hal.utc.fr/hal-04047964

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An elitist non-dominated heuristic resolution for the
dynamic asset protection problem
Quentin Peña, Aziz Moukrim, Mehdi Serairi

To cite this version:
Quentin Peña, Aziz Moukrim, Mehdi Serairi. An elitist non-dominated heuristic resolution for the
dynamic asset protection problem. 15th International Conference on Artificial Evolution (EA 2022),
Oct 2022, Exeter (England), France. pp.201-214, �10.1007/978-3-031-42616-2_15�. �hal-04047964�

https://hal.utc.fr/hal-04047964
https://hal.archives-ouvertes.fr

An elitist non-dominated heuristic resolution for
the dynamic asset protection problem

Quentin Peña1, Aziz Moukrim1, and Mehdi Serairi1

Université de Technologie de Compiègne, CNRS,
Heudiasyc (Heuristics and Diagnosis of Complex Systems),

CS 60 319 - 60 203 Compiègne Cedex
{quentin.pena, aziz.moukrim, mehdi.serairi}@hds.utc.fr

Abstract. During escaped wildfires, community assets are at risk of
damage or destruction. Preventive operations requiring dispatching re-
sources and cooperation can be taken to protect these assets. The plan-
ning of such operations is sensitive to unforeseen disruptions that may
occur. To account for the effects of the disruption, it may be necessary
to alter the initial routes of the vehicles. The problem rising from the
rescheduling of the vehicles is a bi-objective optimization problem known
as the Dynamic Asset Protection Problem (D-APP). We propose a ge-
netic algorithm based on the Non-dominated Sorting Genetic Algorithm
(NSGA-II) to solve the D-APP. We define new mutation and crossover
operators adapted to our problem, and we propose procedures to repair
and evaluate a solution based on Mixed Integer Programming (MIP).

Keywords: bi-objective optimization · vehicle routing · team orienteer-
ing · synchronization · NSGA-II.

1 Introduction

In the recent years, wildfires break out more frequently throughout the world.
When wildfires are not controlled, they quickly expand and can burn thousands
of hectares of vegetation. In urban areas, the fire can also harm people and dam-
age infrastructure. Emergency response teams and resources must be deployed
to respond to these escaped wildfires. Multiple operations are jointly carried
out, from fire containment to evacuation, sheltering operations and including
asset protection. In this paper, we will focus on the preventive actions for the
protection of community assets.

Depending on the community asset, different actions can be taken to mitigate
or nullify the damages caused when the wildfire reach them. Such actions include
removing fuel materials, wetting down buildings, or reducing fire. Preventive pro-
tection actions must be taken in a timely manner: it has to be performed before
the fire reaches the asset, but not too early to be efficient. Some interventions
may require several trucks with specific capacities, thus requiring different teams
to collaborate to perform the task in a synchronous way. In particular, we will
focus on rerouting the vehicles after a disruption occurs that invalidates their

2 Q. Peña et al.

initial routes. A wide range of disruptions can impact our initial plans in dif-
ferent ways. For example, we may not have all the resources available, due to a
faulty equipment or a vehicle breakdown. The time windows on some assets may
be updated after unforeseen wind or weather changes, altering the propagation
of the fire. Travel times between assets may also change if traffic jams are caused
by people evacuating, or a road might be blocked by a fallen tree.

The problem of routing vehicles for preventive protection operations can
be viewed as a variant of the Team Orienteering Problem (TOP) with time
windows and synchronization constraints. This problem was first introduced by
Merwe et al. [9] as the Asset Protection Problem (APP). The authors proposed
a Mixed Integer Linear Programming (MILP) formulation of the problem. Later,
Merwe et al. [10] introduced the dynamic APP (D-APP), which is a bi-objective
problem for rerouting the vehicles after a disruption. The authors updated the
MILP formulation from the mono-objective version of the problem to account
for the deviation. They generated theset of solutions offering optimal trade-off
between protection of the assets and deviation from the initial routes using an
ε-constraint scheme. Peña et al. [13] proposed a new mathematical formulation
and valid inequalities based on the properties of the D-APP.

In this paper, we will present a heuristic solution method for the D-APP
based on the Non-dominating Sorting Genetic Algorithm (NSGA-II) [3]. We
will introduce different crossover and mutation operators specific to our problem,
including a destruction/construction operator as well as different MILP to repair
and evaluate a solution.

2 Dynamic Asset Protection Problem

During a wildfire, community assets such as schools, hospitals, bridges are at
risk of being damaged. A fleet of heterogeneous vehicles must be dispatched to
the different assets to perform preventive protection operations. These opera-
tions must be accomplished within a specific time window, and often require the
cooperation of multiple vehicles.

An asset is protected if, within its time window, enough vehicles are present
at the asset to accomplish the protection operation. The protection of an asset
requires some resources (e.g., crew size, number of fire hoses, ...), that need to
be met by the vehicles assigned to the asset.

In the dynamic APP, we already have routes assigned to the vehicles. How-
ever, an unforeseen disruption occurred and these initial routes may no longer
be feasible nor optimal. We want to recompute the routes to take into account
the consequences of the disruption. We then have two competing objectives:

– maximizing the total value of the protected assets
– minimizing the deviation from initial routes

We define the deviation as the number of vehicle/asset reassignments, i.e., if
an asset is added to or removed from the initial route of a vehicle, then it implies
a deviation of one.

Title Suppressed Due to Excessive Length 3

2.1 Problem presentation

An instance of our problem is represented by a graph G = (V,A), with V
representing the locations and A the arcs. There are n total locations. The first
m locations represent the depots from which the vehicles depart, and the n-th
location is a fictitious sink node. The remaining n−m−1 locations represent the
assets to protect. We define subsets of V : the depots V d and the assets V a. Each
asset i has a value vi, a requirement vector ri, a service duration ai and a time
window [oi; ci]. The set P represents the available vehicles. Each vehicle p has a
capability vector capp. In order to be protected, the vehicles assigned to an asset
must collectively meet the resource requirement of the asset. For example, an
asset with resource requirement ri = (1, 2, 1) can be protected by vehicles p and
q with respective capability capp = (1, 1, 0) and capq = (1, 1, 1). All the vehicles
assigned to the asset must be present when the service starts, and throughout
the entirety of the service. Parameters tijp are the travel time between locations
i and j for vehicle p. Travel times satisfy the triangle inequality. We note Φ the
solution representing the routes of the vehicles before disruption.

Before proceeding further, we introduce some definitions. An arc between two
assets i and j is called a valid arc for vehicle p if oi+ai+tijp ≤ cj . In other words,
vehicle p can visit asset i before asset j within the respective time windows of
the assets. Additionally, we say that the insertion of an asset k between two
assets i and j in the route of vehicle p is at a valid position if arcs (i, k) and
(k, j) are valid arcs for vehicle p.

2.2 Bi-objective optimization

The D-APP is a bi-objective optimization problem. We recall some terminology
related to Multi-objective Optimization Problems (MOP).

In MOP, a solution is evaluated according to an objective function vector
f = (f1, ..., fd) with d objectives. Without loss of generality, we suppose that all
the objectives are to be maximized. These d objectives are competing against
each other: improving one of the objective will often degrade one or multiple
other objectives. Hence, we want to find the set of efficient solutions based on a
dominance relation between solutions [7].

Definition 1. Let u and v be vectors of Rd, we say that u dominates v if and
only if ui ≥ vi for each i ∈ {1, ..., d} and there exists j ∈ {1, ..., d} such that
uj > vj. We denote this dominance relation by u � v.

Definition 2. A solution s is efficient if there is no other solution s′ such that
f(s′) � f(s), with f(s) the objective function vector associated with solution s.

For ease of use, we say that a solution s dominates a solution s′ if and
only if its objective function vector f(s) dominates f(s′). The set of all efficient
solutions is known as the efficient set. The set of objective vectors with respect
to the efficient set is call the non-dominated set, or Pareto front [12].

4 Q. Peña et al.

In many vehicle routing problems, multiple competing objectives have been
considered [6]. A popular approach is to solve the multi-objective problem using
a decomposition approach. The multi-objective problem is decomposed in mul-
tiple single objective problems, using aggregation functions. For instance, the
bi-objective traveling salesman problem has been solved using ant colony opti-
mization based on decomposition [2]. A metaheuristic method that combines a
Pareto ant colony optimization algorithm and a variable neighborhood search
method has been proposed for the bi-objective TOP (BTOP) [14]. Finally, a
two-phase decomposition method based on Local Search has been proposed to
solve Selective Pickup and Delivery Problems with Time Windows (SPDPTW)
[1].

Several approaches extend the fast and elitist Non-Dominated Sorting Ge-
netic Algorithm (NSGA-II) [3]. It has been efficiently applied to various multi-
objective problems including but not limited to the BTOP [11], the Green Vehicle
Routing Problem [4] and the Vehicle Routing Problem with Route Balancing [5].

3 NSGA-II

In this section, we will discuss the implementation of the NSGA-II algorithm to
solve the D-APP. We will first present in Section 3.1 an overview of the NSGA-II
algorithm. We will then present in Section 3.2 the encoding we encounter in the
literature for a genetic algorithm on a problem similar to the problem at hand.
We will introduce mutation and crossover operators based on the properties of
our problem in Section 3.3. Finally, we will define two different procedures for
repairing and evaluating a solution in Section 3.4.

3.1 Overview

NSGA-II is an iterative algorithm. For each generation t, we consider a popula-
tion Rt of size 2N , that is the combination of two subpopulations of size N : Pt,
the parents, and Qt, the offspring. There are three main steps in the NSGA-II
algorithm, described below. A solution i has two fitness criteria relative to the
current population: a rank ri and a crowding distance di. The rank represents
the quality of the solution with regards to the dominance relation presented in
Section 2.2. The crowding distance represents the quality of the solution in terms
of diversification. For more information on how these criteria are computed, we
refer the reader to [3].

At generation t, the three steps are:
Step 1 - Initialization. Create the population Rt by combining the parent

and offspring populations. Compute the rank of the solutions in Rt and identify
all the non-dominated fronts F = (F1,F2, ...). Compute the crowding distance
of the solutions within each non-dominated front.

Step 2 - Parent population selection. Create the parent population for
next generation Pt+1 by selecting the N solutions from population Rt. Between
two solutions with different ranks, we prefer the solution with the lowest rank. If

Title Suppressed Due to Excessive Length 5

both solutions belong to the same front, we prefer the solution with the lowest
crowding distance.

Step 3 - Offspring creation. Create offspring population Qt+1 from Pt+1.
Details are given in Algorithm 1. The tournament operator is binary tournament,
as described in [3]. Two solutions are selected at random, the solution with lowest
rank is selected, or with lowest crowding distance if there is a tie. The crossover
and mutation operators are discussed in Section 3.3. The repair and evaluation
procedure is discussed in Section 3.4.

Algorithm 1 Offspring creation

Data: Parent population P , mutation rate µ
Result: Offspring population Q
1: Q← ∅;
2: while |Q| ≤ N do
3: p1 ← tournament(P);
4: p2 ← tournament(P);
5: s← crossover(p1, p2); (See Section 3.3)
6: if rand() < µ then
7: s← mutate(s); (See Section 3.3)
8: end if
9: s← repair and evaluate(s); (See Section 3.4)

10: Q← Q ∪ {s};
11: end while
12: return Q

3.2 Encoding

We based the implementation of the NSGA-II algorithm for our problem on a
genetic algorithm proposed for the mono-objective version of the APP with a
homogeneous fleet of vehicles [8].

A solution s is represented by an array of integers, representing the order
in which assets are visited for each vehicle. The route of a vehicle always starts
at a depot and ends at the sink node. For instance, there are three vehicles
in solution [1, 2, 6, 4, 11, 1, 5, 7, 3, 11, 1, 7, 3, 11], the route of the first vehicle is
(1 → 2 → 6 → 4 → 11), the second (1 → 5 → 7 → 3 → 11) and the last
(1→ 7→ 3→ 11).

We note Psi the set of vehicles assigned to asset i in solution s, and Psi the
set of available vehicles not assigned to asset i in solution s.

3.3 Operators

Valid crossover operator (CXVAL). This crossover operator between two
solutions s1 and s2 selects a vehicle at random. The route for this vehicle in

6 Q. Peña et al.

s1 is cut after a random asset ik. The route for this vehicle in s2 is also cut,
after asset jl. The offspring route for this vehicle is constructed by the taking
the part of the route up to, and including, asset ik in s1 first, and then the
part of the route after asset jl in s2. For example, suppose we have two routes
(i1 → i2 → i3 → i4 → i5) and (j1 → j2 → j3 → j4 → j5 → j6), and assume the
cuts happen after assets i3 and j4 respectively, indicated in bold. The resulting
route would be (i1 → i2 → i3 → j5 → j6). The route of the second vehicle is
cut in a way such that arc (ik, jl+1) is a valid arc. This crossover may result in
duplicate assets in the route of a vehicle; we only keep the first occurrence of an
asset to fix this issue.

Time crossover operator (CXTIM). This crossover operator between two
solutions s1 and s2 selects a time at random within the time horizon. The routes
for the vehicles in s1 are cut when the start time of service of the asset exceeds
the chosen time, and represent the first part of the offspring routes. We then cut
the routes of the vehicles in s2 such that there is a valid arc between the last
asset of the first part of the route and the first asset of the second part of the
route.

Single-change operators. We define two different mutation operators that
perform a single change on the solution, with same probability of being used: an
insertion operator and a removal operator.

Insertion operator. The insertion operator adds one randomly selected asset to
the route of one or multiple vehicles. An asset is selected at random. The asset
is added at a random valid position in the route of vehicles, taken in a random
order, until the resource requirement of the asset is met.

Removal operator. The removal operator removes one randomly selected asset
from the route of one or multiple vehicles. An asset is selected at random. The
asset is removed from the route of all the vehicles.

Multi-change operator. We define a mutation operator that performs multi-
ple changes on the solution, first removing multiple assets from the solution in
the destruction phase, then inserting multiple protected assets in the construc-
tion phase.

During the destruction phase, the operator randomly selects d assets to be
removed from the current solution. The number of assets removed is randomly
selected between 1 and dmax. The destruction parameter dmax is initially set to 3.
If there is no improvement on the optimal Pareto front F1, its value is increased,
and resets to 3 when an improvement is found. In the random selection process,
we can assign weights to the assets in order to favor removing assets that induce
most deviation. We note w−i the weight associated to asset i. The probability
of selecting asset i to be removed is thus p−(i) = w−i /

∑
i

w−i . If w−i = 1 for all

Title Suppressed Due to Excessive Length 7

assets, we have fully random behavior. Alternatively, we can use a weight based
on the deviation induced by the removal of asset i from solution s, with γ a
parameter to be determined:

w−i =
(
1 +max(0, |Psi | − |Psi |)

)γ
(1)

During the construction phase, the operator uses a Best Insertion Heuristic
(BIH) to insert a subset of assets to the current solution. The number of assets
to add is chosen randomly between d and d+ cmax. The construction parameter
cmax is initially set to 3. The assets to be inserted are randomly selected. We
can assign weights to the assets in the selection process. We note w+

i the weight
associated to asset i. We can use a weight based on the profit vi associated with
the protection of asset i and a lower bound on the deviation necessary for the
protection of the asset nb+i , with α and β parameters to be defined:

w+
i = vαi /(1 + nb+i)β (2)

We want to add each asset to the route of enough vehicles for the resource
protection to be met. We also want to minimize the number of vehicles we use to
protect the asset. As we do not know how many vehicles will be required to meet
the resource requirement, we will generate multiple insertion patterns and select
the one minimizing our criterion. We detail the process in Algorithm 2. In order
to account for the deviation from the pre-disruption routes, we first select the
vehicles for which the asset is in the pre-disruption route. If these vehicles are
not sufficient to meet the resource requirement, we continue the process with the
remaining vehicles. We select the vehicles in a random order, until the protection
requirement is met.

Adaptive parameters. The multi-change operator relies on parameters α, β
and γ to control the relative importance of the different factors when associating
weights to assets. They are first initialized with α = 1, β = 1 and γ = 0.5,
and then adaptively tuned during the offspring creation phase. We generate M
offspring solutions with slightly different values of α, β and γ. The values leading
to the best offspring subpopulation are recorded to be used in the next iteration.
All the offspring solutions generated are considered in the offspring population
Q of the current step.

3.4 Repair and evaluation procedure

A solution is represented by the route of each vehicle. It is sufficient to know the
routes of the vehicles to compute the deviation from the pre-disruption routes.
However, we cannot determine which assets are effectively protected: we must
check if it is possible to synchronize the visits of all assigned vehicles within
the time window of the asset, and if the resource requirement is met by these
vehicles.

Some solutions are not feasible. For instance, two vehicles may visit two assets
in a different order, thus causing the synchronization to be impossible.

8 Q. Peña et al.

Algorithm 2 Construction: Add an asset

Data: Solution S, asset k, number of insertion patterns nb p
Result: A solution that protects asset k, if possible
1: if the available vehicles cannot meet the resource requirement then
2: return S
3: end if
4: for cpt = 1...nb p do
5: Vcpt ← ∅; {Set of selected vehicles at iteration cpt}
6: costcpt = 0;
7: Determine a random order on the vehicles that prioritizes vehicles in PΦk
8: for each vehicle p following the previously defined order do
9: if there is a valid position in the route of vehicle p then

10: Vcpt ← Vcpt
⋃
{p}

11: costcpt ← costcpt + 1
12: if vehicles in Vcpt meet the resource requirement of asset k then
13: Begin new insertion pattern (next cpt)
14: end if
15: end if
16: end for
17: end for
18: Select set of vehicles V∗ with lowest cost
19: Insert asset k in the routes of vehicles in V∗ in solution S
20: return S

Our repair procedure aims at finding the best subroutes of the solution, to
make it feasible and maximize total protected value. We do not modify the
order in which assets are visited by a vehicle, nor do we add new assets to the
routes. The repair procedure determines which assets can actually be protected,
thus contributing to the total protected value. It also gives data to correct the
deviation, if unprotected assets have been added to the route of a vehicle for
instance. At the end of the repair procedure, we know the value of the two
objective functions for the solution we have just repaired. Hence, we can use the
repair procedure as the evaluation procedure for our solutions. By doing so, we
also ensure that all the solutions we consider are feasible.

We propose two different MIPs used for repairing and evaluating solutions
for our problem. We note Pi the set of vehicles that have asset i in their route.
We note Xp the set of arcs (ik, il) between assets in the route of vehicle p, with
k < l.

Asset penalization. The first MIP tries to find a feasible solution from the
given routes. Assets can be visited outside of their time windows, but these assets
cannot be protected. Infeasibilities are lifted by removing assets entirely from
the solution.

We define three sets of decision variables:

– Binary variables Yi, set to 1 if asset i is protected. Asset i is protected when
service starts within its time window and its resource requirement is met.

Title Suppressed Due to Excessive Length 9

– Binary variables θi, set to 1 if asset i is removed from the solution.
– Continuous variables Si, that represent the start time of service of asset i.

Maximize
∑
i

viYi (3)

(1− θi)
∑
p

capp ≥ riYi ∀i ∈ V a (4)

Si + tijp + ai ≤ Sj +M1(θi + θj) ∀p ∈ P, (i, j) ∈ Xp (5)

oi −M2(1− Yi) ≤ Si ≤ ci +M2(1− Yi) ∀i ∈ V a (6)

Yi ∈ {0, 1}, θi ∈ {0, 1}, Si ∈ R ∀i ∈ V a (7)

Objective function (3) maximizes the total protected value.
Constraints (4) ensure that the protection requirement is met for protected

assets. Assets that have been removed from the solution (with θi = 1) cannot
be protected.

Constraints (5) set correct start time of service for assets i and j when asset i
is visited by the vehicle before asset j. The order in which the assets are visited is
fixed within the solution. However, as assets can be removed, we need to consider
every pair of assets (i, j) visited by the vehicle such that asset i is visited before
asset j.

Constraints (6) ensure that a protected asset is visited within its time win-
dow. Constraints (7) define the domain of the decision variables.

Assignment penalization. The second MIP tries to find a feasible solution
from the given routes. Infeasibilities are lifted by removing assets from the routes
of individual vehicles.

We use binary variables Yi and continuous variables Si. We replace variables
θi by variables θpi, set to 1 if asset i is removed from the route of vehicle p.

Maximize
∑
i

viYi (8)

∑
p∈Pi

(1− θpi)capp ≥ riYi ∀i ∈ V a (9)

Si + tijp + ai ≤ Sj +M1(θpi + θpj) ∀p ∈ P, (i, j) ∈ Xp (10)

Yi + θpi ≥ 1 ∀p, ∀i ∈ V a (11)

oi −M2(1− Yi) ≤ Si ≤ ci +M2(1− Yi) ∀i ∈ V a (12)

Yi ∈ {0, 1}, Si ∈ R ∀i ∈ V a (13)

θpi ∈ {0, 1} ∀i ∈ V a, p ∈ Pi (14)

Objective function (8) maximizes the total protected value.

10 Q. Peña et al.

Constraints (9) ensure that the protection requirement is met for protected
assets. If asset i is removed from the route of the vehicle (with θpi = 1), the
vehicle does not contribute to the protection.

Constraints (10) set correct start time of service for assets i and j when asset
i is visited by the vehicle before asset j, similarly to constraints (5).

Constraints (11) ensure that unprotected assets are removed from the routes
of all vehicles.

Constraints (12) ensure that a protected asset is visited within its time win-
dow. Constraints (13) and (14) define the domain of the decision variables.

Local search. After repairing a solution, we explore its neighborhood to find a
dominating solution. We base our local search on the MIP used in the ε-constraint
method for the D-APP introduced in [13]. We use the MIP that maximizes total
protected value with deviation limited to the value of the deviation of the solution
we are considering. This solution is used as a warm-start for the MIP. We set a
high relative gap tolerance in our solver, meaning that the resolution will stop
before optimality is proven. For example, with a tolerance of 0.05, a solution is
returned when it is proved to be within 5% of optimal.

4 Computational results

We carried out computational testing on a computer with an Intel Core i7-8550U
processor and 8 GB of RAM. We implemented the method in Julia.

We generated 10 benchmark instances1, following the guidelines provided by
Merwe et al.[9]. Each instance has 100 assets randomly distributed within a 80
km by 80 km grid. Instances of less than 100 assets are created using a subset
of the 100-asset instances.

In order to evaluate our algorithm performance, we will use a quality indicator
to compare approximate PFs: the hypervolume (HV) [16]. The hypervolume (or
S-volume) is widely used in multi-objective optimization as we can compute it
without knowing the optimal PF. We suppose, without loss of generality, that
we want to maximize objective function f1 and minimize objective function f2.
The hypervolume requires two reference points in order to be computed: it is
important to use the same reference points when we compare two approximate
fronts. For a set of approximate fronts, the references points called nadir and ideal
are defined as nadir = (fmin1 , fmax2) and ideal = (fmax1 , fmin2), where fmini and
fmaxi , i = 1, 2 refer to the minimum and maximum values of objective functions
f1 and f2 encountered in the set of approximate fronts. Let Λ(ai) be the size of
the rectangular area ai constructed with a solution si from an approximation
set A and the nadir as corners. For approximate set A, we compute the HV as
follows:

1 See https://www.hds.utc.fr/p̃enaquen/dokuwiki/doku.php for the detailed instances
and pre-disruption routes.

https://www.hds.utc.fr/~penaquen/dokuwiki/doku.php

Title Suppressed Due to Excessive Length 11

HV (A) =

Λ

(⋃
ai∈A

ai

)
(fmax1 − fmin1)(fmax2 − fmin2)

(15)

4.1 Mutation rate tuning

In this section, we want to test the influence of the mutation rate µ on the output
of our algorithm. We launched the algorithm with a time limit of 60 seconds on
all our benchmark instances with 30, 40, 50 and 60 assets, with two different
vehicle breakdowns as the disruption.

Based on preliminary tuning work, we used fixed values for some of our
parameters. The population size is set to N = 100. We use the time crossover
operator as crossover operator and multi-change operator as mutation operator.
For the choice criteria w−i and w+

i , the parameters are set to α = 1.0, β = 0.5 and
γ = 1.0. Destruction and construction parameters cmax and dmax are initially set
to 3. The initial population is generated by applying the multi-change operator
with high cmax and dmax values on the solution representing the initial routes.

We report in Figure 1 the average gap between the hypervolume of the non-
dominated front F1 obtained with each mutation rate and the hypervolume of
the best known Pareto front.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

0

5

10

15

H
y
p

e
rv

o
lu

m
e

 g
a

p
 (

%
)

Fig. 1. Average gap between the front obtained by NSGA-II and best known front,
based on mutation rate µ.

We can see that our mutation operator impacted the quality of the front
we generated. We obtained the worst results when the mutation operator was
disabled (µ = 0), with a gap superior to 58%. The gap decreased when µ in-
creased up to 0.6, from 11 to 4% on average. The gap stabilized for µ = 0.7 and
deteriorated around 5% for higher mutation rates.

12 Q. Peña et al.

4.2 Performance analysis

In this section, we test the influence of our evaluation models and operators,
and the impact of our additional components. Following preliminary work, we
chose not to consider the valid crossover operator (CXVAL). Hence, we will
only present results using the time crossover operator (CXTIM). We will first
compare the results obtained using our two different evaluation models, with our
single-change operators and our multi-change operator. Then, we will evaluate
the impact of the adaptive scheme and the local search procedure we presented.

We launched our NSGA-II algorithm with the different sets of operators for
each of our ten benchmark instances with 30, 40, 50 and 60 assets, and two
different random vehicle breakdowns as the disruption. We used the parameters
presented in Section 4.1, and set the mutation rate µ = 0.6.

Table 1 shows the results of NSGA-II within a time limit of 300 seconds. For
each evaluation model (shown in row ”Eval.”) and operator (shown in row ”Op-
erator”) combination, we give the average hypervolume of the non-dominated
front F1 we obtained. In the last column ”ε−300”, we indicate the hypervolume
of the front obtained using the ε-constraint method with the model introduced
in [13], with a 300-second time limit. Due to the time limit, this method does
not always yield the full optimal Pareto front.

Table 1. Average hypervolume of fronts obtained by NSGA-II in 300 seconds

Eval. Asset penalization Assignment penalization ε− 300

Operator Single-change Multi-change Single-change Multi-change

n = 30 73.2 % 78.0 % 74.1 % 77.7 % 82.3 %

40 70.2 % 73.0 % 70.5 % 73.4 % 78.5 %

50 67.4 % 70.1 % 69.1 % 71.9 % 68.7 %

60 66.2 % 65.9 % 68.0 % 67.4 % 54.4 %

We can see that the second evaluation model on average gave fronts with
higher hypervolume on average than the first model for the same operators. For
instances with 30, 40 and 50 assets, the multi-change operator performed better
than the single-change operators. The multi-change operator offers more stable
results than the single-change operators, and find solutions with higher profit.
For larger instances, we obtain better fronts on average than the ε− constraint
method within the same time limit.

Based on Table 1, we will consider the second evaluation model with multi-
change operator to evaluate our additional components. We performed a param-
eter analysis similar to Section 4.1 to determine good values for our adaptive
method and local search parameters. We set the initial population to N = 50,
and offspring population to M = 50/4. For the local search, we apply it to 5% of
the solutions, with a relative gap tolerance of 0.05. Each model is run five times
on each instance, to ensure the robustness of our results.

Title Suppressed Due to Excessive Length 13

Table 2 summarizes the results of our algorithm with no additional compo-
nent, with the adaptive parameters enabled and our local search procedure. It
shows the average value of the hypervolume found in the best run (HVmax) and
the average value in all the runs (HVavg).

Table 2. Comparison of the components of our NSGA-II implementation

Method No component Adaptive Local Search ε− 300

HVmax HVavg HVmax HVavg HVmax HVavg HV

n = 30 79.5% 77.6% 79.8% 77.8% 82.3% 81.9% 82.3%

40 75.8% 73.5% 75.8% 73.6% 79.9% 79.2% 79.1%

50 74.5% 72.2% 75.1% 73.1% 80.7% 79.5% 68.9%

60 70.5% 67.8% 73.0% 69.7% 80.0% 78.3% 56.4%

The adaptive component yielded similar results for instances with 30 and 40
assets and slightly better results for 50 and 60 assets when enabled. We obtained
significant improvements for all instances when enabling our local search proce-
dure, up 10% for instances with 60 assets on average. The local search procedure
also improved the stability of our algorithm, reducing the gap between the best
solution and the average solution for all size of instances.

5 Conclusion

NSGA-II is a popular algorithm for multi-objective heuristic resolution that has
proven efficient for multiple vehicle routing problems. We proposed an imple-
mentation of NSGA-II for the D-APP. Due to the numerous constraints that are
part of the D-APP, we introduced mutation and crossover operators based on
properties of the problem and MIPs to repair and evaluate solutions. It is the
first heuristic solution method dedicated to the D-APP. The approach can be
improved by defining operators that better take the deviation into account, and
finding faster procedures to repair and evaluate a solution.

Acknowledgment

This study was carried out within the framework of GEOSAFE (Geospatial
Based Environment For Optimization Systems Addressing Fire Emergencies).
This work was partially supported by the framework of the Labex MS2T, funded
by the French Government, via the program Investments for the future managed
by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

References

1. A. Ben-Said, A. Moukrim, R.N. Guibadj and J. Verny, “Using decomposition-
based multi-objective algorithm to solve Selective Pickup and Delivery Problems

14 Q. Peña et al.

with Time Windows,” Computers & Operations Research, Volume 145, 2022, doi:
/10.1016/j.cor.2022.105867.

2. J. Cheng, G. Zhang, Z. Li and Y. Li, “Multi-objective ant colony optimization based
on decomposition for bi-objective traveling salesman problems,” Soft Comput, 16,
597614, 2012, doi: 10.1007/s00500-011-0759-3

3. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182-197, April 2002, doi: 10.1109/4235.996017.

4. J. Jemai, M. Zekri and K. Mellouli, “An NSGA-II Algorithm for the Green Vehicle
Routing Problem,” In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation
in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science,
vol 7245. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-29124-1 4

5. N. Jozefowiez, F. Semet and EG. Talbi, “Enhancements of NSGA II and Its Ap-
plication to the Vehicle Routing Problem with Route Balancing,” In: Talbi, EG.,
Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA
2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg.
doi: 10.1007/11740698 12

6. N. Jozefowiez, F. Semet, EG. Talbi, “Multi-objective vehicle routing problems,”
European Journal of Operational Research, vol. 189, Issue 2, pp. 293-309, 2008,
ISSN 0377-2217, doi:10.1016/j.ejor.2007.05.055.

7. A. Mas-Colell, M.D. Whinston, J.R. Green and others. “Microeconomic theory;”
New York: Oxford University Press., vol. 1, 1995.

8. M. Merwe, “An optimisation approach for assigning resources to defensive
tasks during wildfires,” [Ph.D.thesis], 2015, RMIT University. URL research-
bank.rmit.edu.au/view/rmit:161622

9. M. Merwe, J. Minas, M. Ozlen and J. Hearne, “A mixed integer programming
approach for asset protection during escaped wildfires,” Canadian Journal of Forest
Research, 45, 04 2015, doi: 10.1139/cjfr-2014-0239.

10. M. Merwe, M. Ozlen, J. Hearne, and J. Minas, “Dynamic rerouting of vehicles
during cooperative wildfire response operations,” Annals of Operations Research,
254, 07 2017, doi: 10.1007/s10479-017-2473-8.

11. M. H. Mirzaei, K. Ziarati and M.-T. Naghibi, “Bi-objective version of team ori-
enteering problem (BTOP),” 2017 7th International Conference on Computer and
Knowledge Engineering (ICCKE), 2017, pp. 1-7, doi: 10.1109/ICCKE.2017.8167930.

12. V. Pareto, “Manual of Political Economy,” New York: Augustus M. Kelley Pub-
lishers, 1971.

13. Q. Peña, M. Serairi, A. Moukrim, “Reformulation and valid inequalities for the
dynamic asset protection problem during an escaped wildfire,” submitted for publi-
cation, 2022.

14. M. Schilde, K. Doerner, R. Hartl and G. Kiechle, “Metaheuristics for the
bi-objective orienteering problem,” Swarm Intelligence, 3, 179-201, 2009. doi:
10.1007/s11721-009-0029-5.

15. E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algo-
rithms : a comparative case study,” In: Eiben, A.E., Bck, T., Schoenauer, M.,
Schwefel, HP. (eds) Parallel Problem Solving from Nature PPSN V. PPSN 1998.
Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. doi:
10.1007/BFb0056872

16. E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 4, pp. 257-271, Nov. 1999, doi: 10.1109/4235.797969.

	An elitist non-dominated heuristic resolution for the dynamic asset protection problem

