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In this paper, we present a generic approach of a dynamical data-driven model order reduction11

technique for three-dimensional fluid-structure interaction problems. A low-order continuous12

linear differential system is identified from snapshot solutions of a high-fidelity solver. The13

reduced order model (ROM) uses different ingredients like proper orthogonal decomposition14

(POD), dynamic mode decomposition (DMD) and Tikhonov-based robust identification15

techniques. An interpolation method is used to predict the capsule dynamics for any value16

of the governing non-dimensional parameters that are not in the training database. Then a17

dynamical system is built from the predicted solution. Numerical evidence shows the ability18

of the reduced model to predict the time-evolution of the capsule deformation from its19

initial state, whatever the parameter values. Accuracy and stability properties of the resulting20

low-order dynamical system are analysed numerically. The numerical experiments show a21

very good agreement, measured in terms of modified Hausdorff distance between capsule22

solutions of the full-order and low-order models both in the case of confined and unconfined23

flows. This work is a first milestone to move towards real time simulation of fluid-structure24

problems, which can be extended to non-linear low-order systems to account for strong25

material and flow non-linearities. It is a valuable innovation tool for rapid design and for the26

development of innovative devices.27

Key words: Fluid-structure interaction, deformable capsule, dynamical system, reduced28

order model, non-intrusive, data-driven, dynamic mode decomposition29

1. Introduction30

Fluid-structure interaction (FSI) problems often occur in Engineering (aircraft and automo-31

tive industries, wind turbines) as well as in medical applications (cardiovascular systems,32
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artificial organs, artificial valves, medical devices, etc.). Today the design of such systems33

usually requires advanced studies and high-fidelity (HF) numerical simulations become34

an essential tool of computed-aided analysis. However, computational FSI is known to35

be very time-consuming even when using high-performance computing facilities. Usually,36

engineering problems are parameterized and the search of suitable designs require numerous37

computer experiments leading to prohibitive computational times. For particular applications38

such as the tracking of drug carrier capsules flowing in blood vessels, it would be ideal to39

have real-time simulations for a better understanding of the behaviour of the dynamics and40

for efficiency assessment. Unfortunately, today high-fidelity real-time FSI simulations are far41

from being reached with current High Performance Computing (HPC) facilities.42

A current trend is to use machine learning (ML) or artificial intelligence (AI) tools such43

as artificial neural networks (ANN). Such tools learn numerical simulations from HF solvers44

and try to map entry parameters with output criteria in an efficient way, with response times45

far less than HF ones, say 3 or 4 orders of magnitude smaller. In some sense, heavy HF46

computations and training stage are done in an offline stage, and learned ANNs can be used47

online for real time evaluations and analysis. However, ML and ANN today are not fully48

satisfactory for dynamical problems, and/or the training stage itself may be time consuming,49

thus requiring more Central Processing Unit (CPU) time. Another option is the use of50

model order reduction (MOR). Reduced-order modelling (ROM) can be seen as a ’grey-box’51

supervised ML methodology, taking advantage of the expected low-order dimensionality of52

the FSI mechanical problem. By ’grey-box’ we mean that the low-dimensional encoding of the53

ML process is based on mechanical principles and a man-made preliminary dimensionality54

reduction study. This allows one for a better control of the ROM accuracy and behaviour.55

There are two families of MOR: intrusive and non-intrusive approaches. The intrusive56

approaches use physical equations. The low-order model is derived by setting the physical57

problem on a suitable low-dimensional space. The accuracy can be very good, but the price58

to pay is the generation of a new code which can be a tedious and long task. The non-intrusive59

approach does not require heavy code development. It is based on HF simulation results used60

as entry data. Although it is not based on high-fidelity physical equations, a non-intrusive61

approach can include a priori physical informations, like e.g. meaningful physical features,62

prototype of system of equations, pre-computed principal components, consistency with63

physical principles, etc.64

In the recent literature, efficient intrusive ROMs for FSI have been proposed e.g. in65

(Quarteroni et al. 2016). But to our knowledge there are far less contributions in non-intrusive66

ROMs dedicated to FSI.67

In this paper, we propose a data-driven model order reduction approach for FSI problem68

which is consistent with the equations of kinematics and is designed from a low-order69

meaningful system of equations. As case of study, we focus on the motion of a microcapsule,70

a droplet surrounded by a membrane, subjected to a confined and unconfined Stokes flow.71

Artificial microcapsules can be used in various industrial applications such as in cos-72

metics (Miyazawa et al. 2000; Casanova & Santos 2016), food industry (Yun et al. 2021)73

and biotechnology, where drug targeting is a high potential application (Ma & Su 2013;74

Abuhamdan et al. 2021; Ghiman et al. 2022). Once in suspension in an external fluid,75

capsules are subjected to hydrodynamics forces, which may lead to large membrane76

deformation, wrinkle formation or damage. The numerical model must be able to capture77

the time-evolution of the non-linear 3D large deformations of the capsule membrane.78

Different numerical strategies are possible to solve the resulting large systems of equations79

(Lefebvre & Barthès-Biesel 2007; Hu et al. 2012; Ye et al. 2017; Tran et al. 2020). However,80

they all have long computational times.81

Different approaches have been used over the past decade to accelerate the computations,82
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such as HPC (e.g. Zhao et al. (2010)) and Graphics Processing units (e.g. Matsunaga et al.83

(2014)). More recently, reduced order models have been proposed to predict the motion84

of capsules suspended in an external fluid flow. In Quesada et al. (2021), the authors used85

the large amount of data generated by numerical simulations to show how relevant it is to86

recycle these data to produce lower-dimensional problem using physics-based reduced order87

models. However, their method can only predict the steady-state capsule deformed shape.88

Boubehziz et al. (2021) show for the first time the efficiency of data-driven model-order89

reduction technique to predict the dynamics of the capsule in a microchannel. However, the90

method is cumbersome as it requires two bases, one to predict the velocity field, the other to91

capture the shape evolution over time. And then they reconstruct the solution in the parameter92

space thanks to diffuse approximation (DA) strategy.93

The proposed method serves different objectives. We have designed the method to be94

non-intrusive for practical uses of existing high-fidelity FSI solver (also referred to as the95

Full-Order Model, or FOM). That means that the ROM methodology should be data-driven.96

We also want the ROM to be consistent with the equations of kinematics. The model must97

thus return the displacement {D} and velocity {E} fields from a few snapshots provided by the98

FOM. It must otherwise be able to predict the solution for any parameter vector in predefined99

admissible domain. Finally, the kinematics-consistent data-driven reduced-order model of100

capsule dynamics must ideally open the way to real-time simulations. To do so, we use a101

coupling between methods that have been devised to analyse complex fluid problems:102

•Proper Orthogonal Decomposition (POD) (Lumley 1967; Sirovich 1987)103

•Dynamic Mode Decomposition (DMD) (Schmid 2010)104

along with a Tikhonov regularization for robustness purposes. An interpolation method is105

implemented to predict the solution for any values of governing parameters that are not106

present in the training database.107

As indicated above, we mainly consider the case of an initially spherical capsule flowing in a108

microfluidic channel with a square cross-section. The corresponding FOM was developed by109

Hu et al. (2012) and used to get a complete numerical database of the three-dimensional110

capsule dynamics as a function of the parameters of the problem: the capsule-to-tube111

confinement ratio, hereafter referred to as size ratio 0/ℓ and the capillary number�0, which112

measures the ratio between the viscous forces acting onto the capsule membrane and the113

membrane elastic forces. For clarity reasons, different ROMs are introduced with increasing114

levels of generality, as detailed in Table 1. First, we consider a fixed parameter vector, and get115

a space-time ROM in the form of a low-order dynamical system. Next, we generate such #116

ROMs for the # parameter samples that fill the admissible parameter domain, and then assess117

the uniform accuracy (space-time accuracy over the whole sample set). Finally, we propose a118

strategy to derive a general space-time-parameter ROM for any value of the parameter vector119

(�0, 0/ℓ) in the admissible space. To conclude the results section, we apply the ROM model120

to a capsule in a simple shear flow.121

The paper is organized as follows. First, we present the physics of the problem and the122

FOM in Section 2. The strategy used to develop a non-intrusive space-time ROM is detailed123

in Section 3. We first present the results for an initially spherical flowing in a square channel.124

They first show the results for a given configuration in Section 4, generalize them in Section125

5 on the entire database, formed by all the cases that have reached a stationary state and126

present in Section 6 the methodology of space-time-parameter ROM. In Section 7, we then127

apply the ROM model to a capsule in a simple shear flow before discussing the advantages128

and the limits of the method in Section 8.129
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Nb of parameter ROM output type Verification Related Section(s)
samples for data (accuracy) in the paper

1 1 space-time ROM Space-time accuracy Sections 3 and 4

# # space-time ROM Uniform space-time Section 5
accuracy on the

sample set

# 1 space-time-parameter ROM Uniform accuracy Section 6
(any parameter couple)

Table 1: Stepwise procedure for ROM construction of increasing level of generality.

Figure 1: Sketch of the model geometry showing an initially spherical capsule of radius 0
placed in a channel with a constant square section of side 2ℓ.

2. Full-order microcapsule model, parameters and quantities of interest130

2.1. Problem description for a spherical capsule in a channel flow131

An initially spherical capsule of radius 0 flows within a long microfluidic channel having a132

constant square section of side 2ℓ (Figure 1). The suspending fluid and capsule liquid core133

are incompressible Newtonian fluids with the same kinematic viscosity [.134

The capsule liquid core is enclosed by a hyperelastic isotropic membrane. Its thickness135

is assumed to be negligible compared to the capsule dimension. The membrane is thus136

modelled as a surface devoid of bending stiffness with surface shear modulus �(. The two137

non-dimensional governing parameters of the problem are the size ratio 0/ℓ and the capillary138

number139

�0 = [+/�( (2.1)140

where + is the mean axial velocity of the undisturbed external Poiseuille flow.141

142

The flow Reynolds number is assumed to be very small. We solve the Stokes equations143

in the external (V = 1) and internal fluids (V = 2), together with the membrane equilibrium144

equation to determine the dynamics of the deformable capsule within the microchannel.145

For the fluid problem, we denote v (V) , 2 (V) and ? (V) the velocity, stress and pressure146

fields in the two fluids. These parameters are non-dimensionalized using ℓ as characteristic147

Focus on Fluids articles must not exceed this page length
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length, ℓ/+ as characteristic time and �(ℓ as characteristic force. The non-dimensional148

Stokes equations149

∇? (V) = �0∇2v (V) , ∇ · v (V) = 0, V = 1, 2 (2.2)150

are solved in the domain bounded by the cross sections (8= at the tube entrance and (>DC151

at the exit. These cross sections are assumed to be both located far from the capsule. The152

reference frame ($, x, y, z) is centred at each time step on the capsule center of mass $153

in the high-fidelity code, but the displacement of the capsule center of mass along the tube154

axis Uz is computed.155

The boundary conditions of the problem are the following ones:156

• The velocity field is assumed to be the unperturbed flow field on (8= and (>DC , i.e. the157

flow disturbance vanish far from the capsule.158

• The pressure is uniform on (8= and (>DC .159

• A no-slip boundary condition is assumed at the channel wall , and on the capsule160

membrane " :161

∀x ∈ ,, v(x) = 0; ∀x ∈ ", v(x) =
mu

mC
. (2.3)162

•The normal load n on the capsule membrane" is continuous, i.e. the non-dimensionalized163

external load per unit area q exerted by both fluids is due to the viscous traction jump:164

(2 (1) − 2 (2) ) · n = q (2.4)165

where n is the unit normal vector pointing towards the suspending fluid.166

To close the problem, the external load q on the membrane is deduced from the local167

equilibrium equation, which, in absence of inertia, can be written as168

∇B · 3 + q = 0 (2.5)169

where 3 is the non-dimensionalized Cauchy tension tensor (forces per unit arclength in the170

deformed plane of the membrane) and ∇B · is the surface divergence operator. We assume171

that the membrane deformation is governed by the strain-softening neo-Hookean law. The172

principal Cauchy tensions can then be expressed as173

g1 =
�(

_1_2

[
_2

1 −
1

(_1_2)2

]
(likewise for g2), (2.6)174

where _1 and _2 are the principal extension ratios measuring the in-plane deformation.175

2.2. Numerical procedure176

The FSI problem is solved by coupling a finite element method that determines the capsule177

membrane mechanics with a boundary integral method that solves for the fluid flows178

(Walter et al. 2010; Hu et al. 2012). Thanks to the latter, only the boundaries of the flow179

domain, i.e the channel entrance (8= and exit (>DC , the channelwall and the capsule membrane180

have to be discretized to solve the problem. The mesh of the initially spherical capsule is181

generated by subdividing the faces of the icosahedron (regular polyhedron with 20 triangular182

faces) inscribed in the sphere until reaching the desired number of triangular elements. At183

the last step, nodes are added at the middle of all the element edges to obtain a capsule mesh184

with 1280 %2 triangular elements and 2562 nodes, which correspond to a characteristic mesh185

size Δℎ� = 0.075 0. The channel mesh of the entrance surface (8= and exit surface (>DC186

and of the channel wall is generated using Modulef (INRIA, France). The central portion187

of the channel, where the capsule is located, is refined. The channel mesh comprises 3768188

%1 triangular elements and 1905 nodes.189

At time C = 0, a spherical capsule is positioned with its center of mass $ on the channel190
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axis. At each time step, the in-plane stretch ratio _1 and _2 are computed from the nodes191

deformation. The elastic tension tensor 3 is then deduced from the values of _1 and _2.192

The finite element method is used to solve the weak form of the membrane equilibrium193

equation (2.5) and determine the external load q.194

Applying the boundary integral method, the velocity of the nodes on the capsule membrane195

reads (Pozrikidis 1992):196

v(x) = v∞(x) −
1

8c`�

[∫

"

P(r) · q3((y) +

∫

,

P(r) · f 3((y) − Δ%

∫

(>DC

P(r) · n 3((y)

]

(2.7)197

for any x in the spatial domain when the suspending and internal fluids have the same198

viscosity. The vector f is the disturbance wall friction due to the capsule,Δ% is the additional199

pressure drop and r = y − x.200

To update the position of the membrane nodes, the nodal displacement u is computed201

by integrating equation (2.3) in time. The procedure is repeated until the desired non-202

dimensional time +)/ℓ.203

For later development, it is more convenient to work on the condensed abstract form of204

the system. The full order semi-discrete FSI system to solve consists of the kinematics and205

the membrane equilibrium algebraic equations:206

¤{D} = {E}, C ∈ [0, )], (2.8)207

{E} = i({D}) (2.9)208209

where i is a non-linear mapping from R33 to R33 and 3 is the number of nodes on the

membrane. Regarding time discretization, a Runge-Kutta Ralston scheme is used:

{D̂=+2/3} = {D=} +
2

3
ΔC {E=},

{Ê=+2/3} = {i}({D̂=+2/3}),

{D=+1} = {D=} + ΔC

(
1

4
{E=} +

3

4
{Ê=+2/3}

)
,

{E=+1} = {i}({D=+1}),

{D0} = {0}, {E0} = {i}({0})

where ΔC > 0 is a constant time step and {D}= and {E}= respectively represent the discrete210

membrane displacement field and the discrete membrane velocity field at discrete time C= =211

=ΔC. The initial condition is simply {D}0 = {0}.212

The whole numerical scheme is subject to some Courant-Friedrichs-Lewy (CFL) type213

stability condition on the time step (Walter et al. 2010) because of its explicit nature. The214

numerical method is conditionally stable if the time step ΔC satisfies215

+

ℓ
ΔC < $

(
Δℎ�

ℓ
�0

)
. (2.10)216

From the computational point of view, the resolution of (2.9) at each time step requires i) the217

computation of the disturbance wall friction f at all the wall nodes, ii) the additional pressure218

drop Δ%, iii) the traction jump q at the membrane nodes and iv) the boundary integrals for219

each node. The resulting numerical FOM may thus be time-consuming, depending on the220

membrane discretization and the number of time steps. Figure 2 shows that the evolution of221

the computational cost when 0/ℓ = 0.7, considering the mesh discretization described above222

and a workstation equipped with 2 processors Intel® Xeon® Gold 6130 CPU (2.1 GHz).223
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Figure 2: Simulation time of the dynamics of the capsule over a non-dimensional time
+C/ℓ = 10 (0/ℓ = 0.7) according to the time step. Simulations were performed on a

workstation equipped with 2 processors Intel® Xeon® Gold 6130 CPU (2.1 GHz).

A week of computation is sometimes necessary to simulate the dynamics of an initially224

spherical capsule in a microchannel over the non-dimensional time +)/ℓ = 10.225

For that reason, a model-order reduction (MOR) strategy is studied in this paper, in order226

to reduce the computational time by several orders of magnitude. ROMs try to approximate227

solutions of the initial problem by strongly lowering the dimensionality of the numerical228

model, generally using a reduced basis (RB) of suitable functions, then derive a low-order229

system of equations.230

In the case of differential algebraic equations (DAE) like (2.8)-(2.9), the reduced system of231

equations to find should also be of DAE nature. Remark that it is often possible to reformulate232

DAEs as a system of ordinary differential equations (ODEs) (Ascher & Petzold 1998). In the233

next section, we give details on the chosen ROM methodology for the particular case and234

context of FSI capsule problem.235

3. Non-intrusive space-time model-order reduction strategy236

In this section, the parameter couple ) = (�0, 0/ℓ) is fixed, thus we omit the dependency237

of the solutions with respect to ) for the sake of simplicity. For the derivation of the ROM238

model, we consider the semi-discrete time-continuous version of the FOM, i.e. (2.8)-(2.9).239

3.1. Dimensionality reduction and reduced variables for displacements and velocities240

Assume first that, for any C ∈ [0, )], the discrete velocity field can be accurately approximated241

according to the expansion242

{E}(C) ≈

 ∑

:=1

V: (C) {q: } (3.1)243

for some orthonormal modes {q:} ∈ R3 and real coefficients V: (C). The truncation rank

 6 3 is of course expected to be far less than 3 as expected in a general ROM methodology.
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From the kinematics equations we have

{D}(C) =

∫ C

0

{E}(B) 3B

≈

∫ C

0

V: (B) {q:} 3B

so that the displacement field can be accurately represented by244

{D}(C) ≈

 ∑

:=1

U: (C) {q:} (3.2)245

where U: (C) =

∫ C

0

V: (B) 3B. The coefficients (U: (C)): and (V: (C)): are called the reduced246

variables. For the sake of readability and mental correspondence between full-order un-247

knowns and reduced ones, we will use the convenient notations248

"(C) = (U1(C), ..., U (C))
) , #(C) = (V1 (C), ..., V (C))

)
249

where the exponent ) denotes the transpose of the matrix. The condensed matrix forms250

of (3.2) and (3.1) respectively are251

{D}(C) ≈ & "(C), {E}(C) ≈ & #(C), (3.3)252

where & = [{q1}, ..., {q }] ∈ M3 . Since the modes {q: } are assumed to be orthonormal253

(for the standard Euclidean inner product), the matrix & is a semi-orthogonal matrix, i.e.254

&)& = � . In particular, we have "(C) ≈ &) {D}(C) and #(C) = &) {E}(C).255

Note that the modes {q:} and reduced variables ", # are determined for each parameter256

set (�0, 0/ℓ), but a common value of the truncation rank  is chosen for all the sets. Its257

practical computation will be detailed in a next subsection, as well as that of the modes {q:}.258

3.2. ROM prototype259

The expressions {D̃}(C) = & "(C) and {Ẽ}(C) = & #(C) provide low-order representations of260

displacement and velocity fields respectively. We can now write equations for the reduced261

vectors "(C) and #(C) respectively. In this subsection, let us consider a projection Galerkin-262

type approach. Let us denote 〈., .〉 the standard Euclidean scalar product in R3 . Considering263

a test vector {F} in , = B?0=({i1}, ..., {i }), we look for an approximate displacement264

field ˜{D}(C) solution of the projected kinematics equations265

〈
3

3C
{D̃}(C), {F}〉 = 〈{Ẽ}(C), {F}〉 ∀ {F} ∈ ,.266

By considering each test vector {F} = {i:}, we get the consistent reduced kinematics267

equation268

¤" = #. (3.4)269

Consider now the projected field {Ẽ}(C) which is solution of the system of algebraic equations270

(Galerkin approach):271

〈{Ẽ}(C), {F}〉 = 〈i({D̃}(C)), {F}〉 ∀ {F} ∈ ,. (3.5)272

Again by taking the test vector {F} = {q:}, we have273

{q:}
)&V(C) = {q:}

) i(&"(C)).274
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Considering all : in {1, ...,  }, since & = [{q1}, ..., {q }] and &)& = � we get275

&)&#(C) = #(C) = &) i(&"(C)).276

It is in the form277

#(C) = iA ("(C)) (3.6)278

with the mapping iA : R → R
 defined by iA (") = &) i(&"). We get a reduced-279

order algebraic equilibrium equation. Unfortunately, because of the non-linearities in i,280

the computation of iA (") requires high-dimensional$ (3) operations, making this approach281

irrelevant from the performance point of view. A possible solution to deal with the non-linear282

terms would be to use for example Empirical Interpolation Methods (EIM) (Barrault et al.283

2004) but from the algorithm and implementation point of view, this would lead to an284

intrusive approach with specific code developments. We here rather adopt a linearization285

strategy in the following sense: by derivating (3.6) with respect to time, we get286

¤#(C) =
miA

m"
("(C)) ¤"(C).287

Thanks to the reduced kinematics equation (3.4), we get288

¤#(C) =
miA

m"
("(C)) #(C). (3.7)289

Since iA is hard to evaluate, it is even harder to evaluate its differential. But the differential290
miA
m"

("(C)) can be approximated itself, or replaced by some matrix �(C). Then we get a ROM291

structure (ROM prototype) in the form292

¤" = #(C), (3.8)293

¤#(C) = �(C) #(C). (3.9)294295

The differential system (3.8)-(3.9) is linear with variable coefficient matrix �(C) ∈ M (R).296

It can be written in matrix form297

3

3C

(
"(C)
#(C)

)
=

(
[0] � 
[0] �(C)

)

︸         ︷︷         ︸
=A(C)

(
"(C)
#(C)

)
. (3.10)298

The spectral properties of the differential system (3.10) are related to the spectral properties299

of matrix �(C). In particular, if all the (complex) eigenvalues _: (C) of �(C) are such that300

Re(_: (C)) < 0 for all : (uniformly distributed in time), then the system is dissipative.301

3.3. Nonintrusive approach, SVD decomposition and POD modes302

One of the requirements of this work is to achieve a non-intrusive reduced-order model,303

meaning that the effective implementation of the ROM does not involve tedious low-level304

code development into the FOM code. For that, a data-based approach is adopted: from305

the FOM code, it is possible to compute FOM solutions ({D}=, {E}=) at discrete times C=,306

= = 0, ..., # (C# = #ΔC = )), then store some snapshot solutions (called snapshots) into307

a database for data analysis and later design of a ROM. Proper Orthogonal Decomposition308

(POD) (Berkooz et al. 1993) is today a well-known dimensionality reduction approach to309

determine the principal components from solutions of partial differential equations. The310

Sirovich’s snapshot variant approach (Sirovich 1987) is based on snapshot solutions from a311

FOM to get a posteriori empirical POD modes {i:}. For the sake of simplicity, assume that312

the snapshot solutions are all the discrete FOM solution at simulation instants. Applying a313
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singular value decomposition (SVD) to the displacement snapshot matrix314

S
D
=

[
u1, u2, ..., u#

]
,315

of size 3 × # , we get the SVD decomposition316

S
D
= *Σ+) (3.11)317

with orthogonal matrices * ∈ M3 (R), + ∈ M# (R) and the singular value matrix Σ =318

3806(f:) ∈ M3×# (R), with f: > 0 for all : organized in decreasing order: f1 > f2 >319

... > fmin(3,# ) > 0. From SVD theory, for a given accuracy threshold Y > 0, the truncation320

rank  =  (Y) is computed as the smallest integer such that the inequality321

min(3,# )∑

:= +1

f2
:

min(3,# )∑

:=1

f2
:

6 Y (3.12)322

holds (Shawe-Taylor & Cristianini 2004). Proceeding like that, it is shown that the relative323

orthogonal projection error of the snapshots {E}= onto the linear subspace, spanned by the324

 first eigenvectors of * is controlled by Y. Denoting c, the linear orthogonal projection325

operator over, , we have:326

#∑

==1

‖{E}= − c, {E}=‖2
6 Y

#∑

==1

‖{E}=‖2.327

The matrix & is obtained as the restriction of * to its  first columns.328

3.4. Data-driven identification of coefficient matrix329

The system (3.8)-(3.9) is still not closed since the coefficient matrices �(C) are unknowns.330

From FOM data, one can try to identify the matrices by minimizing some residual function331

that measures the model discrepancy. The simplest linear model corresponds to the case332

where �(C) is searched as a time-constant matrix �. In this case, equation (3.9) becomes333

¤#(C) = � #(C). This is the scope of this article. From the time continuous problem, one could334

determine the matrix � by minimizing the least square functional335

min
�∈M (R)

1

2

∫ )

0

‖ ¤#(C) − �#(C)‖2 3C.336

But practically, we only have velocity snapshot data at discrete times and we do not have337

access to the time derivatives of the velocity fields. So the following numerical procedure338

is adopted: from the velocity snapshot matrix SE = [{E}1, ..., {E}# ], we compute first the339

reduced snapshots variables:340

#= = & {E}=, = = 1, ..., #.341

Next, we determine a matrix � that minimizes the least square cost function:342

min
�∈M (R)

1

2

#−1∑

==1






#=+1 − #=

ΔC
− �#=






2

(3.13)343

In (3.13), the finite difference
#=+1 − #=

ΔC
is a first-order approximation (in ΔC) of ¤# at time344

C=. In appendix A, we provide a mathematical analysis of the effect of time discretization345

Rapids articles must not exceed this page length
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in (3.13) about the impact on the stability of the resulting identified differential system346

compared to the initial one.347

The minimization problem (3.13) can be written in condensed matrix form348

min
�∈M (R)

1

2
‖Y − �X‖2

� (3.14)349

with the two data matrices350

X =
[
#1, #2, ..., ##−1

]
, Y =

[
#2 − #1

ΔC
, ...,

## − ##−1

ΔC

]
. (3.15)351

Because X and Y store reduced variables (of size  ), for a sufficient number of discrete352

snapshot times, these two matrices are horizontal ones. We will assume that the rank of X is353

always maximal, i.e. equal to  . The least-square solution � of (3.14) is then given by354

� = YX
† (3.16)355

where X† = X) (XX) )−1 is the Moore-Penrose pseudo-inverse matrix of X. This least356

square approach has close connections with SVD-based Dynamic Mode Decomposition357

(DMD) (Schmid 2010; Kutz et al. 2016).358

3.5. Tikhonov least-square regularized formulation359

From standard spectral theory arguments, it is expected that the POD coefficients rapidly360

decay when : increases as soon as both displacement and velocity fields are smooth enough.361

A possible side effect is the bad condition number of the matrix X, since the last rows of X362

have small coefficients (thus leading to row vectors close to zero ’at the scale’ of the first363

row of X). Even if the solution � in (3.16) always exists, the solution may be sensitive to364

perturbations, noise or round-off errors. In order to get a robust identification approach, one365

can regularize the least-square problem (3.14) by adding a Tikhonov regularization term (see366

e.g. (Aster et al. 2019))367

min
�∈M (R)

1

2
‖Y − �X‖2

� +
`

2
‖X‖2

� ‖�‖2
� (3.17)368

where the scalar ` > 0 is the regularization coefficient. The factor ‖X‖2
�

in the regularization369

term has been added for scaling purposes. The solution �` of (3.17) is given by370

�` = YX
)

(
XX

) + `‖X‖2
� � 

)−1

. (3.18)371

Choice of optimal regularization coefficient372

Of course, the solution matrix �` depends on the regularization coefficient ` and one can373

ask what is the optimal choice for `. There is a trade-off between the approximation quality374

measured by the residual ‖Y − �`X‖� and the norm solution ‖�`‖� . The minimization375

of ‖�` ‖� should ensure that unneeded features will not appear in the regularized solution.376

When plotted on the log-log scale, the curve of optimal values ` ↦→ ‖�`‖� versus the377

residual ` ↦→ ‖Y − �`X‖� often takes on a characteristic L shape (Aster et al. 2019). A378

design of experiment with the test of different values of ` (starting say from 10−12 to 10−3)379

generally allow to find quasi-optimal values of ` located at the corner of the L-curve, thus380

providing a good trade-off between the two criteria.381
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3.6. Reduced-order continuous dynamical system382

Once the matrix �` has been determined, we get the reduced-order continuous dynamical383

system384

¤" = #, (3.19)385

¤# = �` # (3.20)386387

with initial conditions"(0) = 0, v(0) = &) i({0}). At any time C, one can go back to the high-388

dimensional physical space using the POD modes: {D}(C) = &"(C), {G}(C) = {-} + {D}(C),389

{E}(C) = &#(C). As already mentioned, the system can be written in condensed matrix form390

¤w = A` w (3.21)391

where w(C) = ("(C), #(C))) and A` =

(
[0] � 
[0] �`.

)
.392

The exact analytical solution of (3.21) is393

w(C) = exp
(
A`C

)
w(0). (3.22)394

The stability of the differential system depends on the spectral structure ofA`, or equivalently395

on the spectrum of �`. Because of the stability of the fluid-capsule coupled system and from396

accurate solutions of the FOM solver, one can hope that the solution �` of the least-square397

identification problem has the expected spectral properties. This will be studied and discussed398

in the numerical experimentation section. From the kinetic energy point of view, it is shown399

in appendix B that the stability of the kinetic energy is linked to the property of the (real)400

spectrum of the symmetric matrix (�` + �
)
` )/2.401

Model consistency with steady states402

A steady state in our context is defined by a capsule that reaches a constant velocity {E}∞,403

so that the motion becomes a translation flow in time in the direction {E}∞. From (3.1),404

this shows that #(C) also reaches a constant vector #∞, and ¤# = 0 at steady state. As a405

consequence, from (3.20), we get �`#∞ = 0, meaning that 0 is an eigenvalue of �` with #∞406

as eigenvector. As a conclusion, the matrix �` must have zero in its spectrum in order to be407

consistent with the existence of steady states.408

3.7. Reduced-order discrete dynamical system409

Of course, it is also possible to derive a discrete dynamical system from the continuous one410

by using a standard time advance scheme. For example the explicit forward Euler scheme411

with a constant time step ΔC gives412

"=+1
= "= + ΔC #=, (3.23)413

#=+1
= #= + ΔC �`#

=. (3.24)414415

By multiplying (3.23) by & we get the space-time approximate solution416

{D}=+1
= {D}= + ΔC {E}=,417

so the ROM model is completely consistent with the kinematics equation. Stability properties418

of the discrete system are linked to the spectral properties of the matrix419

�Δ` =

(
� ΔC � 
[0] (� + ΔC �`)

)
420

For unconditional stability in time, it is required for the eigenvalues of � + ΔC �` to stay in421

the unit disk of the complex plane.422
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More generally, it is possible to use any other time advance scheme, according to the423

expected order of accuracy or stability domain.424

3.8. Accuracy criteria and similarity distances between ROM and FOM solutions425

In order to quantify the error induced by approximations, we introduce 3 accuracy criteria.426

The first accuracy criterion is the relative information content (RIC), defined by427

RIC( ) =

min(3,# )∑

:= +1

f2
:

min(3,# )∑

:=1

f2
:

,428

quantifies the relative amount of neglected information when truncating the number of modes429

at rank  . The truncation rank is determined such that the RIC is inferior to the accuracy430

threshold Y. The accuracy threshold Y is fixed to 10−6.431

The second accuracy criterion is the relative time residual R. It quantifies the relative error432

induced by the minimization of the least square cost function (3.13) using �`. It is given by433

R( 9 ) =
‖�`X 9 − Y 9 ‖

2

‖Y 9 ‖2
434

where X 9 represents the 9 Cℎ column of X and Y 9 the 9 Cℎ column of Y. The index 9 is thus435

linked to the snapshots ( 9 ∈ {1, ..., #}). To better draw a parallel between the evolution of436

this parameter and the capsule dynamics, this parameter will be represented as a function of437

the non-dimensional time +C/ℓ hereafter.438

The third accuracy criteria YShape(+C/ℓ) measures the difference between the 3D reference439

capsule shape given by the FOM (SFOM) and the 3D shape predicted by the ROM (SROM). It440

is defined at a given non-dimensional time +C/ℓ as the ratio between the modified Hausdorff441

distance (MHD) computed between S�$" and S'$" and non-dimensionalized by ℓ442

YShape(+C/ℓ) =
MHD(SFOM (+C/ℓ),SROM(+C/ℓ))

ℓ
443

The modified Hausdorff distance is the maximum value of the mean distance between SFOM444

and SROM and the mean distance between SROM and SFOM (Dubuisson & Jain 1994).445

4. Numerical experimentation on a given configuration446

The method is first applied to a given configuration, in order to set the model parameters447

and to study its stability and precision. We consider the dynamics of an initially spherical448

capsule flowing in a microchannel when �0 = 0.13 and 0/ℓ = 0.8. The time step between449

each snapshot ΔC equals to 0.04. The dynamics predicted by the FOM is illustrated in Fig. 3450

up to a non-dimensional time +)/ℓ = 10. As the capsule flows, its membrane is gradually451

deformed by the hydrodynamic forces inside the channel during a temporary time until a452

steady state is reached. We assume that the capsule has reached its steady-state shape, when453

the surface area of the capsule varies by less than 5× 10−4 × (4c02) over a non-dimensional454

time +C/ℓ = 1. For (�0 = 0.13, 0/ℓ = 0.8), the steady state is reached at +)((/ℓ = 6.2 and455

is characterized by a parachute capsule shape (Figure 3).456
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(a) (b)

Figure 3: Dynamics of a microcapsule flowing in a microchannel with a square
cross-section predicted by FOM in the vertical cutting plane represented in grey in (a).

The in-plane capsule profiles are shown for �0 = 0.13 and 0/ℓ = 0.8 at the
non-dimensional times +C/ℓ = 0, 0.4, 2, 4, 6 in (b). The horizontal lines on (b) represent
the channel borders. The capsule will always be represented flowing from left to right.

Figure 4: Evolution of the relative amount of neglected information 1-RIC, as a function
of the number of modes (�0 = 0.13, 0/ℓ = 0.8).

4.1. Proper orthogonal decomposition, truncation and modes457

The singular value decomposition is first applied to the displacement snapshot matrix. To458

determine the truncation rank, the evolution of 1- RIC is illustrated in Figure 4 as a function459

of number of modes considered. The RIC is about 1% only with one mode. The more modes460

is kept, the less information is neglected. In the following, we fix the number of modes to 20.461

The accuracy threshold Y is thus equal to 10−6.462

The modes are determined from the displacement snapshot matrix. They are added to463

the sphere of radius 1 and amplified by a factor 2 to be visualized. The first six modes are464

represented in Figure 5 for (�0 = 0.13, 0/ℓ = 0.8).465

The first six modes are mostly dedicated to change the shape of the rear of the capsule.466

The following modes appear to become noisy (not shown). However, these modes are not467

negligible, if one wants to get an accuracy of 10−6.468

4.2. Dynamic Mode Decomposition: empirical regularization469

Before determining the matrix �, we check the condition number of the matrices X and470

XX
T. They are respectively equal to 6.5×104 and 4.3×109. The condition numbers of these471

matrices are very high and the matrix �, determined by solving (3.16), may be sensitive to472

perturbations or noise. To improve the robustness, a Tikhonov regularization is applied to473

solve the least-square problem (3.13) and the matrix �` is computed using (3.18), which474

depends on the regularization coefficient `. To determine the optimal value of `, the relative475

least square error ‖�`X−Y‖�/‖Y‖� is represented according to the norm solution ‖�`‖�476



15

(a) (b) (c)

(d) (e) (f)

Figure 5: Representation of the first six modes of the capsule dynamics when
0/ℓ = 0.80 and �0 = 0.13. . To be visualized the modes of displacement were added to the

sphere of radius 1 and amplified by a factor 2.

Figure 6: Evolution of the norm solution ‖�`‖� as a function of the least square error
‖�`X−Y‖�/‖Y‖� when the number of modes is fixed to 20 and (�0 = 0.13, 0/ℓ = 0.8).

when 20 modes are considered and when ` is varied between 10−12 and 10−3 (Figure 6). The477

least square error ‖�`X − Y‖� and the norm solution ‖�`‖� are minimal when ` = 10−9.478

In the following, ` is thus fixed to ` = 10−9 and the number of modes to 20.479

4.3. Validity check of the ROM: spectral study of the resulting matrix480

In order to detect anomalies, a spectral analysis of the reduced-order model learned by the481

DMD method is carried out. The spectrum of the matrix �` is represented in Figure 7. All482

the eigenvalues _: of the matrix �` have non-positive real parts. The resulting linear ROM483

is thus stable.484

The temporal evolution of the residual R (Figure 8) shows that the error is less than485
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Figure 7: Eigenvalues _: of �` (�0 = 0.13, 0/ℓ = 0.8, 20 modes, ` = 10−9). Note that
the maximum real part of the eigenvalues is exactly equal to zero.

Figure 8: Temporal evolution of the normalized time residual with �0 = 0.13, 0/ℓ = 0.8,

20 modes and ` = 10−9.

0.7%. The maximal value is reached at the beginning of the simulation (+C/ℓ < 0.3) and R486

decreases afterwards. When +C/ℓ . 6, i.e. before the capsule has reached its steady state,487

high frequency oscillations are observed. This probably means that a high frequency mode488

is neglected, even if 20 modes are considered. For +C/ℓ > 6, Y'$" is of order 10−9. The489

stationary state is thus well predicted by the model and the error during the transient stage is490

more than acceptable.491

4.4. ROM online stage and accuracy assessment492

The displacement of all the nodes of the capsule mesh estimated by the ROM is then added493

to the corresponding node of the sphere of radius 1 to visualize the temporal evolution of the494

capsule shape in three dimensions. Figure 9 shows the capsule dynamics for the reference case495

(�0 = 0.13, 0/ℓ = 0.8). The ROM allows us to reproduce the capsule deformation from the496

initial state up to the parachute-shaped steady state. For the FOM and the ROM, the capsule497

profile is then determined in the cutting plane passing through the middle of the microchannel.498

Figure 10 shows that the two capsule profiles perfectly overlap at +C/ℓ = 0, 0.4, 2, 4, 6. The499

temporal evolution of YShape is shown in Figure 11a. The maximum value of the error500
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Figure 9: Dynamics of a microcapsule flowing in microchannel with a square
cross-section predicted by ROM at the non-dimensional time +C/ℓ = 0.4, 2.8, 5.2, 7.6, 10

with �0 = 0.13, 0/ℓ = 0.8, 20 modes and ` = 10−9. The initial spherical capsule is shown
on the left by transparency.

Figure 10: Comparison of the capsule contours given by the FOM (dotted line) and
estimated by the ROM (orange line). The capsule is shown for (�0 = 0.13, 0/ℓ = 0.8) at

the non-dimensional time +C/ℓ = 0, 0.4, 2, 4, 6. The horizontal lines represent the channel

borders. The number of modes is fixed to 20 and ` = 10−9.

committed on the 3D shape YShape equals to 0.004%. The error on the capsule shape YShape is501

thus negligible. The deformation of the capsule from its initially spherical shape to its steady502

state over an non-dimensional time +C/ℓ = 10 can thus be estimated very precisely with the503

developed reduced-order model.504

The DMD method predicts the capsule displacement at time C=+1 from that at time C=. The505

model has been constructed until now by considering the dynamics of the capsule over a506

non-dimensional time +C/ℓ of 10.507

In order to study the sensitivity of the ROM on the learning time +)!/ℓ, i.e. the non-508

dimensional time over which the model is trained, we modify it with values between 2 and509

8, knowing that the time to reach the steady state is in this case +)((/ℓ = 6.2. We estimate510

the capsule dynamics using the ROM model up to a non-dimensional time +C/ℓ of 10. The511

number of modes is always equal to 20 and ` = 10−9. The comparison of the estimated512

shape at+C/ℓ = 10 with the one simulated with the FOM (Figure 11a) shows that+)!/ℓ > 4513

is sufficient to predict very well the capsule dynamics. The Figure 11b confirms that the514

error on the capsule shape is negligible when +)!/ℓ > 4. It is interesting that the ROM515

model could predict the steady state even when )! < )(( . This could be due to the fact that516

the maximum real part of the eigenvalues is exactly equal to zero from +)!/ℓ > 4. The517

maximum real part of the eigenvalues is negative and close to zero for+)!/ℓ = 2. Figure 11c518

shows that, in the worst case (+)!/ℓ = 2), the error on the capsule shape increases with time519

but reaches a plateau from a time +C/ℓ of 8. The system is thus stable without exponential520

drift as proven by the negative value of the maximum real eigenvalue. In the zoom insert, the521

error also increases for the other learning times but remains very small (below 0.2%).522
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a)

b)

c)

Figure 11: a) Comparison of the capsule contours given by the FOM (dotted line) and
estimated by the ROM (orange line) for the different learning times +)!/ℓ. b) Evolution
of YShape measured at +C/ℓ = 10 as a function of the learning time +)!/ℓ. c) Influence of

the learning time +)!/ℓ on the temporal evolution of the error on the capsule shape
YShape. The error during the learning time is shown in solid line. For this case, the

parameters are 20 modes, ` = 10−9, �0 = 0.13 and 0/ℓ = 0.8.

5. Space-time ROM accuracy assessment over the full parameter sample set523

The capillary number �0 and the size ratio 0/ℓ are now considered as variable parameters.524

A database of 119 simulations of the deformation of an initially spherical capsule in a525

microchannel has been generated using the FOM with the same time step and mesh size as in526
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a) b)

Figure 12: a) Values of �0 and 0/ℓ included in the training database. b) Evolution of the
time +)((/ℓ needed to reach the steady state, on the training database. The dotted line

delimits the domain where a steady-state capsule deformation exists for capsules following
the neo-Hookean law.

section 4. Figure 12a shows the different values of�0 and 0/ℓ for which the simulations have527

been computed to create the training database. When the capsule initial radius is close to528

or larger than the microchannel cross-dimension (0/ℓ > 0.90), the capsule is pre-deformed529

into a prolate spheroid to fit in the channel. For a given 0/ℓ, a limit value of �0 exists530

beyond which a capsule does not reach a steady-state (Figure 12). This is due to the softening531

behavior of the neo-Hookean law.532

For the following, we have considered a learning time +)!/ℓ = 10. The evolution of the533

time+)((/ℓ needed to reach the steady state is illustrated in Figure 12b on the whole training534

database. The steady state is reached on average at a time +)((/ℓ of 6.2. However, we notice535

that for the cases close to the steady state limit, +)((/ℓ increases and exceeds the considered536

learning time.537

For all the couples (�0, 0/ℓ) of the training database, the capsule shape is reconstructed538

from the ROM results at given non-dimensional times and compared to the shape predicted539

by the FOM at the same non-dimensional time. The evolution of the error committed540

on the capsule shape Y(ℎ0?4 on the full database is illustrated in Figure 13 at +C/ℓ =541

0, 0.4, 1, 2, 5, 10. Y(ℎ0?4 is null at +C/ℓ = 0. The ROM is therefore able to predict the initial542

capsule shape correctly, whether it is spherical or slightly ellipsoidal. Until+C/ℓ 6 2, Y(ℎ0?4543

essentially remains zero on the majority of the database. Otherwise, it is equal to 0.15% at544

maximum. At +C/ℓ = 5 and 10, the error Y(ℎ0?4 slightly increases for most of the couples545

(�0, 0/ℓ) of the database. It remains fully acceptable since it is equal to 0.35% at maximum.546

When considering 20 modes and ` = 10−9, the developed ROM allows us to estimate with547

great precision the dynamics of an initially spherical capsule in a microchannel with a square548

cross-section.549

To respect the stability condition (see Equation 2.10), the time step imposed to simulate550

the capsule dynamics with the FOM decreases, when the �0 decreases. The lower the �0,551

the longer the simulation lasts (Figure 2). The time needed to calculate the capsule shape and552

write the results was estimated on the same workstation used to simulate and generate the553

result files with the FOM (2-CPU Intel® Xeon® Gold 6130, 2.1 GHz). The speedup is the554

ratio between the FOM runtime and the ROM runtime. Its evolution according to the FOM555

time step is illustrated in Figure 14. It was estimated from the ROM and FOM simulation556

time obtained when 0/ℓ = 0.7. The speedup varies between 52106 for a FOM time step of557

10−4 (i.e for the lowest value of �0 tested) and 4200 for 5 × 10−4 (i.e �0 > 0.05). It is thus558
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Heat maps of n(ℎ0?4 on the training database as a function of �0 and 0/ℓ at

(a) ¤WC=0, (b) 0.4, (c) 1, (d) 2, (e) 5, (f) 10 (obtained with 20 modes and ` = 10−9). The
dotted line delimits the domain where a steady-state capsule deformation exists.

possible to estimate the capsule dynamics very precisely with the developed ROM, while559

considerably reducing the computational time.560

Another significant advantage is the gain in storage of the simulation results. By storing561

only the reduced variables ", #, the modes {q: } and the initial position of the nodes of each562

couple \ = (�0, 0/ℓ), the training database is reduced from 1.9 GB, when computed with563

the FOM, to 0.15 GB with the ROM. It can therefore be more easily shared.564

6. Full space-time-parameter ROM (for any admissible parameter value)565

6.1. General methodology566

It is here again assumed that a training database of # precomputed FOM results is available.567

Now we would like to derive a ROM for any parameter couple ) = (�0, 0/ℓ) in the admissible568
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Figure 14: Evolution of the speedup as function to the time step imposed to simulate the
capsule dynamics with the FOM (0/ℓ = 0.7).

parameter domain. The proposed space-time-parameter ROM is made of two steps. The first569

step consists in predicting the space-time solution {u}(C; )) by means of a robust interpolation570

procedure. The second step consists in deriving a ROM in the form of a low-order dynamical571

system by using the predicted solutions of the first step as training data. Then we apply the572

former procedure detailed in Section 3. Below we give a detailed explanation of the two573

steps.574

Step 1: predictor step. Considering a parameter couple ) , we first search the three575

nearest neighbour parameters in the sample set that form a non-degenerate triangle in the576

plane (�0, 0/ℓ). Let us denote them by )1, )2 and )3. We will define a linear operator in577

the triangle ()1, )2, )3). For that, let us introduce the barycentric coordinates (_1, _2, _3),578

_ ∈ [0, 1], 8 = 1, 2, 3 such that579

_1 + _2 + _3 = 1, (6.1)580

)1_1 + )2_2 + )3_3 = ) . (6.2)581582

The 3 × 3 linear system (6.1),(6.2) is invertible as soon as the triangle ()1, )2, )3) is non-583

degenerate. Notice that the _8 (8 = 1, 2, 3) are actually functions of ) . Let us now denote584

by {D1}, {D2} and {D3} the displacement fields for the parameter vectors )1, )2 and )3585

respectively. Then we can consider the predicted velocity field û(C; )) defined by586

{D̂}(C, )) = _1{D1}(C) + _2{D2}(C) + _3{D3}(C). (6.3)587

Step 2: low-order dynamical system ROM. Expression (6.3) can be evaluated at

some discrete instants in order to generate new training data. Then the SVD-DMD ROM

methodology presented in Section 3 can be applied to these data to get a reduced dynamical

system in the form

¤"()) = #()),

¤#()) = �` ()) #()).

We also have a matrix &()) of orthogonal POD modes and we can go back to the high-588

dimensional physical space by the standard operations589

{D̂}(C, )) ≈ &()) "(C, )), {Ê}(C, )) ≈ &()) #(C, )). (6.4)590
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Figure 15: Values of �0 and 0/ℓ included in the testing database (open circle). The filled
squares represent the cases in the training database. The dotted line delimits the domain
where a steady-state capsule deformation exists for capsules following the neo-Hookean

law.

Notice that the capsule position field {x}(C, )) is given by591

{G}(C; )) = {-}()) + {D̂}(C, ))592

with an initial capsule position {-}()) that may depend on ) because of the pre-deformation593

preprocessing if 0/ℓ > 0.95.594

A testing database is created using the FOM as in Section 5 and considering (�0, 0/ℓ)-595

couples which are not in the training database. A set of 110 (�0, 0/ℓ)-couples are included596

in this database (Figure 15). For all the (�0, 0/ℓ)-couples of the testing database, the capsule597

dynamics is interpolated from the dynamics of the 3 closest neighbours at a given non-598

dimensional time. Capsule shapes obtained by the ROM are compared to the ones predicted599

by the FOM at the same non-dimensional time. Figure 16 represents the evolution of the error600

committed on the capsule shape Y(ℎ0?4 on the training database at+C/ℓ = 0, 0.4, 1, 2, 5, 10.601

At initial time, YShape is zero. The interpolation method is therefore able to capture the initial602

capsule shape. When the time increases, YShape increases and greater than if we apply directly603

the POD-DMD method on the FOM results and reconstruct the dynamics. However, YShape604

remains less than 0.3% on the majority of the testing database. It remains fully acceptable.605

YShape is more important near the steady-state limit and when we approach the lowest values606

of �0 because we are close to the limits of the training base.607

7. Application of the ROM to a capsule in simple shear flow608

To prove the generality of the proposed approach, we additionally apply the ROM to a609

capsule in simple shear flow. This classical case was extensively studied over the past years610

(Ramanujan & Pozrikidis 1998; Lac & Barthès-Biesel 2005; Li & Sarkar 2008; Walter et al.611

2010; Foessel et al. 2011; Barthès-Biesel et al. 2010; Dupont et al. 2015). The FOM results612

of an initially spherical capsule subjected to a shear rate ¤W are simulated using the unconfined613

version of the boundary integral - finite element method presented in section 2 (see614

Walter et al. (2010) for a detailed description of the method). The time step ΔC between615

each snapshot is equal to 0.04.616

We first build a ROM model that predicts the capsule dynamics until ¤WC = 10 with 15617

modes, a learning time of ¤W)! = 10 and ` = 10−6. We retrieve that the initial spherical618
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Heat maps of YShape on the testing database as a function of �0 and 0/ℓ at (a)
¤WC=0, (b) 0.4, (c) 1, (d) 2, (e) 5, (f) 10. The dotted line delimits the domain for which a

steady-state capsule deformation exists.

capsule elongates under the effect of the external flow in the straining direction and that the619

membrane rotates around the deformed shape due to the flow vorticity (Figure 17). The ROM620

is thus able to recover the tank-treading motion. A very good agreement between the ROM621

and FOM is seen in Figure 18 for the capsule profiles in the shear and perpendicular planes.622

Figure 19 shows the evolution of the maximum error on the capsule shape for different values623

of �0. At �0 = 0.1, the ROM model predicts well the time evolution of the global capsule624

shape but not precisely the wrinkle formation, leading to 2% error on average. But from625

�0 > 0.3, the error is reduced by an order of magnitude and is below 0.2%.626

We then perform some tests to be sure that the model is able to predict the tank-treading627

motion correctly after the learning time. Since the period is equal to 17.6 for �0 = 0.3, the628

learning time )! = 10 appears to be too short to capture the periodical motion. We consider629

a (safe) learning time )! = 20 and increase the number of modes to 60 to capture the630



24

(a) (b) (c) (d)

Figure 17: Snapshots of a capsule subjected to a simple shear flow estimated by the ROM

(�0 = 0.3, 15 modes and ` = 10−6): ¤WC = 0 (a), 1.6 (b), 4.8 (c), 6.4 (d). A red point is
placed on the membrane to visualize the tank-treading motion.

Lagrangian motion of the mesh along the capsule (Eulerian) steady shape. This convection-631

dominated motion of the capsule is known to be an unfavourable condition for dimensionality632

reduction and this is the reason why it is adequate to increase the number of modes. We have633

obtained the best tradeoff between accuracy, numerical conditioning and complexity using634

60 modes.635

The error on the 3D shape YShape, represented in Figure 20a, does not exceed 2%. Indeed,636

after a quasi-monotonic increase, it reaches a value of 1.7 at the end of the learning time637

( ¤WC 6 20) and remains almost constant during the extended prediction time (20 < ¤WC 6 30).638

This is very comforting for long-time stability and accuracy of the simulation. Furthermore,639

we study the spectral structure of the matrix �` and plot its eigenvalues in the complex640

plane in Figure 20b. All the eigenvalues have non-positive real parts showing the asymptotic641

stability property of the dynamical system.642

One may still wonder whether the DMD-ROM model is accurate only for capsule flows that643

converge towards a steady state. To answer the question, we have investigated the feasibility644

of applying the method to an initially ellipsoidal capsule in simple shear flow. Depending on645

the parameters, such a capsule exhibits a variety of dynamical regimes, which are periodical646

in many cases (Walter et al. 2011; Dupont et al. 2013, 2016). We apply the ROM model to647

the full dataset of FOM simulations for the same initial capsule. It is thus a case where the648

ergodicity hypothesis cannot be applied to improve the filling of the state space (see Tu et al.649

(2014)).650

At large �0, when the capsule exhibits a fluid-like behaviour, a large number of modes651

is required to capture the membrane rotation around the deformed shape. When the capsule652

behaves like a solid particle at low �0 and exhibits a tumbling motion, it is preferable to653

place the capsule within its own reference frame before applying the ROM method. The654

error is typically of a few percent and the capsule motion is well reproduced. An example655

of the tumbling dynamics predicted by the ROM is compared to the one simulated by the656

FOM in Figure 21. The ROM is able to reproduce more complex capsule dynamics (e.g.657

with periodical motion) and to capture deformation features including wrinkles, all this with658

a speedup of about 35 000.659

8. Discussion and conclusion660

As a summary, in this paper we have considered a )-parametrized reduced-order model of

microcapsule dynamics in the form

¤"()) = #()),

¤#()) = �` ()) #()).

The vector ) = (�0, 0/ℓ) contains the governing parameters, the coefficients U: (C, )) and661

V: (C, )) are spectral coefficients of POD decomposition for the displacement and velocity662
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Figure 18: Capsule subjected to a simple shear flow for �0 = 0.3: Comparison of the
contours in the shear and cross planes given by the FOM (dotted line) and estimated by the

ROM (orange line, obtained with 15 modes and ` = 10−6).

Figure 19: Evolution of the maximum error committed on the shape of a capsule subjected
to a simple shear flow as a function of the capillary number �0 (obtained with 15 modes

and ` = 10−6). The capsule dynamics was simulated up to a non-dimensional time ¤W = 10.

fields respectively, and the matrix �` ()) is identified from data using a dynamic mode663

decomposition least-square procedure. We have numerically proven for a broad range of664

capillary numbers �0 and size ratios 0/ℓ that it is able to capture the dynamics up to the665

steady state of a capsule flowing in a channel and its large deformations. As a first approach,666

we have presently chosen to use a DMD method that is linear in time to build the ROM667

model. Still the ROM model captures spatial non-linearity by means of the POD modes. The668

resulting reduced-order model is of great fidelity, weak discrepancies being only observed669

in the early transient stage. We have also shown that the learning time need to be larger than670
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a) b)

Figure 20: a) Evolution of the error committed on the shape of a capsule subjected to a
simple shear flow during the learning time (full line) and the extended prediction time

(dotted line). b) Representation of the eigenvalues of �` when 60 modes, ` = 10−6 and
�0 = 0.3 are considered.

the transient stage duration and that we can go beyond the FOM time window used for the671

training of the ROM model.672

For generalisation, we have computed the capsule dynamics for any parameter set. The673

generalization algorithm is based on interpolation: we first pre-calculate the ROM dynamic674

model at a finite number of points in the parameter space domain and determine the U,675

V and q: (and thus the capsule displacement) at these points. For any other value of the676

parameters, we first predict the time-evolution of the capsule node displacements using a677

linear interpolation procedure in the parameter space and then build a dynamical system678

based the DMD methodology. The error is mostly below 0.3% over the entire domain, which679

proves the precision and utility of the ROM approach.680

Like any other data-driven model, the model requires a certain number of high-fidelity681

simulations to provide accurate predictions. By discretizing the parameter space in a regular682

and homogeneous way (Figure 12), we have not presently tried to optimize the number of683

FOM simulations. But sampling strategies like the Latin Hypercube Sampling (LHS) exist684

and result in a net reduction in FOM simulation number. The empirical law, conventional685

among the data-driven model community, is that one needs between 10 × � and 50 × �686

points, where � is the dimension of the problem (� = 2 in our case). This law shows that the687

number of high-fidelity simulations does not explode with the problem dimension, owing to688

the linear dependence of the law.689

The linear differential model is stable as soon as the eigenvalues of �` have non-positive690

real parts, and is consistent with steady states as soon as zero is an eigenvalue. Numerical691

experiments show that identified matrices �` from data have eigenvalues with negative real692

parts and one of the eigenvalues is very close to zero.693

As it is often the case with spectral-like methods, there is a trade-off between accuracy694

and ill-conditioning effects: when a large number of POD modes are used ( > 20), the695

data matrix X of snapshot POD coefficients is ill-conditioned. For the determination of �`,696

we have used a Tikhonov regularization in the least square cost function (see (3.17)) in697

order to have a better conditioned problem and a !-curve procedure to determine the best698

regularization coefficient `. Unfortunately we observe some limitations in the accuracy.699

A perspective would be to use a proximal approach: within an iterative procedure, at700
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Figure 21: Tumbling motion of a prolate capsule (aspect ratio = 2) subjected to a simple
shear flow (�0 = 0.1): a) Comparison of the 3D shape given by the FOM (in gray) and

estimated by the ROM (in orange, obtained with 50 modes and ` = 10−6). Comparison of
the 2D profil b) in the shear plane and c) in the crossed plane. The time step ΔC between

each snapshot is equal to 0.04.

iteration (? + 1), compute the matrix �
(?+1)
` solution of701

�
(?+1)
` = arg min

�∈M (R)

1

2
‖Y − �X‖2

� +
`

2
‖X‖2

� ‖� − �
(?)
` ‖2

�702

using �
(0)
` = 0. At convergence, one can observe that the regularization term vanishes, so703

that one can expect better accuracy with this approach. This will be investigated in a future704

work.705

We have proposed a successful and very efficient ROM for FSI problems. It is an alternative706

to the use of HPC. It must be seen as a complimentary (and non-competing) approach to707

full-order models, and has many advantages. Among them, one can mention the easiness708

in implementation. It leads to a very handy set of ODEs, that are easy to determine from709

an algorithmic point of view. Furthermore, the system can be run on any computer. The710

size of the matrices is, indeed, reduced from (3 × 2562 nodes × 250 snapshots) to about711

(3×2562 nodes × ( +1)), where the number of modes is  = 20. The computation required712
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time is a few milliseconds for one parameter set. The current speedups are between 5 000 and713

52 000, which out-performs any full-order model approach. We believe that this work is an714

encouraging milestone to move toward real time simulation of general coupled problems and715

to deal with high-level parametric studies, sensitivity analysis, optimization and uncertainty716

quantification.717

The next milestone following this work would be to go toward non-linear differential718

dynamical systems as reduced-order models. There is three natural ways for that. The first719

one is to use Kernel Dynamic Model Decomposition (KDMD) rather than DMD. But we have720

recently shown in De Vuyst et al. (2022) that a non-linear low-order dynamical model does721

not provide significant improvement. The second one is to use Extended Dynamic Model722

Decomposition (EDMD) (Williams et al. 2015). The EDMD method adds some suitable723

non-linear observables (or features) in the data, so that a linear ’augmented’ dynamical724

system is searched for. A third option is would be to directly use artificial neural networks725

(ANN), in particular recurrent neural networks (RNN) (Trischler & D’Euleuterio 2016). The726

RNN training would replace the DMD procedure, and would be trained with the same POD727

coefficient matrices X and Y. As shown in the recent study by Lin et al. (2021), artificial728

intelligent may prove to be efficient and precise to predict capsule deformation.729
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Appendix A. Effects of time derivative discretization on matrix estimation741

In section 3.4, we explain how to identify the coefficient matrix � from a least square problem742

that tries to minimize the squared residual

∫ )

0

‖ ¤#(C) − � #(C)‖2 3C. For practical reasons743

and because of a finite number of data, we have to discretize the functional and in particular744

the time derivatives by means of finite differences. This section is dedicated to the analysis745

of the effect of discretization on the estimation on �, and in particular on the effect on the746

spectrum of � and the impact on the stability of the identified model.747

The notations here are specific to this section. Suppose we have a reference linear dynamical748

system whose equations and initial data are respectively749

¤v = �A4 5 v, C ∈ [0, )], v(0) = v0 ∈ R ,750

where �A4 5 ∈ M (R). The solution of the differential problem problem is given by v(C) =751

exp
(
�A4 5 C

)
v0, C ∈ [0, )]. Suppose that we don’t know �A4 5 but we have access to the exact752

solutions v= = v(C=) at discrete times C= = =ΔC, = ∈ {0, ..., #} where with ΔC = )/# . The753

(v=)= will be used as data for the identification (estimation) of the matrix �A4 5 . Consider754
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the least square minimization problem755

min
�∈M (R)

1

2

#−1∑

8=0






v=+1 − v=

ΔC
− �v=






2

. (A 1)756

Since v= = exp
(
�A4 5 =ΔC

)
v0 for all =, we have also v=+1 − v= = exp

(
�A4 5 ΔC

)
v=. So (A 1) is757

equivalent to758

min
�∈M (R)

1

2

#−1∑

8=0








(
exp

(
�A4 5 ΔC

)
− �

ΔC
− �

)
v=








2

= min
�∈M (R)

1

2








(
exp

(
�A4 5 ΔC

)
− �

ΔC
− �

)
X








2

�

759

with X = [v0, v1, ..., v#−1] ∈ M # (R). The first-order optimality conditions are760

�XX) =

(
exp

(
�A4 5 ΔC

)
− �

ΔC

)
XX

) .761

As soon as X is a full-rank matrix (meaning that # >  and we reasonably have  linearly762

independent measurements of v=), the matrix XX) is invertible and we get the estimate763

� =
exp

(
�A4 5 ΔC

)
− �

ΔC
. (A 2)764

Let us denote by _
A4 5

:
(resp. _:) the (complex) eigenvalues of �A4 5 (resp. �). We have765

_: =
4_
A4 5

:
ΔC − 1

ΔC
. Suppose now that we use a small time step ΔC. From a Taylor expansion,766

we observe that767

_: = _
A4 5

:
+
ΔC

2
(_
A4 5

:
)2 + >(ΔC).768

We would like to study what is the effect of the first-order error term ΔC
2
(_
A4 5

:
)2 on the769

stability of the reconstructed dynamical system ¤v = �v. Suppose that the complex number770

_
A4 5

:
has real and imaginary parts 0 and 1 respectively. Then771

_: =

(
0 +

ΔC

2
(02 − 12)

)
+ 81(1 + 0ΔC) + >(ΔC).772

If 0 = Re(_
A4 5

:
) 6 0, what are the conditions to keep Re(_: ) 6 0 ? We consider two cases:773

•If 0 = 0 (with 1 ≠ 0), _
A4 5

:
is pure imaginary, meaning that the :-th field is a center for774

the reference dynamical system. In this case _: = −ΔC
2
12 + >(ΔC) < 0 for a small enough ΔC.775

•Consider now the case 0 ≠ 0. There are two sub-cases. If 02 6 12, then Re(_: ) 6 0 for a776

small enough ΔC. If 02 < 12, the condition Re(_: ) 6 0 gives777

ΔC + >(ΔC) = −
20

02 − 12
.778

So there is again a time step ΔC★ > 0 for which, for any ΔC < ΔC★ we have Re(_: ) 6 0.779

As a conclusion, starting from a stable linear dynamical system (in the sense that780

Re(_
A4 5

:
) 6 0 for all :), using a small enough time step ΔC and the forward Euler time781

discretization, the identification method leads to an estimated dynamical system which is782

also stable.783

Let us underline that this could not be the case using another time discretization as e.g. for784
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the backward Euler time discretization and the associated least square problem785

min
�∈M (R)

1

2

#−1∑

8=0






v=+1 − v=

ΔC
− �v=+1






2

. (A 3)786

Using identical developments, we would get in this case � =
�−exp(−�A4 5 ΔC)

ΔC
and787

_: =

(
0 −

ΔC

2
(02 − 12)

)
+ 81(1 − 0ΔC) + >(ΔC).788

We observe that for a center with a pure imaginary eigenvalue _
A4 5

:
= 8 1, 1 ≠ 0, one gets789

_: =
ΔC
2
12 + >(ΔC) therefore _: > 0 for a small enough ΔC. This is a counter-intuitive result:790

for numerical simulations, it is known that the backward Euler scheme provide more stability791

than the forward one. For system identification with time discretization of the residual term,792

it is safer to use the forward Euler scheme for stability of the estimated dynamical model.793

Appendix B. Kinetic energy dissipation794

Another quantity of interest is the capsule kinetic energy ‖{E}‖2. Since the capsules are

expected to reach a steady state after a transient stage in the Stokes pipe flow, the kinetic

energy should also reach a constant value. From the differential equations, semi-orthogonality

of & and symmetry property of the scalar product, we successively have

3

3C

(
1

2
‖{E}‖2

)
=
3

3C

(
1

2
〈&#, &#〉

)

=
3

3C

(
1

2
‖#‖2

)

= 〈#, ¤#〉

= 〈#, �`#〉

=
1

2
〈#, �`#〉 +

1

2
〈#, �)` #〉

= 〈#,
�` + �

)
`

2
#〉.

So stability properties on the kinetic energy are related to the spectral nature of the795

(symmetric) matrix �(` =
�`+�

)
`

2
. Dissipation property is linked to the non-positiveness796

of the (real) eigenvalues of �(`.797

Appendix C. Practical computation of the pseudo-inverse matrix798

The Moore-Penrose pseudo-inverseX† of a matrixX of size 3× , 3 >  , with rank(X) =  799

is defined by800

X
†
= X

) (XX) )−1. (C 1)801

For an ill-conditioned matrix X, the direct computation of X† by formula (C 1) is unsuitable802

because the condition number of XX) is the square of that of X. A more robust procedure803

can be derived by help of the QR factorization. There exists a semi-orthogonal matrix &̂804

of size 3 ×  and an upper triangular square matrix ' of size  ×  such that X) = &̂'.805
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Moreover, ' is invertible because X is assumed to be a full-rank matrix. Since X† is the806

solution of the matrix system807

X
† (XX) ) = X) ,808

we get809

X
† ') &̂) &̂' = &̂'.810

By multiplying by '−1 to the right, since &̂) &̂ = � we get811

X
†
= &̂ (') )−1.812
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