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ABSTRACT 

 

The purpose of this study was to develop an inverse method, coupling imaging techniques 

with numerical methods, to identify the muscle mechanical behavior.  

A Finite Element Model Updating (FEMU) was developed in three main interdependent steps. 

Firstly a 2D FE modeling, parameterized by a Neo-Hookean behavior (C10, D), was 

developed from a segmented thigh muscle MRI (1.5T). Thus, a displacement field was 

simulated for different static loadings (contention, compression, indentation). Subsequently, 

the optimal mechanical test was determined from a sensitivity analysis.  Secondly, ultrasound 

parameters (gain, dynamic and frequency) were optimized on the thigh muscles in order to 

apply the digital image correlation (DIC), allowing the measurement of an experimental 

displacement field. Thirdly, an inverse method was developed to identify the Neo-Hookean 

parameters (C10, D), by performing a minimization of the distance between the simulated and 

measured displacement fields. To replace the experimental data and to quantify the 

identification error, a numerical example was developed. 

The result of the sensitivity analysis showed that the compression test was more adapted to 

identify the Neo-Hookean parameters. Ultrasound images were recorded with a frequency, 

gain and dynamic of 9MHz, 34db, 42db, respectively. In addition, the experimental noise on 

displacement field measurement was estimated to 0.2 mm. The identification performed on 

the numerical example revealed a low error for the C10 (< 3%) and D (< 7%) parameters with 

the experimental noise. 

This methodology could have an impact in the scientific and medical fields. A better 

knowledge of the muscle behavior will help to follow treatment and to ensure accurate 

medical procedures during the use of robotic devices. 

 



3 
 

1. INTRODUCTION 

 

Several types of elastic garments have been developed to facilitate recovery, to 

increase performance or to prevent muscular lesions and pathologies. These elastic 

compressions mainly improve the backflow of blood to the heart. The influence of the 

compression was determined by hemodynamic or measurement of physiological parameters, 

during or after exercise, and its effect on the recovery or performances was analyzed with 

contradictory results [1]. A way to study the impact of the restraint is to use the muscle 

mechanical behavior as an indicator [2-4].  

 

Recently, medical imaging was further developed as a clinical tool to assess the 

muscle mechanical behavior. Elastography techniques, based on ultrasound [5-6] or Magnetic 

Resonance Imaging [7-9.], were used in clinical practice by applying a dynamic excitation. 

Subsequently, the assumption of infinitesimal strain theory provided the elastic and viscous 

parameters of the muscle [5, 8]. Medical imaging can be also used to identify the linear elastic 

properties from a static loading using similar assumptions [10-12]. However, in case of finite 

strain theory the muscle behavior will not be correctly represented.  

 

A way to better describe these large strains was to characterize the nonlinear properties of the 

muscle, represented by an uncompressible [13-14.] or a compressible [2-3, 15] hyperelastic 

behavior. Thus, tumors from breast tissue were discerned using the spatial distribution of the 

hyperelastic material properties [16, 17]. Indeed, B-mode ultrasound signal was correlated 

between several images [18, 19] in order to measure the displacement and strain fields. Other 

studies used Magnetic Resonance Imaging with quasi-static loading in order to identify the 

Neo-Hookean hyperelastic soft tissue behavior [2-3, 15]. Thus, the skin, the muscle and the 
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bone contours were obtained from MRI deformed muscle images, and then compared with the 

finite element simulation built from a 2D segmented MRI. Instead of using the contours, the 

MR tagging method was developed to measure the displacement and strain fields [20, 21]. 

Currently, only the relation between the force and the displacement was identified and not the 

muscle behavior.  

 

The challenge of this work is to develop experimental and numerical tools allowing 

the identification of the hyperelastic heterogeneous mechanical behavior of muscle tissues. 

The experimental protocol was based on ultrasound image acquisitions which were coupled 

with Digital Image Correlation (DIC) to evaluate the displacement field. It must be noted that 

the DIC method was never applied from in vivo human soft tissue ultrasound acquisitions. 

Thus, the experimental issue was the optimization of the ultrasound parameters. In parallel, 

the first numerical issue was to determine the mechanical test in order to obtain the 

compressible hyperelastic parameters. The second numerical issue was to validate the present 

inverse method through the estimation of the identification error from a developed numerical 

example.   
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2. MATERIALS AND METHODS 

2.1.Identification approach 

The Finite Element Model Updating (FEMU) was decomposed in three main interdependent 

steps: the set-up of an experimental protocol (Fig. 1.C), the development of a finite element 

model (Fig. 1.A), and the development of an inverse method (Fig. 1.D).  

 

2.1.1. Experimental protocol  

The set up was previously published by Affagard et al. [22] and is briefly described. A 

mechanical loading was applied on the thigh muscles (Fig. 2), and ultrasound images of 

uncompressed and compressed muscle were acquired on the lower third part of the thigh 

because this area was surrounded with less adipose tissue. Thus, the muscle tissues were more 

easily to strain. Scans were acquired with an ultrasound system (Logiq-E9, GE Healthcare, 

US) with a ML6-15 probe (GE Healthcare, US). The probe was positioned on the thigh 

transversal slice and fixed in order to avoid motion. Then, a Digital Image Correlation (DIC) 

was performed between these 2 images in order to obtain a measurement of the horizontal and 

vertical displacement fields [23, 24] which was the first input of the present identification 

process. The ultrasound images had to be acquired with a specific texture (high contrast and 

dynamic of the speckle) required by the DIC in order to perform the full-field measurement. 

The displacement field measurement was performed with the Correli_Q4 software [25, 26]. 

The particularity of this software is to regularize the displacement field as a decomposition of 

shape functions.  
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2.1.2. Finite element model  

The computational modeling ran on ABAQUS software [27] and was developed to obtain the 

muscle simulated displacement field. A 2D Finite Element (FE) model of the thigh was 

developed considering the plane strain assumption.  

 

2.1.2.1.Mesh generation 

The geometry of the thigh was obtained with a 1.5T MRI machine (GE, Signa HDx, 

Milwaukee, WI, USA) and a fast spin echo sequence (TR: 1800ms, TE: 7ms, FOV: 

1518x3068, thickness: 3mm). Then, the slice of interest was segmented using Scan IP 

software (Simpleware, Exeter, UK) [28]. For the FE model, the bone was considered rigid due 

to its higher stiffness compared to its environmental soft tissues. The thigh geometry was 

divided in five regions corresponding to the adipose tissue and four muscles (quadriceps, 

ischio, gracilis and sartorius) (Fig. 1.A). The mesh was created using ABAQUS software. The 

mesh validation was performed by comparing the type (hybrid formulation and reduced 

integration) and the number of elements. Hybrid formulation allowed to avoid the hourglass 

effects. In addition, the integration was performed on 4 gauss points because the accuracy of 

the nodal displacement must be lower than the experimental noise (10-2 mm). Subsequently, 

the number of elements was tested (from 6000 to 26 000 nodes) using the fixed parameters 

(Table 1). The accuracy of the nodal displacement was lower than 10-4 mm whatever the 

number of elements was. However, the number of elements was chosen to 25 392 in order to 

avoid the distortion during the identification process. Thus, the mesh was composed of 25392 

CPE4H elements (4-node linear elements, hybrid with constant pressure), corresponding to 

40776 nodes, and the integration was performed on 4 gauss points. Each tissue was assumed 

to be homogeneous. The skin and the blood vessels were not modelled. The skin was included 

in the adipose tissue area and the blood vessels were incorporated in the nearest soft tissue. It 
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was assumed that the incorporated tissues contributed to the average, in terms of elastic 

properties. 

 

2.1.2.2.Material constitutive law 

In this study, the soft tissue mechanical behavior was assumed to be compressible 

hyperelastic, governed by the assumption of large strain theory.  The compressibility was 

justified by a volume variation before and after the mechanical loading [2, 3].  

A Neo-Hookean behavior (C10, D) was chosen and the strain energy density function (W) was 

written as: 

    
2

10

1

1 3 1W
D

JC I  
 

(1) 

Where C10 and 𝐷 are parameters describing the hyperelastic behavior, 𝐽 = 𝑑𝑒𝑡(𝐹), 𝐼1̅ =

𝐽
−2

3⁄ . 𝐼1 and 𝐼1 = 𝑇𝑟(𝐹𝑇. 𝐹) with 𝐹 the deformation gradient tensor and 𝑇𝑟 the matrix trace. 

The 𝐷 parameter is the compressibility parameter and 𝐾 =  D
2⁄  is the bulk modulus. 

 

The hyperelastic behavior of the entire model was driven by ten parameters: 𝐶10
𝑓

 and 𝐷𝑓 for 

the adipose tissue, 𝐶10
𝑞

 and 𝐷𝑞 for the quadriceps muscle, 𝐶10
𝑖  and 𝐷𝑖 for the ischio muscle, 

𝐶10
𝑠  and 𝐷𝑠 for the sartorius muscle and 𝐶10

𝑔
 and 𝐷𝑔 for the gracilis muscle. All these 

parameters are collected in a vector, denoted θ. 

 

2.1.2.3.Quasi-static loading tests and boundary conditions  

Different numerical static loadings (contention, compression, indentation) (Fig. 3) were 

simulated to evaluate the best test enabling an accurate and fast identification of all 

parameters (C10, D). In order to characterize the adipose tissue and the four muscles, it was 

necessary to perform either four indentation tests or two compression loadings or one 
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contention test. Along the internal bone contour (femur), Dirichlet conditions, which fix all 

degrees of freedom, were imposed. Along the external contour, the boundary conditions 

which depend on the applied quasi-static loading were applied.  

Concerning the contention test (Fig. 3.A), a Neumann condition equal to 20 mmHg pressure, 

corresponding to a classic containment pressure, was imposed. As for the indentation (Fig. 

3.B) and the compression (Fig. 3.C) tests, a rigid body was added to simulate the loading with 

a force of 3N and 0.1N, respectively. These load levels were chosen so that the maximal stress 

was the same (Figs. 3.D-F).  

 

2.1.3. Inverse method 

To identify the ten material parameters (C10, D), a cost function (J(θ)) based on the 

comparison of the measured and simulated displacement fields (Fig. 1.D) was defined as a 

quadratic discrepancy:  

 𝐽(𝜃) = 1
2⁄ (𝑈̃ − 𝑈̅(𝜃))𝑇(𝑈̃ − 𝑈̅(𝜃)) (2) 

where 𝑈̃ is the simulated displacement referring to the data from the numerical example 

mimicking the experiment and 𝑈̅ is the calculated displacement. The identification of θ was 

performed through the minimization of the cost function in order to yield the best set of 

parameters in a least square manner. The minimization was carried out through a BFGS 

(Broyden–Fletcher–Goldfarb–Shanno) algorithm (MATLAB 2009). 
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2.2. Set up of the ultrasound parameters 

To perform the DIC in optimal conditions, the ultrasound image speckle must have a high 

contrast and a high dynamic. Several preliminary adjustments were performed and only three 

interdependent parameters (frequency, gain and dynamic) were considered to have an 

significant influence on DIC result. The frequency, the gain and the dynamic have an impact 

on the signal/noise ratio, the pixel intensity and the contrast, respectively. 

 

These ultrasound images were acquired on two male and two female sportive volunteers 

(30.5±3.5 years old, BMI = 21.3) without venous and muscle pathologies. Three criteria were 

introduced in order to evaluate the image quality: 

a. To acquire the bone tissue in order to use it as a boundary condition for the FE 

modeling 

b. To obtain a large grey level distribution without any saturation  

c. To obtain the lowest displacement random error following the application of the DIC 

The first criterion was related to the bone depth information. Due to the bone depth 

within the thigh, the ultrasound acquisitions were performed on the back side (biceps femoris) 

where it was possible to acquire bone and muscle on the same ultrasound image. 

Subsequently, the ultrasound acquisition frequency was decreased (13 MHz, 11 MHz, 9 MHz) 

until the information of bone depth area was sufficient for performing DIC whatever the thigh 

section of interest was with the highest spatial resolution (Fig. 4). During this tuning, the gain 

and the dynamic parameters were chosen in a medium range corresponding to 47 dB and 42 

dB, respectively. 

 

The second criterion was based on the grey histograms which are dependent of the 

image contrast influenced by the gain (G) parameter and the dynamic (Dyn) one. Both 
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parameters impact the pixel intensity. Indeed, in the mechanical field, the speckle is usually a 

random white and black distribution in order to perform the DIC [25]. In the present 

ultrasound thigh images, the black and white colors show up in the same area leading to 

saturation peak harmful for the DIC. 

For instance, the couple (G: 30 dB, Dyn: 42 dB) provided a large repartition of the grey level 

histogram with a low saturation (black: 0 or white: 255 level) (Figs. 5.A,D). An increase of 

the gain (G: 37 dB) showed a shift of the grey level histogram (Figs. 5.B,E) while an increase 

of the dynamic (Dyn: 96 dB) revealed a narrow histogram (Figs. 5.C,F). In addition, the 

dynamic parameter has an effect on the contrast leading to an adjustment of the gain (G: 65 

dB). 

Subsequently, the gain and dynamic parameters were optimized based on the results of the 

grey level histogram. Several values of the dynamic, available in the Logiq-E9 ultrasound 

machine, were fixed (36 dB, 42 dB, 48 dB, 51 dB, 54 dB, 57 dB), and for each one, few gains 

(from 26 dB to 45 dB) were tested in order to define the optimal ones (Fig. 6).  

 

From the optimal gain and dynamic parameters, the third criterion represented by the 

lowest displacement random error was quantified.  

Thus, two ultrasound acquisitions realized with an interval of few seconds (≈ 3 to 5 seconds) 

were acquired without compression in the quadriceps area (Fig. 2) for eight subjects. Then, 

the DIC was applied in order to measure the horizontal and vertical displacement fields. 

Subsequently, the standard deviation of the measured displacement fields was considered as 

an indicator of the random error since any loading was performed on the thigh, and it was 

assumed that the soft tissues were not deformed.  

For each subject and each couple (gain/dynamic), the ultrasound acquisitions were repeated 

13 times, corresponding to 12 DIC leading to 12 standard deviations. 



11 
 

Paired t-tests were performed in order to compare the standard deviations of the horizontal 

and vertical displacement fields between each couple. The statistical analysis was significant 

for P < 0.05 using the software Statgraphics 5.0 (Sigma Plus, Maryland, USA).  

 

2.3.Determination of the mechanical test from a sensitivity analysis  

To determine the optimal loading, a sensitivity (S) analysis was performed on each 

mechanical test. The sensitivity of the finite element displacement field (U) was carried out 

for each Neo-Hookean’s parameter (𝜃𝑘) following the criteria proposed by Tarantola [29]: 

 𝑆𝜃𝑘
= ‖𝜕𝑈

𝜕𝜃𝑘
⁄ ‖ ‖𝑈

𝜃𝑘
⁄ ‖ , ∀𝑘 ∈ {1, … ,10}⁄  (3) 

where k represents each line number of the vector θ. 

The derivative was estimated from a finite difference approximation with a parameters step of 

5.10-2 % [30]. A higher sensitivity corresponds to a more influent material parameter on the 

displacement fields. 

 

2.4.Numerical example 

The development of the numerical example (Fig. 1.B) had two aims. The first was to replace 

the experimental measurement in order to demonstrate the feasibility of the identification 

process. The second was the quantifying of the identification error for the Neo-H parameters. 

This numerical example was developed as realistic as possible in order to provide an 

estimation of the identification accuracy.  

 

2.4.1. Development of a numerical example  

The displacement fields corresponding to simulated measurements were built from the finite 

element model (Fig. 1.B) where the Neo-Hookean parameters (C10, D) of each material 

(adipose tissue, quadriceps, ischios, gracilis and sartorius) were fixed according to the 
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literature and summarized in Table 1. Indeed, in the literature, the muscles of interest 

(quadriceps, ischios, gracilis and sartorius) were mainly in vivo characterized in term of linear 

elasticity, where the Poisson ration is chosen close to 0.5. Thus, the C10 parameters for the 

adipose and thigh muscles were calculated from the shear modulus values obtained from in 

vivo MRE (Magnetic Resonance Elastography) measurements [7, 8]. Indeed, assuming the 

isotropy and the infinitesimal strain theory, the C10 Neo-Hookean parameter was related to the 

shear modulus (µ) as: C10 = μ/2. The fixed C10 parameters being in the same range as Tran’s 

study [15], it was decided to fix the D parameters also in the same range from this study.  

Subsequently, a finite element simulation was performed with the fixed parameters 

providing the nodal displacements, which were projected onto a regular data grid revealing 

the DIC information. The projection was performed with a 16 pixels meshsize corresponding 

to 64x64 data points. In addition, a Gaussian white noise (δ ~ N (0, σ²)) was added to 

simulate the experimental noise. 

 

2.4.2. Quantification of the identification error  

The identification error was quantified for all the Neo-Hookean parameters as the relative 

error corresponding to the difference between the reference (θk_reference), which was composed 

of the initial values fixed in the numerical example from the literature (Table 1), and the 

identified (θk_identified) parameter resulting from the identification: 

 
𝐸𝑟𝑟𝑜𝑟 = |

𝜃𝑘_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 − 𝜃𝑘_𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝜃𝑘_𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
| 

(4) 

Five initializations, based on a Latin hypercube, were performed and only the error related to 

the lowest cost function was presented.  

Moreover, in this study, the D parameters of the gracilis, sartorius and ischios muscles, which 

have similar morphological and functional properties, were grouped in order to decrease the 

identification error.  
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3. RESU LTS 

3.1.Optimization of the ultrasound parameters 

3.1.1. Frequency  

The high frequencies, 13 MHz and 11 MHz, did not provide enough tissue information in 

depth close to the bone tissue (Figs. 4.B,C). However, Fig. 4.A showed more visible tissue 

structure in depth using a 9 MHz frequency. Therefore, the DIC was performed on ultrasound 

images acquired at 9MHz.  

 

3.1.2. Result of the optimal gain for a fixed dynamic  

Fig. 6 showed the results of the tested gain for each dynamic. The selected couples (gain, 

dynamic) were represented by a black circle. It can be noticed the optimal gains, based on the 

grey level histogram, increased as a function of the dynamic. For the 54 dB and 57 dB 

dynamics several gains were optimal. 

 

3.1.3.  Comparison of the optimal couples 

The histogram of the standard deviation for each optimal couples was represented Fig. 7. No 

significant difference was found between the standard deviations for both horizontal and 

vertical displacement fields. As a consequence, the random errors were in the same range 

whatever the couple was. The couple (Dyn: 42 dB, G: 34 dB) was chosen as optimal due to its 

lower standard deviations for both displacement fields and also for its lower variance (Fig. 7).  

For the numerical example, the standard deviation of the white noise (δ ~ N (0, σ²)) was 

chosen equal to 1.5 pixels, corresponding to 1.76.10-2mm, for both displacement fields. The 

noise value was set up according to the standard deviation calculated for the optimal couple 

(horizontal displacement field: from 0.96 to 1.48 pixels, vertical displacement field: from 0.73 

to 1.19 pixels.  
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3.2. Result of the sensitivity analysis 

 

Fig. 8 illustrated the displacement sensitivity for the Neo-Hookean parameters (C10, D) for the 

quadriceps muscle as a function of the three different loadings.  

The contention test showed a cartography of sensitivity with higher values for the D 

parameter (Fig. 8.D) compared to the C10 coefficient (Fig. 8.A). Furthermore, it was observed 

that the D parameter had a higher sensitivity within the corresponding muscle (quadriceps) 

area, while the C10 parameter showed sensitivity randomly localized within the thigh.  

The comparison of the Neo-Hookean parameters, obtained with the indentation test, revealed 

higher sensitivity values for the C10 (Fig. 8.B) compared to the D coefficient (Fig. 8.E). The 

high sensitivity values of the C10 parameter were localized in small quadriceps areas. The 

main drawback of this present test would be the numerous performed indentations, and 

therefore the corresponding finite element simulations, around the thigh.   

Concerning the compression test, the C10 parameter (Fig. 8.C) showed higher sensitivity 

values than the D parameters. In addition, the cartography corresponding to the D coefficient 

revealed a higher sensitivity in the investigated muscle (quadriceps) (Fig. 8.F). 

Similar results were obtained for the other parameters with the three configurations, but not 

presented, because the results were similar. 

 

The comparison of all the results showed that, for each loading, only one Neo-Hookean 

parameter (C10 or D) had a high sensitivity. It is well known that a high sensitivity value will 

provide a better identification. In the literature, few studies considered an uncompressible 

Neo-Hookean law (without D) for the soft tissues, hence emphasizing the role of C10. As a 

consequence, the identification of the C10 parameter was highlighted using the compression 

test. 
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3.3.Result of the Neo-Hookean parameters  

3.3.1. Identification of the mechanical parameters for each individual tissue 

Figs. 9.A-B showed the results of the C10 and D identification errors for each tissue. These 

identification errors were obtained from the numerical example with and without 

experimental noise (0.2mm).  

The result of the identified parameters (C10, D) obtained without noise revealed a low 

identification error (< 2%) leading to the validation of the developed inverse approach and the 

use of the BFGS algorithm.  

In the presence of the experimental noise, the error on the identification increased for both 

parameters (C10, D). A slight increase of the error (<5 %) was found for all the C10 

coefficients compared to the high increase of the D parameters error (from 7.5 to 37%). These 

results demonstrated an accurate identification of the C10 parameters whatever the noise was. 

However, the identified D parameters required some adjustments, especially for the ischios, 

sartorius and gracilis muscles. These results are consistent with the sensitivity analysis. 

 

3.3.2. Decrease of the identification error 

To improve the accuracy of the identified D parameters, the compressibility parameters of 

three muscles (ischios, sartorius and gracilis) were grouped. Thus, Figs. 9.C,D showed the 

new identification errors obtained for each Neo-Hookean parameter. 

Fig. 9.C showed that the grouping of the muscle tissues provided a decrease of the C10 

identification error (<3%) with an experimental noise.  

Fig. 9.D showed the identification error obtained for the three D parameters composed of the 

quadriceps, adipose tissue and the group of muscle (ischios, sartorius and gracilis). A decrease 

of the identified D parameters error (<7%) was found for a typical experimental noise 

(0.2mm).  
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4. DISCUSSION 

The muscle tissue is a complex system to analyze due to its composition, the inter-individual 

variability, its temporal evolution and its interactions with other media. 

The development of new imaging technology provided a more accurate characterization of the 

structural properties of the muscle. However, the study of the muscle mechanical behavior 

still remained a large domain of investigation, too often neglected in various scientific and 

medical fields. For instance, in the medical field, palpation reflected by the muscle elasticity 

is often used to detect muscle tension which can be pathological. These data were mainly 

subjective and there is a real need for clinicians to objectively quantify the severity of a 

disease or the effect of treatment. The functional properties of the muscle were also important 

in car crash where muscle tissue is too often neglected in numerical studies. Indeed, the 

simulation of the muscle behavior is essential because it create an envelope around the 

skeleton limiting the damages, maintaining the body, and absorbing the shock. 

 

4.1.Measured displacement field  

The originality of this present study was to perform the DIC on in vivo ultrasound 

images which was usually used for non biological materials (composite, etc…) [23-26]. The 

main advantage of this procedure was to use regular ultrasound machine available in clinic 

and providing anatomical images. Conversely, Zhu’s study [19] measured a displacement 

field from signal and requested the use of an open ultrasound machine, more available in 

research department.  However, the challenge of this developed procedure was to obtain a 

speckle on the ultrasound images enabling to perform the DIC. Thus, other studies [2-3, 15] 

avoid the displacement field measurements using anatomical markers (contours of muscle, 

skin and bone) to build the cost function. Consequently, only few points can be analyzed and 
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therefore did not provide a local muscle behavior and a less accurate sensitivity of the 

material parameters.  

The comparison of the standard deviation for the horizontal and vertical displacements 

showed a higher incertitude for the horizontal one. This result may be due to the propagation 

of the beam which is parallel to the direction of the loading and close to the natural structure 

of the muscle tissues. This funding was in agreement with the literature [17] leading the 

authors to use a cost function only based on the displacement parallel to the beam. In addition, 

the high standard deviation for both displacement fields could be induced by the muscle 

movements, such as involuntary contraction or blood flow, providing changes (muscular shift) 

during the ultrasound acquisitions.  

 

4.2.Constitutive muscle behavior 

Muscle tissue was often considered as linear, elastic and uncompressible leading to a 

Poisson’s ratio close to 0.5 [6-7, 9]. Other studies identified the muscle as hyperelastic using 

Rivlin or Ogden models which include different assumptions [10-14]. In this present study, an 

hyperelastic model, quite simple, was chosen in order to characterize the nonlinear muscle 

behavior. The choice was justified since it is a preliminary study where the goal is to 

demonstrate a novel coupling between FE simulation and DIC based on US imaging, leading 

to the identification of the mechanical properties of different thigh muscles. Moreover, the 

choice of a hyperelastic model for in vivo characterization was not so frequent step forward, 

compared to the usual linear elasticity identification performed with US imaging. In addition, 

a Neo-Hookean behavior was selected due to  the unique applied loading and the low induced 

strain, similarly to the literature [2-3, 15]. In perspective, a more accurate hyperelastic model 

could be developed using different muscle loadings.  
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4.3.Assumptions of the FE modeling  

The present boundaries between materials were considered perfectly tied as other 

studies [2-3, 15]. A way to improve the FE modeling would be to add some sliding and 

friction occurring between each soft tissue [2-3, 15]. In addition, the sliding between the 

plates, modeled as a rigid body, and the skin was assumed frictionless. The plane strain was 

used for the present FE modeling avoiding the out of plane displacements. A way to improve 

this 2D simulation would be to perform a 3D model.  

 

4.4.Identification process 

The cost function used for the identification of the muscle mechanical parameters was 

based on the displacement as Avril’s study [2-3, 15]. A way to improve the present cost 

function would be to include additional terms relative to the loading (force) [15]. 

Furthermore, a regularization term [16] could be added to drive the solution. 

 

4.5.Sensitivity analysis 

The result of the sensitivity analysis showed that both contention and compression tests would 

be necessary to properly identify the C10 and D parameters. However, the development and 

the design of set ups, and the number of finite element simulations, would have increased the 

computational time, the complexity of the model and the number of experimental tests. One 

of the originality of this study was to realize a sensitivity analysis revealing the feasibility to 

identify each Neo-Hookean parameter. Tran and Avril’s studies respectively performed 

indentation and contention tests on muscle (arm and calf) and found different ranges of values 

for the Neo-Hookean muscle parameters. This could be due to a better identification of one 

parameter and a sensitivity analysis could have confirmed this assumption. 
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4.6.Numerical example  

Similarly to the developed numerical example, Gokhale et al. [16] showed also the 

feasibility to identify the heterogeneous, hyperelastic and compressible properties of soft 

tissues. Both studies applied the same level of noise (from 0 to 3%) and equivalent results 

were obtained. Indeed, with and without noise the identification error for each mechanical 

parameter is low.  Moreover, the present results of the identification error were in agreement 

with the sensitivity analysis. As expected a lower identification error was obtained for the C10 

parameters. The perspective of this work would be to replace the numerical example by 

experimental measurement.  

 

4 CONCLUSION 

The originality of this study was to develop an inverse method, coupling imaging techniques 

(Ultrasound, MRI) with numerical methods (DIC, FEMU), to identify the muscle mechanical 

behavior. This novel methodology could have an impact in the scientific and medical fields. 

Indeed, clinicians are assisted by robotic devices to ensure safe and accurate medical 

procedures, and these devices require knowledge of the mechanical properties of the muscle 

(tissue contact). Moreover, in car crash soft tissues are often neglected during the FE 

simulations while they have an important role in posture and in shock absorption.       
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Table 1: Summary of the fixed parameters (C10, D) calculated from the literature   

Soft tissues fat Ischio quadriceps Gracilis Sartorius 

Neo-Hookean 

(C10: kPa, D: MPa-1) 
𝐶10

𝑓
  𝐷𝑓 𝐶10

𝑖  𝐷𝑖 𝐶10
𝑞

  𝐷𝑞 𝐶10
𝑔

  𝐷𝑔 𝐶10
𝑠  𝐷𝑠 

Chosen parameters  0.8 30.8 3 18 1.75 18 2.2 18 3.75 18 

 

 

 

http://www.simpleware.co.uk/
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Figure 1: Finite Element Model Upgrading (FEMU) composed of (A) Mechanical modeling, 

(B) Numerical example, (C) Experimental protocol, and (D) inverse method. 
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Figure 2: (A) Experimental protocol used for the acquisitions of the successive ultrasound 

image performed without loading (B-C). The DIC was applied on these images. 

 

 

Figure 3: Simulation of the different static tests: (A) contention, (B) indentation and (C) 

compression and (D-E-F) their engineering strain following the direction 1 (LE11) on the 

deformed shape. (G) Geometry of the thigh use for the finite element simulation 
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Figure 4: Ultrasound image obtained with a frequency of 9MHz (A), 11MHz (B) and 13MHz (C) 

 

 

Figure 5: Grey level histograms corresponding to the ultrasound images for three different 

couples (G: gain / Dyn: dynamic).  
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Figure 6: Selection of the optimal gain at a fixed dynamic based on the result of the grey level 

histogram obtained at 9 MHz. 

 

 

Figure 7: Standard deviation of the horizontal and vertical displacement fields for a 8 pixels 

meshsize as a function of the optimal couples 

 

Zone of saturation

Zone of saturation

Gain (dB)

Dynamic (dB)
36 42 48 51 54 57

40

30

42

38

31

34

36

Tested couples
Optimal couples

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

36 42 48 51 54 57

St
an

d
ar

d
 d

ev
ia

ti
o

n
 (

P
ix

e
ls

)

Dynamic (dB) / Gain (dB)

Horizontal displacement field Vertical displacement field

36/31 42/34 48/36 42/34 51/38 57/42

1.48

0.96

1.19

0.73

Optimal couple



28 
 

 

 

Figure 8: Cartographies of the displacement sensitivity for the Neo-Hookean parameters of 

the quadriceps muscle following the contention (A-D), the indentation (B-E) test and the 

compression (C-F) loading. 
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Figure 9: Identification of the relative error obtained for the C10 and D parameters without 

(A) and with noise (B). Arrows located on figure B indicate the high percentage of error 

obtained for the D parameters and the arrow figure D showed the decrease of the error when 

the muscles (ischios, gracilis, Sartorius) are grouped (C-D).  
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