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Introduction

Partitioning a set of elements into heterogeneous groups such that elements within each group are as homogeneous as possible is a common task. It is at the very core of unsupervised learning and clustering problems, as well as when one considers networks of different kinds (e.g., social, voting, . . . ).

A natural way to encode the relations existing between elements is through graphs, where the presence of an edge indicates that elements should be grouped together. However, the existence of such a link may be subject to various uncertainties. For instance, if one thinks of grouping persons (e.g., in parliament) voting in the same way, it may be that we rarely observe two persons voting at the same time, or that two persons do not always have the same behaviour (sometimes voting in the same way, sometimes not). Imprecise probabilities offer a rich and natural model to describe this uncertainty.

However, once one has modelled link uncertainty by imprecise probabilities, it remains to infer what are the more likely clusters. In this paper, we study the problem of extracting possibly optimal clusters from imprecise Université de Technologie de Compiègne, CNRS, Heudiasyc (Heuristics and Diagnosis of Complex Systems), CS 60319 -60203 Compiègne Cedex, e-mail: surname.name@hds.utc.fr probabilistic graphs. We show that solving this problem exactly is NP-hard, and propose some heuristics. While there are existing approaches trying to extract partial clusters from imprecise probabilistic knowledge [START_REF] Denoeux | Evidential clustering: a review[END_REF][START_REF] Masson | Cautious relational clustering: A thresholding approach[END_REF], to our knowledge this is the first paper to view the problem as a robust decision-making one.

Notations and problem definition

Let be a simple loopless graph. We denote ( ) and ( ) the set of vertices and edges of , respectively (or simply or if no ambiguity occurs). The complement graph of , denoted ¯ is the graph defined by ( ¯ ) = ( ) and

( ¯ ) = { | ∉ ( )}.
A cluster graph is a disjoint union of complete graphs1 , called cliques. A -cluster graph is a cluster graph that contains non-empty connected components. Let be a complete graph, a -partition of is a -cluster subgraph of such that ( ) = ( ). In this paper, an imprecise probability is an interval [ , ] ⊆ [0, 1] of probabilities, and is called precise if = . An imprecise probabilistic graph ( , P) is a graph with a function P that associates to each edge in the graph an imprecise probability. If is an edge, we denote and the lower and upper bounds of P ( ), respectively. The probability bounds of an absence of an edge can be deduced by duality (i.e. [1 -, 1 -]). being the marginal probability is an edge (and 1-that it is not), we only assume

[ , ] ⊆ [0, 1]. A probability realisation : ( ) ↦ → [0, 1] of P is a function that asso- ciates to each edge a probability within [ , ]
. We denote R P the set of probability realisations of P. Let be a subgraph of and ∈ R P be a probability realisation. The probability of under , denoted ( ) corresponds to

( ) = ∈ ( ) ( ) ∉ ( ) 1 -( ).
Let 1 and 2 be two vertices -partitions of . We say that 1 is certainly more probable than 2 , denoted by 1 2 , if

∀ ∈ R P , ( 1 ) -( 2 ) > 0.
Let 1/ 2 denote the following value

1/ 2 = ∈ ( 1 )\ ( 2 ) 1 - ∈ ( 2 )\ ( 1 )
1 -.

Notice that if an edge belongs (resp. does not belong) to both 1 and 2 , then the factor ( ) (resp. 1 -( )) is present on both sides of the substraction. Thus, to verify if 1 is certainly more probable than 2 , we only need to consider edges in ( ) \ ( ( 1) ∩ ( 2)). Moreover, by duality

( 1 ) -( 2) is minimum if for every edge ∈ ( 1 ) \ ( 2 ) (resp. ∈ ( 2 ) \ ( 1)), we have ( ) = (resp. ( ) = ). Hence, we have the following property.

Property 1 Given two -partitions 1 and 2 of the imprecise probabilistic graph ( , F ), we have

1 2 ⇔ 1/ 2 > 1.
Notice that the order given by is partial since we may have 1 2 and 2 1 . Given a constant , we are then interested in finding the most probable -partitions of . Let ( ( )) be the set of -partitions of . We define M , = { ∈ ( ( )) | ∈ ( ( )), } the set of non-dominated -partitions under . In the following, we are interested in enumerating every partition of M , . Hence, we define the following problem.

Most probable -partitions ( -MPP) Input

A complete graph and an integer .

Output Enumeration of M , .

Analysis

Computational Complexity

We first show that finding one element of M , is NP-hard, even if = 2 and R P has one element. To do so, we construct in the following way a reduction from the Max Cut [START_REF] Karp | Reducibility among combinatorial problems[END_REF] problem (that aims at finding a spanning bipartite subgraph with a maximum number of edges in a graph ).

Construction 1 Given an instance of Max Cut, we construct an imprecise probabilistic graph ( , P) such that:

• ( ) = ( ),
• for each pair of vertices and , = = 0.1 ( red edges) if ∈ ( ) and, = = 0.5 ( blue edges), otherwise.

The proof idea is that a 2-partition is non-dominated if and only if it contains a minimum number of red edges, and thus its complement graph is a bipartite graph with a maximum number of edges. Hence, we can show the following.

Theorem 1 Let ( , P) be an imprecise probabilitstic graph. Computing any element of M , is NP-hard, even if = 2 and P is a singleton.

Proof Let be an instance of Max Cut and let the graph resulting from Construction 1. First, let be a two 2-partition of M ,2 . Let = | ( ) ∩ ( )| be the number of red edges in . The probability of , under any realisation, is equal to

( ) = 0.5 | ( ¯ ) | • 0.1 • 0.9 | ( ) |-.
Thus, a 2-partition belongs to M ,2 if and only if it contains a minimum number of red edges. Later, we now show that contains a 2-partition with red edges if and only if there is a bipartite subgraph of with | ( )|edges.

• Let be a 2-partition of containing red edges. Notice that ¯ is a bipartite graph and that by duality its contains a | ( )|red edges. Hence, since the red edges correspond to the edges of , the graph defined by ( ) = ( ) and ( )

= ( ¯ ) ∩ ( ) contains | ( ) -| edges.
• Let be a bipartite subgraph of containing | ( )|edges. Let and be the bipartition of . Let be the 2-partition of such that

= [ ] ∪ [ ].
The number of red edges in is equal to .

Hence, computing a non-dominated 2-partition of is equivalent to compute an optimal solution for Max Cut.

Easy cases

In this section we present three easy cases in which some element of -MPP can be polynomially computed in the size of graph. These easy cases appear when one value appears in every probabilistic interval of P. The first case is when 0.5 is contained in every probabilistic interval which implies that any -partition is non-dominated.

Theorem 2 Let ( , P) be an imprecise probabilistic graph such that ∀ ∈ ( ), 0.5 ∈ P ( ). We have M , = ( ).

Proof Let be the probability realisation of P such that ( ) = 0.5 for any edge . Notice that for any -partition we have ( ) = 0.5 | ( ) | . Hence, there is a probabilistic realisation for which all -partitions have the same probability and therefore, any -partition is non-dominated.

The second case is when a value inferior to 0.5 is contained in every probabilistic interval. In that case, every -partition that contains a minimum number of edges (i.e., is balanced) is non-dominated.

Theorem 3 Let < 0.5 and ( , P) be an imprecise probabilistic graph such that ∀ ∈ ( ), ∈ P ( ). Let be a -partition of with connected components { 1 , . . . , } of respective orders 1 , . . . , . If we have

∀ , , | -| ≤ 1 then, ∈ M , .
Proof Let be the probability realisation of P such that ( ) = for any edge . First, note that for any -partition of we have 

( ) = | ( ) | • (1 -) ( )-| ( ) | . Hence, since < 0.5, is more probable under if | ( )| is minimum. Toward a contradiction,
| ( )| -| ( )| = | ( )| -| ( \ { })| + | ( )| -| ( ∪ { })| | ( )| -| ( )| = | | -1 -| | | ( )| -| ( )| > 1.
Thus, is not a -partition with a minimum number of edges. Further, let be a -partition of with connected components { 1 , . . . , } of respective orders 1 , . . . , and such that ∀ , , | -| ≤ 1. Since has a minimum number of edges, is non-dominated under and thus, it belongs M , .

Finally, the last case is when a value greater to 0.5 is contained in every probabilistic interval. In that case, every -partition that contains a maximum number of edges (i.e., is unbalanced) is non-dominated. Proof Let be the probability realisation of P such that ( ) = for any edge . First, note that for any -partition of we have 

( ) = | ( ) | • (1 -) ( )-| ( ) | . Hence, since < 0.5, is more probable under if | ( )| is maximum. A -partition

Heuristic

In this section, we describe some heuristic method used to approach M , or to improve the computation time. This method relies on the use of a pattern and some associated reductions rules.

Pattern and Reduction Rules

Let ( , F ) be an imprecise probabilistic graph. A pattern of is a subset of edges. We say that a -partition respects a pattern if contains every edge of (i.e. ⊂ ( )). We denote ( ( ), ) the set of -partitions that respects . Let M , ( ) = { ∈ ( ( ), ) | ∈ ( ( ), ), } the set of non-dominated -partitions respecting . We give some reduction rules that reduce the size of without altering the computation of M , ( ).

Let be an edge of and be any vertex. Note that for any -partition ∈ ( ( ), ), and are contained in the same clique and contains either both and or none of them. Hence, and are acting like a single vertex and thus, we can contract into a single vertex and merge and together. Formally, the contraction of , denoted , is the application which given any graph , constructs the graph where:

• ( ) = ( ( ) \ { }) ∪ { }, • ( ) = ( ( ) \ { | ∀ ∈ ( ), ∩ ≠ ∅}) ∪ { | ∀ ∈ ( ) \ { }}.
The contraction rule uses and adapts the imprecise probability set and the pattern so that the sets of non-dominated -partitions respecting the pattern are equivalent in the original graph and the newly created graph.

Rule 1 (Contraction rule)

Let ( , F ) be an imprecise probabilistic graph and let = ( , ) be a pattern. Let be an edge of . We reduce to the following imprecise probabilistic graph ( , G).

• = ( ),
• for any edge of ( ) such that ∩ = ∅, we set G( ) = F ( ), and • for any vertex ∉ of ( ), we set

G( ) = [ • • + (1 - ) • (1 - ) , ¯ • ¯ ¯ • ¯ + (1 -¯ ) • (1 -¯ ) ].
This corresponds to compute bounds over the conditional probability ( ∧ |( ∧ ) ∨ (¬ ∧ ¬ )). We construct a new pattern for as follows.

• Let = { | ∈ , ∩ ≠ ∅} and = { | ∃ ∈ , ∈ }. We set = ( \ ) ∪ .
An example of the application of Rule 1 is depicted in Figure 1. The two next properties show that Rule 1 is safe, that is, the computation of M , ( ) is equivalent to the computation of M , ( ).

Property 2 is a bijection from ( ( ), ) to ( ( ), ).

Proof First, we show that for any ∈ ( ( ), ), we have ( ) ∈ ( ( ), ). Let = ( ). Let be the clique containing (which exists since ∈ ). Since contracting an edge in a clique leads to another Further, we show that is surjective. Let be any -partition of ( ( ), ). Let be the clique containing . Since splitting a vertex in two in a clique leads to another clique, then -1 ( ) is also a clique. Moreover, since any other connected component remains unchanged by -1 , then = -1 ( ) is a -partition of ( , F ) that contains . For any vertex ∈ and for any edge , in \ { } (resp.

), since ∈ (resp. ∈ ) then the vertex belongs (resp. does not belong) to -1 ( ) and thus ∈ ( ) (resp. ∉ ( )). Moreover, since \ ⊆ (resp. \ ⊆ ), any edge ∈ \ (resp. ∈ \ ) belongs to (resp. does not belong to) ( ) and since is not altered by -1 , we have ∈ ( ) (resp.

∉ ( )). Hence, ⊆ ( ) and ∩ ( ) = ∅, that is, is a -partition that respects .

Finally, we show that is injective. Let 1 and 2 be two -partitions of ( ( ), ). Let be an edge such that ∈ ( 1 ) and ∉ ( 2 ). If ∩ = ∅, then is not altered by and thus, ∈ ( ( 1 )) and ∉ (

( 2 )). Otherwise, without loss of generality, suppose that ∉ . Since ∈ , , and belong to the same clique in 1 and there is a clique in ( 1 ) that contains and . Moreover, , are not in the same clique as in 2 , and thus, is not in the same clique as in ( 2 ). Hence, we have

( 1 ) ≠ ( 2 ).
Property 3 Given two -partitions 1 and 2 in ( ( ), ) we have

1 2 ⇔ ( 1 ) ( 2 ).
Proof Let = ( , ) be a pattern of ( , F ) and let 1 and 2 be two kpartitions in ( ( ), ). Let 1 and 2 be the cliques containing in 1

Numerical Experiments

In the following, we provide some tests for the special case where = 2.

Dataset

For our tests, we use two types of dataset, one using some real data and one using some generated instances.

Real dataset: we use the dataset used by [START_REF] Arinik | Signed graph analysis for the interpretation of voting behavior[END_REF] that contains vote information for French and Italian members of the european parlement. Each member is represented by a vertex in the graph. To generate the imprecise probability sets, we use the following formula. Let and be two members. Let be the number of sessions in which both and participated and let be the number of sessions in which and voted the same. We set P ( )

= [ + , + + ]
where is a parameter settling the speed at which the intervals converge to a precise value. In the following, we set = 5. Since the generated graph contains 870 vertices, it is not possible to compute exactly the set of non-dominated 2-partitions, we create twenty subinstances by randomly drawing 15 vertices of the original graph.

Randomly Generated Instances: we proceed as follows. First, we define groups of vertices with a given size and an application : {1, . . . , } 2 ↦ → [0, 1] 4 which associate to each pair of integers { , } a tuple { , , ¯ , , ℓ , , l , }. Then for each pair of vertices and such that belongs to the group and belongs to the group ( can be equal to ), we draw two real numbers ∈ [ , , ¯ , ] and ℓ ∈ [ℓ , , l , ]. Finally, we introduce the edge with the imprecise probabilistic interval F ( ) = [ (0,ℓ),

(1, + ℓ)]. We test two differents groups configurations.

• Configuration A. The graph contains two groups of 7 vertices, and we set

(1, 1) = (2, 2) = {0.9, 0.95, 0, 0.3} and (1, 2) = {0.1, 0.2, 0, 0.3}. • Configuration B. The graph contains three groups of 6 vertices, and we set

(1, 1) = (2, 2) = (3, 3) = {0.9, 0.95, 0, 0.1} and (1, 2) = {0.1, 0.2, 0, 0.1}. For the values of (1, 3) and (2, 3), we test three differents variations.

-B1: (1, 3) = (2, 3) = {0.45, 0.55, 0, 0.1}, -B2: (1, 3) = (2, 3) = {0.45, 0.55, 0.2, 0.0.35}, -B3: (1, 3) = (2, 3) = {0.45, 0.55, 0.3, 0.7}.

For each configuration and each variation, we generate twenty instances.

Results

The tests were run on a personal laptop with 16Go of RAM and with an Intel Core 7 processor 2.5GHz. Results are displayed in Table 1. In our tests, we compare two exacts algorithms with our heuristic with two different values of . The "brute" version enumerate every 2-partitions to construct the solution set . For each enumerated 2-partition , if is not dominated by another 2-partition of , then is added to and every 2-partition of that is dominated by is removed from . The "init" version does the same thing but is initialized by a set of 2-partitions. To initialize , we take the value returned by Algorithm 1 with = 1. The idea behind the "init" version is that initializing with a set of possibly non-dominated solutions can reduce computational time (similar ideas can be found in [START_REF] Nakharutai | Improving and benchmarking of algorithms for decision making with lower previsions[END_REF]).For every configuration, the results correspond to the average of the twenty instances.

Table 1 Results on real and generated data for the 2-MPP problem. The columns "Brute" and "Init" correspond to exact algorithms. The columns "t=1" and "t=2" correspond to Algorihm 1 with two different values of . "Sol" is the size of the enumerated 2-partitions, " " is the size of the graph after the application of the reduction rules. "ER1" is the percentage of enumerated 2-partitions that do not belong to M , . "ER2" is the percentage of 2-partitions that belong to M , and that are not enumerated. We can see for the generated instances every 2-partition enumerated by the heuristic belongs to the exact solution. However, the number of 2-partitions returned by the heuristic can be relatively small compared to the size of M , . For example, for the B3 configuration, 97% of M , is not enumerated by the heuristic. Nevertheless, the results of 1 help to drastically reduce the computation time of the exact algorithm. For instances from real data, the results are more mixed: almost all of M , is not enumerated by the heuristic and at least 30% of the 2-partitions returned by the heuristic does not belong to M , . Moreover, since the results of the heuristic are not good enough, the computation time is not significantly reduced for the "init" version. We can explain this bad performance by the fact that drawing randomly 15 vertices in a real instance can lead to a subinstance that is not really representative since the 15 vertices can belong to the same group.

Conclusion

In this paper, we adressed the problem of the most probable -partition with imprecise probabilistic edges. After some theoritical results, we developed a heuristic to tackle this problem. We show that this heuristic can have good results in practice but becomes less performant if the probability intervals are to large. A natural perspective of our work can be to find another way to compute some -partitions to make the initialisation for the exact version, since we show that it can significantly reduce the computation time. It can be interesting to find another method since our heuristic can not perform well for some instances.

Theorem 4

 4 Let > 0.5 and ( , P) be an imprecise probabilistic graph such that ∀ ∈ ( ), ∈ P ( ). Let be a -partition of with connected components { 1 , . . . , } such that ∀ < , | | ≤ | |. If we have 1. | | = 1, ∀ < , and 2. | | = | ( )| -+ 1. then, ∈ M , .

Fig. 1

 1 Fig.1Example of an application of Rule 1 on the edge in an imprecise probabilistic graph with a motif (blue edges).

  has a maximum number of edges if and only if every clique but one is constitued of one vertex, that is, if it respects ( ) and ( ). Let be such -partition. Since is non-dominated under , it belongs to M , .

  Time is given in seconds.

	Config	Brute	Init	t=1			t=2	
		Time Sol Time Time n Sol ER1 ER2 Time n Sol ER1 ER2
	A	15.5	1	0.36 10 -3 9.55 1 0%	0%	10 -5 4.3 2	0%	0%
	B1	1.8	2	3	10 -3 6.25 2 0%	0%	10 -5 3.05 2	0%	0%
	B2	296	2.7	3.05 10 -3 6.4 2 0% 17.2% 10 -5 3	2	0% 17.2%
	B3	5017 71.35 34.9 10 -4 6.55 2.7 0% 97%	10 -5 3	2	0% 97%
	Real	29 827.35 28.5 10 -3 6.9 9.15 30% 99.25% 10 -5 3.7 2.15 37.5% 99.5%

A complete graph is a simple graph where every pair of vertices is connected.
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and 2 , respectively (which exist since ∈ ). If 1 = 2 then, 1 / 2 = 1. Since any edge that does not belong to 1 or 2 are not altered by , we have 1/ 2 = ( 1 ) / ( 2 ). Thus, 1 2 ⇔ ( 1 ) ( 2 ). Now, suppose that 1 ≠ 2 . For any edge such that ∈ ( 1 ) and ∉

( 2 ), we have { , } ⊆ ( 1 ) and { , } ∩ ( 2 ) = ∅. We have

Samewise, for any edge such that ∉ ( 1 ) and

Hence, since any other edge in 1 or 2 is not altered by , we have

Algorithm Description

Our method to approach M , is described by Algorithm 1. The basic idea is to reduce the size of the graph by computing a pattern and applying the reduction rules described above. Once the size of the reduced graph is small enough, it seems possible to enumerate every -partitions and thus compute M , ( ) in a relatively small amount of time. The difficulty of this method is to find a pattern such that |M , ( )ΔM , | is minimum. In the next section, we take the pattern = { | ≥ 0.9}.

Algorithm 1: Heuristic method

Data: An imprecise probabilistic graph ( , F) and two integers and .

Result: A set of -partitions for .