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Abstract: The hemodialysis technique, used worldwide for patients with chronic kidney disease,
is considered as a treatment with a high economic and ecological impact, especially for water
consumption. Getting ultrapure water for the preparation of the dialysate to clean patient’s blood
from toxins leads to high volumes of salt-enriched water that directly goes to sewage. The aim of this
work is to propose operating conditions for electrodialysis to allow the reuse of reverse osmosis (RO)
rejects. We first performed a parametric study to evaluate the influence of different parameters, such
as flow rates, initial concentration, and applied voltage on the demineralization rate (DR) and specific
energy consumption (SPC) with a NaCl model solution. The optimal conditions for desalination
(i.e., a potential of 12 V, and flow rate of 20 L·h−1) were then successfully applied to real samples
collected from a dialysis center with total dissolved salts concentration of about 1.4 g/L (conductivity
of 2.0 mS·cm−1). We demonstrated that the choice of adequate conductivity targets allowed meeting
the physico-chemical requirements to obtain water re-usable for either rehabilitation swimming pool,
manual or machine washing of instruments before sterilization or irrigation. Saving this water could
contribute in the reduction of the environmental impact of hemodialysis.

Keywords: hemodialysis; electrodialysis; demineralization rate; specific energy consumption; reverse
osmosis rejects

1. Introduction

Water is an essential raw material for life on earth. Its scarcity is a major problem in
many countries, including some in Europe, with climate changes. Hemodialysis (HD), i.e.,
membrane-based artificial kidney in an extracorporeal circulation, is a treatment with a
high economic and ecological impact, especially regarding water consumption. Indeed,
the preparation of the dialysate, which collects the uremic toxins after mass transfer from
the blood in the dialyzer, requires a high-quality water (Figure 1). Tap water flows in a
pre-treatment loop based on sand filters, activated carbon, ion-exchangers, and reverse
osmosis (RO) [1]. The first RO stage rejects a mildly salted water, which is usually returned
to sewage. The volume can reach up to 250 L per dialysis session.

In 2018, there were an estimated 3,362,000 people on dialysis worldwide, with 2,993,000
(89%) on hemodialysis [2,3]. The global dialyzed population grows every year and is
expected to reach nearly 5 million people by 2025 [4]. At that time, and knowing that each
patient undergoes three HD session per week, the volume of rejected water for RO loop
per year will reach more than 200 million of m3.
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Figure 1. Schematic representation of the hydraulic circuits for the achievement of an hemodialysis 
session. The hemodialysis machine controls both the extracorporeal circulation and the exchanges 
through the membrane dialyzer with the dialysate that is prepared on-line by the dilution of con-
centrate solutions (ionic and bicarbonate) with the ultrapure water prepared in the treatment loop. 
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mineralization/desalination is thus mandatory before their reuse in irrigation, cleaning, 
washing of vehicles, feeding of boilers, sterilization, or rehabilitation pool. Indeed, each 
reuse alternative should meet a more or less well defined water quality, according to na-
tional or international guidelines or standards, such as the French association of steriliza-
tion (AFS) for sterilization, World Health Organization, Food and Agriculture Organiza-
tion WHO/FAO for irrigation, and the Regional Health Agency (ARS) for the rehabilita-
tion pool and standards of toilet flushing [6,7]. 

Desalination techniques are used to prepare adequate-quality water from salted wa-
ter. They mainly rely on two different physical means [8]. On the one hand, thermal tech-
nologies involving a phase change (distillation) [9] are rarely used to desalinate brackish 
water, since they are not cost effective and demand high energy for this application [10]. 
On the other hand, membrane-based technologies such as reverse osmosis (RO) are al-
ready well established. Electrodialysis (ED) is less energy intensive [11] and has recently 
attracted a lot of attention [12,13]. They have shown great potential to replace or comple-
ment conventional methods such as distillation and evaporation, as they are economical 
and safe [14]. Nanofiltration consumes less energy, and offers the great advantage of 
lower operating costs than RO and ED [15]; but a major drawback is that it results in lower 
monovalent salt rejections [16]. Therefore, NF is not an alternative for desalination of RO 
concentrates. 

Figure 1. Schematic representation of the hydraulic circuits for the achievement of an hemodialysis
session. The hemodialysis machine controls both the extracorporeal circulation and the exchanges
through the membrane dialyzer with the dialysate that is prepared on-line by the dilution of concen-
trate solutions (ionic and bicarbonate) with the ultrapure water prepared in the treatment loop.

Physicochemical data from the literature show that hemodialysis RO concentrates are
mildly concentrated in sodium, nitrate, sulfate, and chloride ions [5]. Their partial deminer-
alization/desalination is thus mandatory before their reuse in irrigation, cleaning, washing
of vehicles, feeding of boilers, sterilization, or rehabilitation pool. Indeed, each reuse
alternative should meet a more or less well defined water quality, according to national
or international guidelines or standards, such as the French association of sterilization
(AFS) for sterilization, World Health Organization, Food and Agriculture Organization
WHO/FAO for irrigation, and the Regional Health Agency (ARS) for the rehabilitation
pool and standards of toilet flushing [6,7].

Desalination techniques are used to prepare adequate-quality water from salted water.
They mainly rely on two different physical means [8]. On the one hand, thermal technolo-
gies involving a phase change (distillation) [9] are rarely used to desalinate brackish water,
since they are not cost effective and demand high energy for this application [10]. On the
other hand, membrane-based technologies such as reverse osmosis (RO) are already well
established. Electrodialysis (ED) is less energy intensive [11] and has recently attracted a
lot of attention [12,13]. They have shown great potential to replace or complement conven-
tional methods such as distillation and evaporation, as they are economical and safe [14].
Nanofiltration consumes less energy, and offers the great advantage of lower operating
costs than RO and ED [15]; but a major drawback is that it results in lower monovalent salt
rejections [16]. Therefore, NF is not an alternative for desalination of RO concentrates.

Electrodialysis (ED) is a membrane-based separation process in which ionized species
such as salts and acids are transferred across an ion-exchange membrane from one solution
to another by imposition of an electrical potential [14]. ED has been used for more than
60 years for the production of water from brackish water and seawater, municipal and
industrial wastewater treatment, salt production from seawater and its application in
chemical processes, food and pharmaceutical industries [17,18]. The operation of ED
does not require chemicals and is more environmentally friendly [19]. It competes with
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reverse osmosis in that it allows for control of the salt concentration in the product water
and changes the salt composition to meet the specific water quality requirements of each
use [20,21].

Unlike RO, which requires mixing and post-treatment and has a lower recovery rate,
ED has higher water recovery rates [22], easy operation, long membrane life [23,24], and
selective separation of monovalent ions (such as Na+, Cl−, and NO3

−) from multivalent
ions (e.g., Ca2+, Mg2+, SO4

2−) [17,23,25]. It is more resistant to fouling, which can also
reduce the quality of the treated effluent due to the reduced selectivity of the membrane [23].
In this specific application, fouling is expected to be limited since both the drinking wa-
ter origin and the pre-treatment phase result in a low content of organic matter and/or
microorganisms in the dialysis RO wastewater [26].

Despite these promises, ED has not been proposed yet for implementation in the
water treatment loop of hemodialysis centers, whereas environmental consideration is
increasing in health systems. One of the hurdles is cost, which might be significant if
the process is not correctly dimensioned. The aim of this work is therefore to study the
efficiency of the ED process on the desalination of dialysis RO effluents, in order to prove
their compatibility with on-site reuse. This efficiency is evaluated by the demineralization
rate (DR), specific power consumption (SPC), and the ionic flux (J). First, experiments were
conducted on NaCl model solutions to define optimal conditions using a laboratory-scale
electrodialysis cell. The process was then applied to the treatment of RO water samples
collected in a hemodialysis center, using the same conditions. The evaluation of the process
to produce different types of reusable water are finally discussed, according to the standards
or guidelines.

2. Materials and Methods
2.1. Real Dialysis RO Rejects Samples

The dialysis RO rejects studied were taken from the polyclinic Saint Come and La
Dialoise centers, Compiègne, France. The physico-chemical characteristics of the sampled
rejects are given in Table 1.

Table 1. Physical and chemical parameters measured in dialysis RO rejects from Polyclinic Saint
Côme (N = 3).

Parameter
Dialysis RO Loop Water Reject

Mean (±SD)

Conductivity (µS·cm−1) 1960 ± 0.086
pH 8.12 ± 0.22
Calcium, mmol·L−1 0.025 ± 3.06 × 10−3

Chloride, mmol·L−1 2.183 ± 0.115
Total Hardness, ◦F 0.32 ± 0.04
Magnesium, mmol·L−1 0.005 ± 9.12 × 10−4

Sodium, mmol·L−1 19.164 ± 0.7844
Sulfates, mmol·L−1 1.77 ± 0.104
Turbidity, NFU 0.10 ± 0,00
Ammonium, mmol·L−1 <0.0027 ± 0.00
Nitrates, mmol·L−1 0.0715 ± 0.0042
Free Chlorine, mmol·L−1 <0.00006 ± 0.00
Total Chlorine, mmol·L−1 0.00007 ± 2 × 10−5

Iron, µmol·L−1 0.07 ± 0.01
Arsenic, µmol·L−1 0.00253 ± 2.02 × 10−4

Cadmium, µmol·L−1 <0.000088 ± 0.00
Mercury, µmol·L−1 <0.00005 ± 0.00
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2.2. Electrodialysis Equipment and Membranes

The ED configuration consists of a DC power supply, a concentrate tank, a dilute
tank, a rinse electrode tank and three peristaltic pumps. (2 Masterflex l/S easy load pumps
Model 7518-60), and 1 Shenchen YZ1515x Model BT 100N). Figure 2 shows a simplified
schematic of ED experimental set-up operating in batch mode.
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Figure 2. Schematic of the ED system: batch recirculation mode.

The laboratory scale ED module (64002, PCCell GmbH, Heusweiler, Germany) is
composed of five cell pairs. The membranes and spacers were stacked between the two
electrode end blocks. The stack consists of four (Cation Exchange Membrane CEM PC
SK), two (End CEM PC-MTE), and five (Anion Exchange Membrane AEM PC SA) with an
effective area of 64 cm2 (110 × 110 mm) for each membrane. The main characteristics of
the membranes used are given in Table 2 (manufacturer data). Spacers had a thickness of
0.45 mm plastic are placed between the membranes to form the flow paths of dilute and
concentrated flows. The spacers were designed to minimize boundary layer effects and
were arranged in the stack so that all dilute and concentrated flows were collected separately.
The ED cell consisted of two electrodes. Both electrodes are made of Pt/Ir-coated titanium.

The ED stack is equipped with three separate external tanks: the first used to concen-
trate the solution, the second to dilute the solution, and the third to rinse the electrode
solution. All three are connected to a pump for solution recirculation.
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Table 2. Parameters of the experimental membranes according to the manufacturer.

Membrane
Type

Membrane
Characteristic

Resistance/
Ω·cm2

Water Content
(wt%)

Thickness
(µm)

Ion Exchange
Capacity

Strong Basic
(mequiv·g−1)

Chemical
Stability (pH) Permselectivity

PC-SK Strongly acidic
(Sulfonic acid) ~2.5 ~9 100–120 c.a. 1.2 0–11 >0.95

PC-SA
Strongly
alkaline

(Ammonium)
~1.8 ~14 100–110 3 0–9 >0.95

PC -MTE Strongly acidic
(Sulfonic acid) ~4.5 - 220 1.8 1–13 >0.94

2.3. Experiments and Analysis Methods
2.3.1. Experimental Procedure

In this study, first set of experiments were conducted with model solutions pre-
pared with demineralized water and sodium chloride salts (NaCl). 0.05 M sodium sulfate
(Na2SO4) solution was used as the rinsing solution of the electrodes circulating in the
electrode compartment, to prevent the generation of chlorine or hypochlorite, which could
be dangerous for the electrodes. The flow rate of the electrode rinse solution was set at
18.6 L·h−1 (max range for this pump) for all experiments. During all NaCl experiments,
the volumes of diluted, concentrated and electrode rinse solutions were of 1 L each. The
flow rate of the diluted solution varied from 20 to 55 L·h−1 while that of the concentrated
solution was set at 20 L·h−1 for all experiments.

Before the onset of the desalination test, NaCl aqueous solution at the same concentra-
tion was introduced in dilute and concentrate compartments. The experiment started at
the time of potential application, which varied from 6 to 12 V. The ionic conductivity was
recorded every 3 min.

Then, the procedure was applied to the treatment of the real dialysis RO concentrate
samples collected at with total dissolved salts ∼1.37 ± 0.06 g·L−1. The diluted and con-
centrated solutions were circulated through the ED cell until the final target conductivity
(0.1 mS·cm−1) was reached in the diluted tank. After each experiment, ED cell was cleaned
with circulation of distilled water during 30 min, followed sometimes with 0.1 M HCl
solution during 15 min, in order to remove any deposits.

2.3.2. Water Analysis

The pH and conductivity were measured using Consort C5010 Multi-Parameter an-
alyzer. The other analyses were performed by the laboratory Eurofins Alpabio (Parçay
Meslay, France) following the ISO standards. Briefly, the concentrations of free chlorine,
total chlorine and turbidity were analyzed by spectrophotometry—NF EN ISO 7393-2. Am-
monium ion concentration (NH4+) was analyzed by spectrophotometry method (UV/VIS)—
NF ISO 15923. The concentrations for the ions calcium (Ca), magnesium (Mg), sodium
(Mg), iron (Fe), arsenic (As), cadmium (Cd), and mercury (Hg) were analyzed by Induc-
tively Coupled Plasma Mass Spectrometry: ICP/MS—NF EN ISO 17294-2. Chlorides,
nitrates, and sulfates were determined by Ion Chromatography—Conductimetry—NF EN
ISO 10304-1.

2.3.3. Data Analysis

The ED performance under different operating conditions was evaluated based on
calculations of the parameters below.

• Determination of Removal rate (R−%)
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Removal rates of sodium, chloride, nitrate, and sulfate ions by ED technique were
calculated for all experiments by the following equation [27]:

R−(%) = 100[1 − (
Cf
C0

)] (1)

where, C0 and Cf are the initial and final concentrations (mg·L−1) of the ion species (sodium,
chlorine, nitrate, sulfate), respectively in the dilute compartment.

• Determination of the demineralization rate (DR %)

To study the influence of applied potential, salt concentration, and flow rate on ED
efficiency, DR was calculated using the following equation: [27–29].

DR (%) = 100(1 − ECt

EC0
) (2)

where EC0 and ECt are the conductivities at initial time and at time t, in the diluate
compartment, respectively, expressed in mS·cm−1.

• Determination of the specific power consumption (SPC)

Specific power consumption (SPC) is also an important parameter of electrodialytic de-
salination. It can be described as the energy required to process the unit volume of solution.
SPC was calculated for each experimental condition using the following equation [30]:

SPC (W·h·L−1) =
E
∫ t

0 I(t)dt
Vd

(3)

where E (V) is the applied potential, Vd is volume of the diluate solution (L), and t is time.

• Determination of ion transport flux (J)

Flux values were evaluated for all experimental conditions to compare with ion
transport from the dilute to the concentrate compartment. The ion flux (J) was determined
using the following equation [31]:

J (mol·cm−2·s−1) = (
Vd
A

)(
Ct−C0

t
) (4)

C0 and Ct are the concentrations at initial time and time t (mol·L−1)

• Determination of the productivity (W)

Productivity is a measure of the kinetic efficiency of the separation process and relates
the rate of desalinated water production to the size of the system. It was calculated
according to the Equation (5) below [32]:

W
(

L·m−2·h−1
)
=

Vd
Atot·t

(5)

where Atot is the area of total membrane of the stack.

2.4. Parametric Study and Statistical Method

In this study, a factorial design plan was proposed to investigate the performance
of the ED process for the reduction of the salinity of dialysis RO concentrate. Initial salt
concentration (C), dilute flow rate (Q), and applied potential (E) were chosen as relevant
parameters for ED optimization. Responses were expressed in terms of demineralization
rate (DR, %) and specific power consumption (SPC, Wh·L−1). The ranges of the operating
parameters were chosen according to the capacity of our set-up and knowledge of expected
conductivities [5]: 6, 9, and 12 V for voltage (E), 0.5, 1, and 1.5 g·L−1 for concentration
(C), and 20, 37.5, and 55 L·h−1 for dilute flow rate (Q), respectively. The coded levels that
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compare the size of the coefficients on a common scale are the following: low (−1), central
point (0) and high (+1) levels.

A total of 12 experiments were performed according to the complete factorial two-
level—three factors (23) (eight points in the factorial design and four central points to
establish experimental errors). Since the interactions between these factors could be signifi-
cant, a first-order linear polynomial model was postulated by the following equation:

Y =∂0 + ∂1E + ∂2C + ∂3Q + ∂1.2E.C + ∂1.3E.Q + ∂2.3C.Q + ∂1.2.3E.C.Q (6)

where Y is the response variable, ∂0 is the constant or intercept, ∂1, ∂2, and ∂3, are estimated
coefficients for the linear term (also known as the slope of the line) that indicate the
effect of applied potential (E), salt concentration (C), and flow rate (Q) respectively. The
coefficients ∂1.2, ∂1.3, and ∂2.3 describe the effects of the interactions of applied salt potential
concentration, applied flow potential, and concentrated salt flow concentration. The
coefficient ∂1.2.3 implies the interaction effect between the applied salt concentration and
flow potential [8,32,33].

The analysis of the experimental results was performed with statistical and graphical
analysis software (Minitab version 2019). This software was used for the regression analysis
of the obtained data and to estimate the coefficients of the regression equations.

3. Results
3.1. Parametric Analysis and Modeling of the ED Process with Model Solution

Before treating real RO rejects, the aim was to determine the characteristics of electro-
dialysis process performed by the experimental set-up with a solution modeling dialysis
wastewater from RO, i.e., NaCl in demineralized water with concentrations ranging from
0.5 to 1.5 g·L−1, so as to cover the range of conductivity classically observed in real cases.
We made this choice because the conductivity directly reflected the ionic content of the
solution. Experiments were run following the design described in Materials and Methods
section. All figures and tables refer to concentration variations in the dilute compartment.
Thus, data for the concentrate and electrode rinse solution are not presented in this paper.

3.1.1. General Trends

Three factors (voltage, flow rate, initial concentration of the solution) can influence
the efficiency of an electrodialysis session, estimated via the calculation of the DR and SPC
parameters, as observed respectively in Figure 3a and Table S1 for DR, and in Figure 3b
and Table S2 for SPC. Time was not considered here as all experiments lasted 18 min to
allow comparisons.

The highest demineralization rate (DR of 94.72%) was obtained with the highest
applied potential, and the lowest salt concentration and flow rate. Increasing concentration
had a negative effect (negative slope) on the efficiency of desalination. An increase in
concentration from 0.5 g·L−1 to 1.5 g·L−1 led to a decrease in DR of 16.6%. Thus, the
separation percentage has a considerable dependence on the composition of dilute solution
in this concentration range. As a general trend, an increase in the initial salt concentration
from 0.5 to 1.5 g·L−1 resulted in a SPC increase of 63%. We noticed that an increase in flow
from 20 L·h−1 to 55 L·h−1 resulted in a 11% decrease in DR. Indeed, ions did not have
enough residence time to be transferred from one compartment to the other across the
membrane when the tangential flux was too high. This could lead to a decrease in the total
amount of ions transferred and consequently to a decrease in the separation percentage.
Similar results and interpretations have been demonstrated by other groups [34–36].
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SPC values ranged from 0.18 to 1.76 Wh·L−1. The lowest value of SPC was, as expected,
obtained with the lowest applied potential and salt concentration and the highest flow
rate. The increase in applied potential and salt concentration resulted in an increase in SPC,
while flow rate had a negligible effect: a slight decrease in SPC was observed when the
flow rate varied from low to high value. These results were consistent with the findings
with other applications of ED, such as removal of calcium and magnesium hardness from
water [37], demineralization for solutions of fish sauce [38], or lithium recovery from salt
lake brines [39].

3.1.2. Main Effects and Interactions between Parameters

Data analysis was performed using Minitab statistical software to investigate the main
effects of the factors, interactions, coefficients and of the various statistical parameters of
the fitted models. The Pareto plots (Figure 4) represent the absolute values of the effects of
main factors and the effects of interactions factors.
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Absolute effect sizes were plotted in descending order. The significance of the individ-
ual effect of each of the variables tested at the 0.05 level was designated using a reference
line on both graphs so that effects above the reference line are statistically significant at the
95% confidence level [40].

The effects of voltage, concentration, flow rate, and the interaction between voltage
and concentration are the most significant for the DR (p < 0.05). For the SPC, it can be
observed that the effects of all parameters were significant.

Based on the data presented in Figure 4 and Tables S1 and S2 in Supplementary Data,
the final regression Equations (empirical models) (7) and (8) of DR and SPC in terms of
coded parameters that represent the best description after the elimination of insignificant
parameters (p > 0.05) could be determined as follows:

DR = 74.022 + 14.648A − 8.285B − 5.493C + 4.475A × B (7)

SPC = 0.70500 + 0.41250A + 0. 31500B − 0.04750C + 0.21750A × B − 0.01000A × C − 0.03750B × C − 0.01500A × B × C (8)

The estimated model for both DR and SPC had a satisfactory R2 greater than 99%. In
the case of DR, the fit was very good (R2 = 99.75%) and only 0.25% of total variance was
not explained by the model. The SPC (R2 = 99.99%) had a high value and only 0.01% of a
total variance was not explained by the model.

According to the Pareto plot, voltage was the most important parameter affecting
desalination efficiency and energy consumption. Indeed, an increase in the voltage value
from 6 to 12 V increased the DR by 30–40%. For SPC, an increase in the voltage value
increased the SPC.

The graphs of interaction effects are shown in Figure 3b,d. The non-parallel lines in
this figure indicate an interaction between the two factors [41]. For DR, the results show
a positive interaction between voltage and concentration (A × B), and between voltage
and flow rate (A × C) but none between concentration and flow rate (B × C). For SPC,
the results show a positive interaction between voltage and concentration (A × B) and
no interaction between voltage and flow rate (A × C). However, there is some negative
interaction between concentration and flow rate (B × C).

3.1.3. Model Validation

Based on the factorial design analysis, Minitab software proposed a regression equa-
tion to predict DR and SPC for any operating conditions chosen within the min–max range:

DR = 115.2 − 1.52E − 64.8C − 1.111Q + 5.45E × C + 0.0911E × Q + 0.570C × Q − 0.0659E × C × Q (9)

SPC = 0.2121 − 0.02179E − 0.7071C − 0.00186Q + 0.16643E × C + 0.000381E × Q + 0.00086C × Q − 0.000571E × C × Q (10)
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To validate the model, we compared its estimations with experimental responses
obtained from the batch tests with three different random operating conditions (12 V,
20 L·h−1, 1 g·L−1), (9 V, 50.35 L·h−1, 1 g·L−1), and (6 V, 63.96 L·h−1, 1 g·L−1), respectively.
The experimental and predicted responses of DR (%) and SPC (Wh·L−1) are presented in
Figure 5.
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The graphs show a good agreement between the experimental and the predicted values.
The model shows a first order linear regression with a high coefficient of determination,
R2 = 0.996 of DR and SPC, validating the model.

3.2. Application to RO Concentrate in Dialysis Unit

The operating conditions were chosen from the previous parametric study to get
the highest demineralization rate with a moderate energy consumption. A compromise
had thus to be found. Considering that the duration of the treatment was not a limiting
factor for this application in batch mode and according to the volumes to proceed, we
proposed for the further application to real RO concentrate to operate at a moderate flow
rate (20 L·h−1), with a high voltage of 12 V applied to the ED cells.

3.2.1. Comparison between Real and Model Solutions

In a first set of experiments, we reproduced the experiments previously performed
(Figure 6), with three batches of RO rejects. The mean conductivity of 1.96 mS·cm−1

corresponded to a NaCl concentration of 1.37 g·L−1, therefore in the upper range of the
concentrations tested in 3.1. The same trends as those observed before are reproduced here,
showing that the RO rejects solution behaved quite similarly to the NaCl one. Of note, a
slight shift on the curves was observed for DR or SPC. Under these conditions, the model
predicted a DR of 91.5% for a target final conductivity of 0.1 mS·cm−1, underestimating the
values obtained with the real solution. Indeed, RO rejects are rich in other ions than Na+

and Cl−, which have also to be transferred across the ED membrane. For the same reason,
SPC for RO reject water (1.37 Wh·L−1) was slightly higher than that of NaCl (1.19 Wh·L−1).
In this case, the mathematical model overestimated the energy consumption with a SPC
of 1.56 Wh·L−1. We also drew the relationship between DR and SPC, which showed that
the relationship was rather linear: an increase of DR led to an increase of the duration of
treatment and thus in energy consumption. As the mathematical model developed with
the NaCl solution overestimated the performances, it would be necessary to adapt it to
better mimic the desalination of a real RO concentrate, for further scaling-up approaches.
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3.2.2. Physico-Chemical Characterization of the Diluate and Species’ Mass Transfer

We then focused on the content of the RO concentrate and its evolution during elec-
trodialysis treatment. Therefore, experiments were designed to achieve several target
conductivities (i.e., 1.5, 1.0, 0.5, 0.1 mS·cm−1) and the contents of the diluate for each target
were measured (Table 3), leading to the calculation of specific removal rates (Figure 7). For
the foreseen re-use, we present hereafter only the results leading to a minimum conductivity
of 0.5 mS·cm−1. For these experiments, three different batches of RO concentrates were
collected at different days to account for the variability of content. Of note, the difference
in treatment time to reach 0.5 mS·cm−1, i.e., 27 min, 33 min, and 36 min for batches 1, 2,
and 3 respectively, was due to the difference in the initial conductivity of RO concentrate
samples (1.87, 1.98, and 2.04 mS·cm−1 respectively).
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Table 3. Physico-chemical characterization of dialysis RO concentrates to reach conductivity targets:
1.5, 1.0, and 0.5 mS·cm−1, respectively.

Parameter Unit Dialysis Loop Water
RO before ED

Target1.5
mS·cm−1

ED Target1
mS·cm−1

ED Target0.5
mS·cm−1

Mean (±SD) Mean (±SD) Mean (±SD) Mean (±SD)
Conductivity (mS·cm−1) 1.96 ± 0.092 1.50 ± 0.030 1.04 ± 0.060 0.54 ± 0.0081
pH 8.12 ± 0.22 7.79 ± 0.34 7.72 ± 0.37 7.36 ± 0.39
Calcium mg·L−1 1.06 ± 0.13 0.77 ± 0.12 0.49 ± 0.06 0.26 ± 0.02
Chloride mg·L−1 77.67 ± 4.04 50.33 ± 9.71 24.67 ± 2.08 8.50 ± 0.87
Total Hardness ◦ f 0.32 ± 0.04 0.23 ± 0.04 0.15 ± 0.02 0.07 ± 0.00
Magnesium mg·L−1 0.12 ± 0.2 0.09 ± 0.03 0.05 ± 0.01 0.02 ± 0.01
Sodium mg·L−1 440.67 ± 17.93 325.00 ± 10.58 217.00 ± 1.73 108.67 ± 1.15
Sulfates mg·L−1 170.00 ± 10.00 140.00 ± 10.00 105.00 ± 8.66 60.67 ± 6.81
Turbidity NFU 0.10 ± 000 0.23 ± 0.06 0.20 ± 0.10 0.13 ± 0.06
Ammonium mg·L−1 <0.05 ± 0.00 <0.05 ± 0.00 <0.05 ± 0.00 <0.05 ± 0.00
Nitrates mg·L−1 55.67 ± 3.21 33.00 ± 3.00 16.67 ± 1.15 5.60 ± 0.70
Free Chlorine mg·L−1 <0.02 ± 0.00 <0.02 ± 0.00 <0.02 ± 0.00 <0.02 ± 0.00
Total Chlorine mg·L−1 0.03 ± 0.00 0.03 ± 0.00 <0.02 ± 0.00 0.03 ± 0.00
Iron µg·L−1 3.67 ± 0.58 3.50 ± 2.12 1.33 ± 0.58 1.67 ± 0.58
Arsenic µg·L−1 0.19 ± 0.02 0.21 ± 0.11 0.16 ± 0.06 0.09 ± 0.02
Cadmium µg·L−1 <0.01 ± 0.00 <0.01 ± 0.00 <0.01 ± 0.00 <0.01 ± 0.00
Mercury µg·L−1 <0.01 ± 0.00 <0.01 ± 0.00 <0.01 ± 0.00 <0.01 ± 0.00

For sodium and sulfate, the most abundant species, the average removal rate (%)
linearly increased with the average time until conductivity reached 0.5 mS·cm−1 and then
flattened (data not shown). The profile of the other anions tended to flatten more rapidly,
because their initial concentration was much lower than that of sodium. In general, all
the ions were removed by more than 90% within an average time of 66 min (i.e., for a DR
of 95%).

Regarding the fluxes, the sodium flux is much higher than that of monovalent anions
Cl− and NO3

− which were removed from the dilute solution with about the same rate and
faster than SO4

2− (Figure 7b) This is due to its relatively high abundance until the end of
the experiment. The decrease in average flux as a function of average time is explained by
the decrease in current density averages (data not shown). The rate of ion transport across
membranes is determined by both the concentration and mobility of ions in the membranes.
The rate of transport is related to the valence and size of the ions: ions with higher valence,
or larger Stokes radii move slowly compared to ions with lower valence, and smaller Stokes
radii [42]. The ionic Stokes radii of sodium, chloride, nitrate and sulfate are respectively
1.84 Å, 1.21 Å, 1.29 Å, and 2.30 Å [43]. Sulfate ions have a larger Stokes radius than chloride
and nitrate ions. Therefore, they experienced a higher resistance when migrating through
the membrane, which explains their low flux and low removal rate as well (b) [44]. Sulfate
is removed with a lower rate, but this rate increased as the concentration of competing
ions decrease.

As sodium is the major ion in the RO rejects, and all ions were correctly removed, the
follow-up of conductivity can be considered as sufficient to determine ions’ removal in
this fluid.
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4. Discussion

Several solutions can be proposed for the re-use of the treated RO concentrates. The
associated standards or requirements collected from several institutions are provided in
Table 4 and for specific content in Supplementary Data (Table S3). It should be noticed
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that, depending on the application, decreasing the conductivity to the limit given by the
standards might not be enough to fulfill all the requirements (for instance, pH or a specific
ion concentration might not be correct). Therefore, based on the analysis performed in 3.2,
we propose in this table a target as “re-use conductivity” that might be different from the
data found in standard.

Table 4. Relevant performance parameters to achieve water quality standards for each reuse of
dialysis RO concentrates.

Potential Use of Treated RO
Effluents

Re-Use Conductivity
(mS·cm−1) DR (%) SPC

(kW·h·m−3)
W

(L·m−2·h−1)

Rehabilitation pool [45] 1.05 45 0.69 107
Sterilization:
ManualWashing [46] 1 48 0.72 102

Sterilization: Machine wash
and vacuum pump [46] 0.65 66 0.98 70

Irrigation of green areas [47] 0.5 74 1.09 59

Assuming that the initial conductivity is about 2 mS·cm−1, DR from 50% to 75% were
necessary to fulfill the requirement for re-use. This can be achieved in any condition with a
moderate energy consumption (Table 4).

Water for irrigation presented the most drastic requirements, with a target conductivity
between 0.3 and 0.7 mS·cm−1. This application might thus not be the best option for re-use,
although concentrations in chloride, nitrate, and sulfate achieved with this conductivity
were much below the threshold values fixed by WHO. These data confirmed that ED
is probably the best choice for treating this reject, compared to reverse osmosis process
which is more energy demanding for the same DR, and thus less cost- effective. In a very
recent paper, Patel et al. (2021), showed that ED exceled at low salinities (<3 g·L−1) [48].
The cost of desalination is proportional to the amount of salt removed [47–49]. Based on
its current application, it can treat reverse osmosis effluent from dialysis centers where
salinities remained below 2.0 g·L−1 at all sites.

Finally, in a scaling up approach, another important issue was to define a range of
productivity for the operation. The productivity gives information about the kinetics
efficacy of the separation process, as defined in Equation (5). Figure 8 shows that the
productivity was independent from the diluate volumes treated for the same concentrate
volume (different recovery rate), and varied mainly with the target DR. The productivities
obtained for our application were in the same range or even higher than the few ones
found in the literature [50,51]. Although it was difficult to compare data since the initial
concentrations of brackish water were not similar to our RO concentrates, we considered
that these good results came from the optimization of process parameters we proposed
in the first part of the study. In addition, in a circular economy perspective, recent work
regarding the re-use of old reverse osmosis membranes in a ED unit could be a way to
alleviate the environmental burden of the water treatment system in hemodialysis [52].

The knowledge of productivity will help in the choice of the membrane surface area,
while that of SPC will give some indication regarding energy consumption. As an example,
the dialysis center at Polyclinique Saint-Côme rejects 9 m3 of water issued from the RO
loop per day. To re-use this volume for manual sterilization in the clinics, a 3 m2-membrane
area ED system would be necessary. Operating with a high recovery rate (from 80 to
88%) produces concentrates of electrodialysis with conductivities from 6 to 10 mS·cm−1.
These values are compatible with a reject in the sewage system. The corresponding energy
consumption would be about 6.5 kWh, for the ED equipment only (without the pumps).
In a green perspective, energy supply should be provided by solar energy, reducing the
environmental impact of the additional energy requested. According to the above energy
demand, 90 m2 of photovoltaic panels would be able to supply the ED modules. Such
plants were already proposed and deployed for desalination process of brackish water [53],
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proving their efficacy with moderate salt concentration, as it is the case for the dialysis
RO concentrate.
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