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Abstract

We address the question of the modelling of the fluid-structure interactions for a microcapsule

enclosed by a finite-thickness wall, and of the prediction of the buckling behaviour when it is

subjected to large displacements and deformations. Specifically, we model the strong coupling

between the solid (the wall dynamics) and fluid (the flow inside and outside the capsule) mechanics,

for a wall material that can be strain-hardening or softening, while accounting for the bending

resistance due to thickness. The fluid flow is assumed to be inertialess on the capsule scale, which

allows the use of the boundary integral formulation for the fluid velocity. We discuss the different

simplifications that are made when designing a fluid–shell interaction model for large deformations,

and present a shear-membrane-bending (SMB) shell model that allows for a nonlinear wall stretching

law. The performance of the model, as compared to a simple membrane model where bending

resistance is neglected, is illustrated on a generic example: we consider an initially ellipsoidal capsule,

freely suspended in a plane hyperbolic flow, that is subjected to such stringent deformation, that its

short axis becomes the long one. We show that the simple membrane model predicts reasonably well

the overall shape of the capsule, but cannot capture the detailed post buckling behaviour, for which

a robust shell model is necessary. The SMB shell model complies with dominant membrane effects,

remains stable even under large deformation and avoids numerical locking. It allows predicting

post-buckling behaviour, which depends on the material constitutive law.
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finite elements, non-linear thin shell

1. Introduction

Capsules consisting of a liquid drop enclosed by a thin deformable wall are ubiquitous particles in

nature (cells) or in industry. Usually the membrane is as thin as possible, to maximize the payload

(internal contents) and facilitate trans-wall exchanges, while guaranteeing the particle integrity

under stress. Consequently, when suspended in another liquid undergoing flow, the capsules may

deform significantly (this would not be the case for a thick-walled capsule, which can then be treated

as a rigid particle). For example an initially spherical capsule will become roughly ellipsoidal in

simple shear flow [1, 2, 3] or will take a slug shape in tube flow as illustrated in Figure 1 [4, 5, 6].

During the deformation process and depending on the flow strength, some parts of the capsule

membrane may buckle or exhibit significant curvature changes, e.g. when they take a parachute

shape (Figure 1).

Modelling those phenomena represents a challenging fluid–structure interaction (FSI) problem:

(i) the capsule wall undergoes large deformations and large displacement, which must be taken

into account in the solid mechanics part of the problem; (ii) inertia effects are small, so that the

velocity and pressure fields depend on the deformed shape of the capsule; (iii) the capsule is a closed

surface that is typically freely suspended in another liquid. Consequently, the classical implicit FSI

numerical scheme, where forces are imposed and displacements determined from the solid problem

is cumbersome and not adapted to the problem at stake. Another option is to follow the position

of the nodes of the capsule (Lagrangian tracking) and to solve for the loads acting on the capsule.

This numerical scheme has the advantage of being stable at low inertia [7]. Whatever fluid solver

is used, the overall resolution scheme is then explicit: knowing the load exerted by the solid, the

fluid solver computes the velocity field, from which the displacement of the membrane points is

computed; the solid solver then recomputes the load on the fluid and the process is repeated until

a steady state is reached. Since the solid solver operates in opposite fashion to the traditional

finite element schemes, commercial or free-ware shell codes cannot be used directly and have to be

modified (when possible).

Many models treat the capsule wall as an infinitely thin membrane (i.e. an elastic surface) with

negligible bending resistance (see the review article by [8]). Although such models can identify the

regions where the wall is undergoing compression, they cannot model correctly the post-buckling
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behaviour. When bending effects are included, a Eulerian thin shell model (Helfrich model) is often

used where the bending resistance is assumed to be proportional to the local change of curvature

[9, 10, 11, 12, 13, 14]. However, very large values of the bending modulus must be used to find any

influence on the deformation of a spherical capsule in simple shear flow. It follows that such models

are appropriate to model capsule walls with strong anisotropy such as lipid bilayers.

The Helfrich model is not appropriate to model artificial capsules with an isotropic homogeneous

membrane obtained through interfacial polymerization or coating [15, 16, 4]. For those capsules,

the resistance to bending is specifically linked to the thickness of the wall. Of course, when the wall

is thin, the bending resistance is low. Nevertheless, under certain flow conditions bending effects

become important: this happens when the membrane buckles and makes folds (observed in simple

shear, plane hyperbolic or pore flows) as shown in Figure 1 or when the membrane locally changes

its curvature (parachute shape). Since capsules can deform significantly, it is important to design

a mechanical model that can account for the nonlinear elastic behaviour of the wall material and

include bending resistance due to a small but finite thickness.

A first thin shell model was developed by Le & Tan [17], but it was based on a Kirchhoff-Love

assumption, which neglects transverse shear. Dupont et al. [18] considered instead a thin shell

model based on Reissner-Mindlin assumption to model a capsule subjected to an inertialess simple

shear flow. They modified the shell finite element Shelddon library, designed by Inria1 to compute

the load from the displacement, while accounting for large mid-surface deformation. The velocity

field was then obtained from a boundary integral computed on the capsule mid-surface. They

showed that it was possible to compute the post-buckling behaviour of an initially spherical capsule

subjected to a simple shear or a plane hyperbolic flow and analyzed the wrinkles that form on

the membrane as a function of flow strength and membrane bending resistance [18, 19]. However,

their model was limited to the generalized Hooke’s material law, which is strain-hardening, and the

model cannot be extended to any other law. This is a limitation, since it was shown that, for some

capsules, the membrane material was strain-softening [4, 6, 20].

Different options exist to account for the non-linear mechanical behaviour of the material: (i)

1The Shelddon library is registered at the Agence pour la Protection des Programmes (ref

IDDN.FR.001.030018.000.S.P.2010.000.20600). The base of the program is open source and available online:

www-rocq.inria.fr/modulef.
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Using 3D finite elements (i.e. without the shell hypothesis) is one option, but the model resolu-

tion is often unstable. (ii) Using thick shells that account for the non-linearity behaviour layer

by layers is another one, but it requires very long computation times is not necessarily relevant

for capsules, for which the main force contribution within the wall remains the tangential elastic

traction force (the membrane force tends to remain dominant over the bending force for a very

large range of parameters). The option that we propose is based on another modelling approach:

a shear-membrane-bending model, which decouples membrane and bending forces by simplifying

the curvature terms. It is thus adequate for small to moderate capsule thicknesses. The approach

provides a fully 3D model, with the shell kinematics fully described across the thickness. The ad-

vantage of such model is that the elastic law can be easily modified and that one can use all the

material laws of membrane models.

We model the post-buckling behaviour of a capsule enclosed by a thin wall, subjected to large

displacements and deformations due to its interaction with the surrounding flow. The fluid flow

is assumed to be inertialess on the capsule scale: this allows the use of the boundary integral

formulation for the fluid velocity. Specifically, we would like to model a wall material that can be

strain-hardening or softening, while accounting for the bending resistance due to a small but finite

thickness. The shell model must allow the strong coupling between the solid (the wall dynamics)

and fluid (the flow inside and outside the capsule) mechanics, remain stable, avoid numerical locking

and keep the computational time tractable. We first discuss the different simplifications that are

made when designing a shell model undergoing large deformations, and present the shear-membrane-

bending model that allows for a nonlinear wall stretching law. We have chosen to illustrate the effect

of bending resistance on a special case where bending effects are expected to be large: an ellipsoidal

capsule subjected to a hyperbolic flow. The important results are that the coupling procedure

is stable even when the capsule is undergoing very large deformations due to a strain-softening

Neo-Hookean material constitutive law (NH), and that the post-buckling behaviour of the capsule

depends on the material constitutive law.

The paper is organized as follows. Section 2 discusses the main simplifying hypotheses used

to formulate a thin shell theory and presents the shear-membrane-bending shell model where any

non-linear membrane law can be used to model the mid–surface behaviour of the capsule. The fluid-

structure coupling is done in Section 3 and its numerical implementation is presented in Section

4. The simple case of an ellipsoidal capsule in plane extensional flow is analyzed in Section 5 and
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(a) (b) (c)

Figure 1: Experimental images of microcapsules deformed under hydrodynamic forces. (a) Polysiloxane microcapsule

subjected to a simple shear flow (shear rate = 18 s−1) (from Walter et al. [21]). (b) Alginate-ovalbumin microcapsule

(2% (w/v) low viscosity alginate - 10% (w/v) ovalbumin, pH = 7.4, 15 min reticulation time) flowing in a cylindrical

microchannel (radius of 75 µm) under a velocity of 13 mm/s and a capsule-to-tube confinement ratio of 1.09. (c) Oval-

bumin microcapsule (10% (w/v) ovalbumin, pH = 7.4, 15 min reticulation time) flowing in a cylindrical microchannel

(radius of 75 µm) under a velocity of 5.7 mm/s and a confinement ratio of 0.83. Images (b) and (c) were taken by

Adlan Merlo (BMBI laboratory, UTC).

compared to those given by a pure membrane model.

2. Capsule wall mechanics

We present the main equations governing the motion and deformation of a capsule freely sus-

pended in the flow of a Newtonian viscous liquid (viscosity µ, density ρ). The capsule is filled

with a Newtonian incompressible liquid (viscosity µ, density ρ), enclosed by a thin wall made of an

isotropic hyperelastic material having a bulk shear modulus G and a Poisson ratio ν in the limit of

small deformation. Its characteristic size ℓ is defined as the radius of the sphere with the capsule

volume Vc:

ℓ = (3Vc/4π)
1/3. (1)

The wall thickness h = αℓ is uniform and small compared to ℓ (α ≪ 1).

2.1. Curvilinear coordinate system

By convention, all quantities are denoted by capital letters in the reference initial state and by

lowercase letters in the deformed state. Surface tensor components are denoted with Greek indices

and three–dimensional tensor components with Latin indices. We adopt the Einstein summation

convention on repeated indices.

Rather than treating the wall as a three–dimensional continuum, we take into account its thin-

ness and use a shell theory [22], which consists of evaluating all quantities of interest on the wall
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mid–surface St at time t. The position of a point in the shell is defined by three independent curvi-

linear coordinates (ξ1, ξ2, ξ3). In the reference configuration, the position X of a material point

within the capsule wall is then given by:

X(ξ1, ξ2, ξ3) = Xs(ξ
1, ξ2) + ξ3A3, (2)

where Xs(ξ
1, ξ2) is the position of a point M on the mid–surface S0 and where |ξ3|/ℓ ≤ α/2. A

local surface covariant base (A1,A2,A3) is then defined as:

Aα =
dXs(ξ

1, ξ2)

dξα
= Xs,α and A3 =

A1 ×A2

‖ A1 ×A2 ‖
, (3)

where A3 is the unit normal vector and where ,α denotes the partial derivation with respect to ξα.

The contravariant base (A1,A2,A3) is defined by Aα ·Aβ = δαβ where δαβ is the Kronecker tensor

and A3 = A3. The same quantities are defined in the deformed state using lowercase letters. Note

that Vc corresponds to the volume enclosed by the wall mid–surface.

2.2. Wall deformation

In the deformed configuration, the new position x of a material point becomes:

x(X, t) = X + u(X, t), (4)

where u is the displacement field.

The variation of the distance between two points during deformation is measured by:

dx2 − dX2 = 2dXT · e · dX = 2dxT · d · dx. (5)

The Green–Lagrange e and Euler-Almansi d strain tensors are defined by:

e =
1

2
(F T · F − I) = F T · d · F , (6)

where F = ∂x/∂X is the displacement gradient, with three positive singular values λ1, λ2, λ3.

Three independent invariants of e can be defined by:

I1 = tr(F T · F )− 3 = λ2
1 + λ2

2 + λ2
3 − 3

I2 =
1

2
{[tr(F T · F )]2 − tr[(F T · F )2]} = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3

I3 = det(F )− 1 = λ1λ2λ3 − 1. (7)
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When the capsule wall is made of a homogeneous, isotropic, hyperelastic material, the strain

energy density W per unit volume of undeformed material depends only on the invariants of e.

The second Piola-Kirchhoff stress tensor Σ (pull back of forces per unit area in the undeformed

reference configuration) and Cauchy stress tensor σ (forces per unit area in the deformed reference

configuration) are given by:

Σ =
∂W

∂e
, σ =

1

det(F )
F ·Σ · F T . (8)

Different phenomenological constitutive laws can be postulated. The simplest one is the generalized

Hooke’s law (GH) in which a linear relation between Σ and e is postulated, which leads to:

W = G

[

tr(e2) +
ν

1− 2ν
(tre)2

]

=
G

4

[

I21 + 4I1 − 2I2 +
ν

1− 2ν
I21

]

, (9)

and

Σ = 2G

[

e+
ν

1− 2ν
tre I

]

, (10)

where I is the identity tensor. Note that when the deformation is large, the Cauchy stress σ is a

nonlinear function of e.

2.3. Thin shell simplifications

When the shell is thin, a number of simplifying assumptions are classically made.

2.3.1. Plane stress assumption

The first one is to postulate that the main stresses in the shell are plane and tangent to the

mid–surface. This corresponds to the assumption Σ33 = σ33 = 0 and implies that the membrane

stresses in the mid–surface are prevalent. The three-dimensional constitutive law (10) reduces to:

Σp = 2G

[

e+
ν

1− ν
(e11 + e22)I

]

, (11)

In the local curvilinear coordinate system where we write e = eijA
i ⊗Aj, Σp = Σij

p Ai ⊗Aj and

Aα = AαβAβ , the components of Σp become:

Σαβ
p = Cαβλµ eλµ, Σα3

p =
1

2
Dαλ eλ3, (12)

with

Cαβλµ = G

(

Aαλ Aβµ +AαµAβλ +
2ν

1− ν
Aαβ Aλν

)

, Dαλ = 4GAαλ. (13)

7



2.3.2. Reissner–Mindlin kinematic simplification

The second simplification consists of postulating the form of the displacement within the shell

thickness. For example, in the classical Reissner–Mindlin kinematic simplification [22], a material

line initially orthogonal to the mid–surface remains undeformed during motion, but does not remain

orthogonal to the deformed mid–surface. This means that shear deformations within the shell

thickness are taken into account. The displacement field u is thus specified as:

u(ξ1, ξ2, ξ3, t) = us(ξ
1, ξ2, t) + ξ3 θ(ξ1, ξ2, t). (14)

In the above, us(ξ
1, ξ2, t) denotes the displacement of a point M of the mid–surface. The rotation

surface vector is defined as θ(ξ1, ξ2, t) = θλ(ξ
1, ξ2, t)aλ(ξ1, ξ2, t) where in the case of small rota-

tion the angles θ1 and θ2 are the rotation angles of the normal vector to the mid–surface at M

around vectors a2 and a1, respectively. As shown by Chapelle & Bathe [22] and Dupont [23], the

components of e in the contravariant basis (A1,A2,A3), are given by:



















eαβ = γαβ(us) + ξ3χαβ(us,θ) + (ξ3)2καβ(us,θ),

eα3 = ζα3(us,θ),

e33 = 0.

(15)

The tensors γαβ, χαβ and καβ are the membrane strain, bending strain and curvature tensors

respectively, while the vector ζα3 is the shear strain vector. They are given by:

γαβ =
1

2
[Aα · us,β +Aβ · us,α + us,α · us,β], (16)

χαβ =
1

2
[us,α ·A3,β + us,β ·A3,α + θ,α ·Aβ + θ,β ·Aα + θ,β · us,α + θ,α · us,β] (17)

ζα3 =
1

2
[Aα · θ +A3 · us,α + θ · us,α]. (18)

καβ =
1

2
[A3,α · θ,β +A3,β · θ,α + θ,α · θ,β]. (19)

Note that in opposition with the linearized theory of Chapelle & Bathe [22], nonlinear terms (e.g.

us,α ·us,β) are retained in Eq. (16) to (19). This allows us to consider large transformations of the

capsule wall. When shear deformations are neglected (ζα3 = 0), we recover the classical Kirchhoff-

Love hypothesis, whereby the initial normal to the mid–surface remains normal to the deformed

mid–surface.
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2.3.3. Thin shell model vs. membrane model

When the wall is infinitely thin or when bending effects are ignored, the deformations in the

membrane thickness are neglected (χαβ = 0 and ζα3 = 0): we then recover the classical membrane

model where the capsule wall is reduced to its mid–surface St. The two–dimensional displacement

gradient Fs and deformation tensor es are obtained from Eq. (4), (6) and (14) for ξ3 = 0. In that

case, the displacement gradient and membrane Cauchy-Green deformation tensors are simply:

Fs =
∂(Xs + us)

∂Xs
, es = γαβA

α ⊗Aβ . (20)

Two independent invariants of deformation can be defined:

Is1 = 2tr(es), Is2 = Js − 1, (21)

where Js = det(Fs). The invariant Is2 thus represents the relative surface area change during

deformation. Integrating the plane strain energy W across the thickness leads to the strain energy

per unit surface area Ws. The three-dimensional stress tensors are reduced to two-dimensional

stress tensors Σs (pull back forces per unit length of curves in S0) and σs (forces per unit length of

curves in St):

Σs =
∂Ws

∂es
, σs =

1

det(Fs)
Fs ·Σs · F

T
s . (22)

Correspondingly, the membrane version of the generalized Hooke’s law is:

Ws =
Gs

4

[

2Is1 − 2Is2 +
1

1− νs
I21s

]

(23)

Σs = 2Gs

[

es +
νs

1− νs
tr(es)I

]

, (24)

where Gs = Gαℓ is the surface shear modulus and νs = ν the surface Poisson ratio. The two

material parameters Gs and νs can similarly be determined for any nonlinear membrane law in the

limit of small deformations [24]. Note that the difference between Eq. (11) and Eq. (24) is that Σp

is a three-dimensional stress tensor (forces per unit surface) with nine components whereas Σ
s
is a

two-dimensional tension tensor (force per unit length) with only four components.

2.4. Wall equilibrium: basic shell model

The wall equilibrium equations are then


















∇ · σ = 0 inside the wall,

σ · a3 = q+ on the external wall surface S+
t ,

σ · a3 = −q− on the internal wall surface S−

t ,

(25)
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where q+ (respectively q−) is the load per unit deformed area. Using the virtual work principle,

they can be written as:

∫

S
+
t

û · q+ dS −

∫

S
−

t

û · q− dS =

∫

Vwt

∂û

∂x
: σ dV, (26)

where Vwt is the shell wall volume in the deformed state and û(ûs, θ̂) any virtual displacement

satisfying the Reissner–Mindlin assumption (Eq. 14). Since the capsule wall is thin, the virtual

work of the load can be expressed in terms of a load qs evaluated on the mid–surface. The Eulerian

form of the equilibrium equation thus reads

∫

St

û · qs dS =

∫

Vwt

∂û

∂x
: σ dV =

∫

Vwt

d̂ : σ dV, (27)

where d̂ is the virtual Euler-Almansi strain tensor. The right-hand-side of Eq. (27), which cor-

responds to the virtual work of the internal forces, can be evaluated in the wall volume in the

undeformed state Vw0 (Lagrangian form):

∫

St

û · qs dS =

∫

Vw0

ê : Σ dV, (28)

where ê is the linearized Green-Lagrange virtual strain tensor, corresponding to the virtual dis-

placement û(ûs, θ̂). Its components are given by linearizing Eq. (15) along the directions ûs

and θ̂, respectively. The basic shell model [22] corresponds to Eq. (28) and (6) and describes the

mechanical equilibrium of a thin shell made of a Hookean material (Eq. 11), under the condition

of plane stress and a Reissner–Mindlin displacement field.

2.5. Shear-membrane-bending models (SMB)

In order to facilitate the shell computation, it is useful to simplify further the basic shell model

and decouple the respective contributions to the wall equilibrium, of the mid-surface membrane

deformation, of the bending moments and of the shear deformations within the wall thickness. In

order to achieve this, the higher order terms in (ξ3)2 are neglected in the components of e (Eq. 15).

Evaluating the right-hand-side term of the equlibrium equation (28) for the case where Σ is

given by the simplified generalized Hooke’s law (Eq. 11), we obtain :

∫

St

û · qs dS =

∫

V0

Cαβλµ
(

γαβ + ξ3χαβ

) (

γ̂λµ + ξ3χ̂λµ

)

dV (29)

+

∫

V0

Dαλ
s ζα3 ζ̂λ3 dV.
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We then integrate across the thickness to obtain:

∫

St

û · qs dS =

∫

S0

hCαβλµ

[

γαβ γ̂λµ +
h2

12
χαβ χ̂λµ

]

dS (30)

+

∫

S0

hDαλ ζα3 ζ̂α3 dS.

Equation (30) relates the load qs on a thin shell to the 2D membrane stresses in the mid–surface

(hCαβλµ
s γαβ), shear stress (hDαλ

s ζα3) and bending stress h3/12Cαβλµ
s χαβ . Since all non linear

terms have been kept in the construction of the membrane, shear and bending strain in Eq. (16,

17, 18), Eq. (30) applies for large transformations and constitutes a generalization of the classical

shear-membrane-bending (SMB) theory, which was derived for small elastic deformation [22].

2.6. Generalized shear-membrane-bending model (GSMB)

The above model (Eq. 30) adds a bending resistance to the wall model of the capsule, but the

underlying membrane model is based on generalized Hooke’s law, whose strain-hardening behaviour

might not be adequate for the constitutive wall material. We therefore propose a generalization of

this model that accounts for more general underlying membrane models. We begin by noting that

the stress term hCαβλµ γαβ can also be interpreted as the stress Σ
s
= ∂Ws/∂es in a membrane that

satisfies Hooke’s law (Eq. 23). We thus propose to rewrite Eq. (30) as

∫

St

û · qs dS =

∫

S0

∂Ws

∂γλµ
γ̂λµdS (31)

+

∫

S0

Cαβλµ
s

h3

12
χαβ χ̂λµdS

+

∫

S0

hDαλ
s ζα3 ζ̂α3 dS,

and interpret Ws now as the energy density of any membrane constitutive law. This generalized

shear-membrane-bending model (GSMB) thus allows us to consider any nonlinear hyperelastic mem-

brane behaviour, with small deformation values of the shear and surface Poisson ratio denoted by

Gs and νs, respectively. However, the bending and shear behaviour of the wall are computed by

means of the linear Hooke’s law, with values of material parameters G = Gs/h and ν = νs.

For example, consider a capsule wall made of an incompressible material (typically an elastomer

or a gel) that obeys a neo-Hookean (NH) type law, i.e. a simple version of the Mooney-Rivlin law.
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The three-dimensional strain energy is given by

WNH =
G

2
I1, (32)

which reduces after integration across the wall thickness to the membrane strain energy

WNH
s =

Gs

2

[

Is1 − 1 +
1

Is2 + 1

]

, (33)

with ν = νs = 1/2, in view of the material incompressibility. Under uniaxial extension and large

deformations, the neo-Hookean law (Eq. 33) predicts a strain-softening behaviour of the wall,

whereas the generalized Hooke’s law (Eq. 23) predicts a strain-hardening behaviour (typical of

a wall made of a cross-linked polymer network). Thus the great advantage of the GSMB model

is that it allows us to consider capsules with walls made of different materials. Of course, it

would be possible to use a basic shell model provided that we could identify not only the in plane

behaviour of the constitutive material but also its full 3D nonlinear strain energy density. For soft

materials, we would moreover be faced with the additional complexity of introducing an enriched

3D kinematics [25] because the standard Reissner–Mindlin assumption fails to reproduce the local

transverse response of the material across its thickness. The advantage of the GSMB simplification

is that the transverse effects (shear and bending) are linearized in deformation, which is reasonable

for capsule problems with limited bending forces. Moreover, the mechanical coefficients are simpler

to identifiy and the model stays cost efficient in terms of computational time.

3. Capsule dynamics in flow

3.1. General case

We assume that the capsule is small, so that the Reynolds number Re = µV ℓ/ρ is small, where

V is the characteristic dimension of the flow velocity. The flow inside and outside the capsule is

thus governed by the Stokes equations. In principle, the flow boundary conditions should be written

separately for S+
t and S−

t . However, to remain consistent with the thin shell approximations, we

write them on the wall mid–surface. Correspondingly, the boundary integral expression of the flow

velocity is given by

v(xs) = v∞(xs)−
1

8πµ

∫

St

(

I

‖ r ‖
+

r ⊗ r

‖ r ‖3

)

· qs(ys) dS, (34)
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Figure 2: Schematic illustration of an initially ellipsoidal capsule placed in a plane hyperbolic flow.

where v∞ is the undisturbed flow velocity and r = xs−ys. The wall and fluid motions are coupled

through the load qs that appears in Eqs. (34) and (31) and through the no-slip condition that

requires

v
(

xs(ξ
1, ξ2, t)

)

=
∂

∂t
us(ξ

1, ξ2, t). (35)

The main problem parameters are the relative wall thickness α associated to the ratio between

the bending stiffness Gα3l3/12 and the shear surface modulus Gs = Gαl, the wall Poisson ratio ν

and the bulk capillary number

Cav = µγ̇/G, (36)

which compares the viscous to the elastic forces. For an infinitely thin wall, described by a membrane

model, a surface capillary number is used

Cas = µγ̇ℓ/Gs = Cav/α. (37)

3.2. Ellipsoidal capsule in a plane hyperbolic flow

The GSMB approximation is tested on the case of a capsule which is an axisymmetric prolate

ellipsoid in the reference state (Figure 2). In a reference frame (e1,e2,e3) centered on the ellipsoid

centre, the equation of S0 is given by

X2
s1/b

2 +X2
s2/b

2 +X2
s3/a

2 = 1, (38)
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where a is the long axis and b the equator radius. The length scale ℓ is thus ℓ = (ab2)1/3.

At time t = 0, the ellipsoid is freely suspended in a plane hyperbolic flow given by

v∞(x) = γ̇(x1e1 − x3e3). (39)

Under the influence of the viscous forces, the capsule wall is stretched in the x1−direction

and compressed in the x3−direction. The small and large axes are exchanged: the longest axis,

which was initially along x3, may be along x1 in the steady deformed state. As a consequence,

we can expect large deformations and large curvature changes: this is a good test case to study

the predictions of the GSMB theory and analyze the influence of the wall thickness on the capsule

motion and deformation. Correspondingly, we will monitor the time evolution of the deformation

of a capsule when it is suddenly subjected to a hyperbolic flow at time t = 0. The profile distortion

will be quantified by the steady Taylor deformation Dij(t)

Dij(t) =
Lei(t)− Lej(t)

Lei(t) + Le
(
jt)

(40)

where Lei and Lej are the lengths, in the xixj−plane, of the principal axes of the ellipsoid of inertia

of the mid–surface St. Unless otherwise mentioned, we concentrate on one ellipsoidal shape for

which a/b = 1.4, corresponding to D13(0) = D23(0) = −0.17 and D12(0) = 0.

4. Numerical method and validation

4.1. Numerical scheme

The numerical procedure was outlined by Dupont et al. [18], who used the basic shell model

to describe the capsule wall. We thus only present the main procedure and discuss how the solid

solver differs from a standard finite element scheme. The fluid–structure problem is solved by

coupling (i) a shell finite element method to compute the load qs corresponding to a given mid–

surface displacement us and (ii) a boundary integral method to compute the local velocity of the

mid–surface points for a given deformed capsule geometry and load qs. The two solvers are used in

succession: for a given load qs transmitted by the solid solver, the velocity field vs(X, t) is computed

by the fluid solver and integrated in time to yield the position us of the mid–surface. The updated

displacement field us is then transfered to the solid solver which computes the load qs and transfers

it to the fluid solver. Note that whereas the calculation of qs is explicit for a membrane model, we

14



have to solve an equilibrium model to compute the rotation field θ for the shell model at each time

step, which lengthens the solid computation. The process stops when a steady-state is reached, i.e.

when the capsule area varies by less than 5× 10−4(4πℓ2) over a non-dimensional time γ̇t = 1.

The explicit nature of the time integration scheme makes it unstable unless the time steps ∆t,

between two successive iterations satisfies the stability criterion [26]:

γ̇∆t < O

(

∆xCav
h

)

, (41)

where ∆x is the mesh size.

The undeformed mid–surface of the capsule wall is discretized with MITC3 elements (triangular

shell elements with three nodes using the Mixed Interpolation Tensorial Components technique of

[27]). Correspondingly, an icosahedron (regular polyhedron with 20 triangular faces) is inscribed in

a sphere with radius ℓ = 1. Its triangular faces are sequentially subdivided and the resulting nodes

are projected on the sphere. The spherical grid is then transformed into an ellipsoidal grid by means

of a straightforward affine transformation. We use 2562 nodes corresponding to 5120 elements and

an average mesh size ∆x/ℓ = 0.075. The time step is γ̇∆t = 10−4.

For a given MITC3 element, λ(p) denotes the standard linear shape function associated with node

p ∈ {1, 2, 3}. In the following, we note f
(p)
j the value of the jth Cartesian component of any vector

f at node p. The local Cartesian coordinates system (r, s, z) is defined for each element, where

(r, s) are the intrinsic coordinates in the plane element (defined such that r, s and 1− r− s ∈ [0, 1])

and z is the coordinate along the deformed normal vector a3 (z ∈ [−1, 1]). The position x and the

corresponding virtual displacement û inside the given element are then expressed as

x(t) =
3

∑

p=1

λ(p)(r, s)

(

x(p)
s (t) + z

αℓ

2
a
(p)
3 (t)

)

, (42)

û =

3
∑

p=1

λ(p)(r, s)

(

û(p)
s + z

αℓ

2
θ̂(p)

)

. (43)

For the sake of simplicity, we will provide the algebraic expression of the finite element formula-

tion for the basic shell model (Eq. 28). The left–hand side of Eq. (28) is calculated on the deformed

state:

∫

St

û · q dS =
∑

el

û
(p)
j

(
∫

Sel

λ(p)λ(q)dS

)

q
(q)
j = {û}T [M ] {q}. (44)

15



It results from the assembling of each elementary vector of the discrete virtual displacement {û}

and load {q} and of the matrix M , which contains the terms into brackets with the shape functions.

Similarly, the integral on the right–hand side of equation (28) is calculated on each individual

element and summed over all the elements of the capsule surface. According to the definition of

the Green–Lagrange strain tensor, the elementary vector [eel] can be written as [eel] = [Bel] {uel},

where [Bel] is a matrix that contains the values of the partial derivatives calculated on the element

[28, 29]. The right–hand side of equation (28) then becomes

∫

Vw0

ê : Σ dV =
∑

el

∫

Vw0

{ûel}
T [Bel]

T [Σel] dV (45)

=
∑

el

{ûel}
T {Rel} (46)

= {û}T {R} (47)

where {Rel} is the internal load vector inside the element, and where the vectors {ûel} and {Rel}

are assembled into their global counterparts in the final step.

After equating Eq. (44) and Eq. (47) and simplifying by {û}T , the discretized form of Eq. (28)

becomes

[M ] {q} = {R} ({us}, {θ}) . (48)

The wall equilibrium discrete equations thus depend on the known degrees of freedom {us} of

the mid–surface displacement (computed by integrating the mesh nodes velocity provided by the

fluid solver at the previous time step) and the unknown rotational degrees of freedom {θ}, which

can be calculated separately, if one rewrites the problem in the following form:

{

{R}s ({us}, {θ}) − [M ]s {qs} = {0}s, (49a)

{R}θ ({us}, {θ}) = {0}θ. (49b)

The viscous load {qs} is the second unknown in this system. To solve it, we first solve the

nonlinear equation (49b) in {θ} by a Newton’s method. Numerically, we define the residual of

equation (49b) as

R({θ}) = {R}θ ({us}, {θ}) . (50)

We search for the rotations {θ} such that R = 0. The equation is solved by subiterations (index

i) setting the convergence criterion at 1 × 10−7. Let {θt} be the rotation vector that satisfies the
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zero–residual condition at time t and {θt+∆t} the solution that we are looking for at time t + ∆t.

As rotation initial guess {θt+∆t
0 }, we use the rotation found at the previous time step. Using a

first–order Taylor series, one can express the residual at subiteration i+ 1 as

R({θt+∆t
i+1 }) = R({θt+∆t

i }) +
∂R({θt+∆t

i })

∂{θ}

(

{θt+∆t
i+1 } − {θt+∆t

i }
)

. (51)

Let us search for {θt+∆t
i+1 }, such that R({θt+∆t

i+1 }) = 0. From equation (51), it reads

{θt+∆t
i+1 } = {θt+∆t

i } −

[

∂R({θt+∆t
i })

∂{θ}

]−1

R({θt+∆t
i })

= {θt+∆t
i } −

[

K({θt+∆t
i })

]−1
R({θt+∆t

i }), (52)

where [K] represents the stiffness matrix. Equation (52) is solved for explicitly, since [K(θt+∆t
i )]

and R(θt+∆t
i ) are known from subiteration i. If the new solution does not respect the convergence

criterion

|{θt+∆t
i+1 } − {θt+∆t

i }| < 10−7, (53)

one has to move on to the next subiteration and iterate until convergence. Once the value of the

rotation {θ} is found, the load {qs} exerted by the fluids on the wall is obtained by direct inversion

of equation (49a).

The shell finite element code uses Shelddon libraries, designed by Inria2. The latter were modified

to solve the solid problem (i) with the displacement as an input and (ii) for any material law

for membrane effects. The global structure of the numerical scheme remains unchanged but the

following changes are made:

• The subroutine to solve Eq. (49a) is modified to determine {qs}, the classical unknown being

the load {us}.

• The coupled terms and the terms corresponding to the curvature tensor καβ are set to zero.

• The terms in α2 are neglected.

2The Shelddon library is registered at the Agence pour la Protection des Programmes (ref

IDDN.FR.001.030018.000.S.P.2010.000.20600). The base of the program is open source and available online:

www-rocq.inria.fr/modulef.
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• The structure of the matrix [Σel] is modified to decouple the shear, bending and membrane

effects and to select a constitutive law to govern membrane deformation.

In order to compute the load qs using a Lagrangian tracking scheme, the Shelddon library is

coupled with the fluid solver developed in the Biomechanics and Bioingineering Laboratory [7, 26,

30] using a Parallel Virtual Machine protocol. The velocity field is then obtained explicitly from

Eq. (34), which is discretized on the mesh described above. Equation (35) is integrated by means

of an explicit second-order Runge-Kutta method to compute us. The updated displacement us is

given back to the solid solver at the beginning of the following time loop.

4.2. Validation of the GSMB model

Dupont et al. [18] applied the basic shell model to an initially spherical capsule with a GH wall

freely suspended in a simple shear flow. They showed that for high shear rates and any thickness,

the predictions of the shell model are the same as those of the well documented membrane model,

because stretching of the mid–surface is then the dominant phenomenon. This indicates that the

basic shell model leads to validated predictions of the capsule deformed profile.

They also conducted a full convergence analysis that showed that the numerical coupled pro-

cedure converges as (∆x/ℓ)2 and γ̇∆t. The GSMB numerical scheme, being based on the same

numerical procedures, has the same temporal and spatial convergence. With the 5120 element

mesh, we thus expect a precision of order 8× 10−3 on the capsule Taylor deformation Dij .

To validate the GSMB model, we now analyze the influence of the GSMB simplification. The

motion of an initially prolate capsule, subjected to a hyperbolic flow (Eq. 39) for Cav = 0.003, is

simulated using both the basic shell model (Eq. 28) and the GSMB model (Eq. 31), where Ws is

given by the generalized Hooke’s law (Eq. 23), which corresponds to the SMB model (Eq. 30). The

two computations are done with the same 5120 elements mid-surface mesh and the same time step.

In order to compare the results, we compute the distance H(t)/ℓ between two corresponding nodes

of the deformed mid-surfaces obtained at steady state (γ̇t = 5) with the two numerical schemes.

Figure 3 shows the capsule deformed shape for two values of thickness (α = 3% and 10%) as well as

the mapping of the distanceH(t)/ℓ over the capsule wall. For α = 3%, the capsule undergoes a large

deformation with its long axis along the x1−direction, while part of the capsule wall buckles. The

maximum values of H(t)/ℓ are then of order 0.004− 0.005 and are found in the vicinity of the folds

(Figure 3a). For α = 10%, there is no buckling and the maximum distance H(t)/ℓ is less than 0.001
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(a) (b)

Figure 3: Steady state mapping of the distance H/ℓ between the basic shell model and the GSMB model (GH law) for

Cav = 0.003 and γ̇t = 5. (a) For α = 3%, the largest profile difference occurs in the buckled region; (b) For α = 10%,

there no buckling and the profile difference is very small.

(Figure 3b). Altogether, the profile difference is very small and of the same order of magnitude as

the precision of the numerical scheme. This validates the use of the GSMB simplification to model

the capsule response, even when the deformation is large.

We now assess the influence of the mesh on the post-buckling behaviour by comparing the

results obtained with the 5120 elements mesh to those obtained with a different mesh based on

an octahedron (regular polyhedron with 8 triangular faces) and containing 8192 elements. For

Cav = 0.003 and α = 3%, the maximum distance H(t)/ℓ is less than 0.03, which proves that the

post-buckling behaviour is not affected by a change in the mesh geometry.

5. Results

5.1. Typical time evolution of a capsule

As an illustration we show the detailed time response of a capsule for Cav = 0.003 and α =

3% when the wall obeys the GH law (Figure 4). Under the influence of the flow, the capsule is

progressively stretched in the x1−direction and compressed in the x3−direction. The profile in the

x1x3−plane evolves smoothly until a steady shape is reached (Figure 4b). As expected, the small

and large axes are exchanged. If we analyze only the profile in the flow plane (x1x3), we might

conclude that a steady state is reached for γ̇t ≥ 1 (Figure 4a). However, the deformation process

is asymmetric: indeed, compression along the x3−direction leads to buckling, as evidenced by the

folds that appear on the surface of the capsule for γ̇t ≥ 1 (Figures 4a, c). It follows that the
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Figure 4: Temporal shape evolution of an initially prolate capsule subjected to a planar hyperbolic flow at a/b =

1.4, Cav = 0.003, α = 3%: (a) 3D view (the white spots are a lighting artefact), (b) (e1, e3)-plane, (c) (e2, e3)-plane.

The GSMB model is used where the mid–surface deformation is governed by the generalized Hooke’s law.

Figure 5: Mapping of the bending to membrane energy ratio Eb(Ni)/Em(Ni) at steady state (γ̇t = 5) in (a) the flow

plane (x1x3) and (b) the cross plane (x2x3). Same conditions as in Figure 4.
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steady state is actually reached for γ̇t ∼ 5, when the folds have stabilized. The local distribution of

membrane and bending energy at each node is defined as

Em(Ni) =
1

∑

∆Si

∑

∫

∆Si

WsdS, (54)

Eb(Ni) =
1

∑

∆Si

∑

∫

∆Si

Cαβλµ
0

h3

12
χαβ χλµdS (55)

Esh(Ni) =
1

∑

∆Si

∑

∫

∆Si

hDαλ
0 ζα3 ζα3 dS, (56)

where ∆Si is the surface of an element and where the sums are taken over the elements that share

node Ni. The mapping of Eb(Ni)/Em(Ni) is shown in Figure 5, where a logarithmic scale is used

to dampen out the effect of numerical errors in the computation of the bending energy and indicate

the areas where bending effects are negligible. It appears clearly that bending and membrane effects

have the same order of magnitude in the buckled areas only, whereas in the stretched areas, bending

effects are negligible compared to membrane stretching forces. The differences of the bending-

to-membrane energy ratio between the crest and trough of the wrinkles are due to variations in

membrane energy, the bending one remaining constant. The shear to membrane local energy ratio,

Esh(Ni)/Em(Ni), is less than 0.03 everywhere (not shown).

5.2. Influence of Cav

The influence of the relative flow strength Cav on the capsule deformation is shown in Figure

6 for α = 3%. The elongation of the capsule in the flow direction increases with Cav (Figure 6a).

The corresponding Taylor deformation at steady state D∞
13 also increases with Cav, and levels off

for large values of Cav because the GH law is strain hardening (Figure 7a). The change in sign of

D∞
13 is due to the fact that the long and short axes are interchanged.

As the flow strength increases (e.g. Cav ≥ 0.0075 for α = 3%), the stretching energy of the

mid–surface is large and bending energy becomes negligible by comparison. It can be expected,

for those large values of Cav, that a simple membrane model where bending is ignored would be

sufficient to compute the capsule deformation (see section 2.3.3).

5.3. Influence of the wall bending resistance

We analyze the effect of the wall bending resistance, as measured by α, on the capsule steady

deformation for Cav = 0.003. The capsule mid–surface profiles in the flow plane (x1, x3) show
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Figure 6: Influence of Cav on the capsule mid–surface deformation at steady-state (γ̇t = 5, α = 3%, GH law).

Mid–surface cross profiles in the flow plane (a) and in the perpendicular plane (b).
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Figure 7: Steady state values of mid–surface Taylor deformation D∞
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constitutive law for α = 3%; (b) influence of bending resistance for low and high flow strength (GH law).
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Figure 8: Influence of α on the capsule mid–surface at steady-state (Cav = 0.003, GH law). Mid–surface cross profiles

in the flow plane (a) and in the perpendicular plane (b).

that the capsule becomes less elongated along x1 as α increases (Figure 8a). Consequently the

deformation D∞
13 decreases with increasing bending resistance (Figure 7b). In the cross plane, the

situation is complex: for small wall values (α = 1%), the tensile stress level is such that the wall

does not buckle (Figure 8b). However, for intermediate values 5% ≤ α ≤ 7.5%, the wall buckles

because the overall deformation and tensile stresses of the capsule are too small (D∞
13 < 0.2) to

overcome the compressive stresses. The process is similar to the one that occurs for low Cav and

α = 3%. For a large value α = 10%, the reduced deformation and low tensile stress level do not

result in buckling because the bending resistance is large. It follows that the bending model of a

shell allows us to study the complex balance between bending resistance, deformation and buckling.

For high flow strengths, e.g. Cav = 0.015, we recover the fact that the deformationD∞
13 decreases

with wall thickness (Figure 7b). However as the capsule is more deformed, the wall does not buckle

even when the thickness is small (Figure 9).

5.4. Influence of the mid–surface constitutive law

We now consider a strain-softening wall material that satisfies the neo-Hookean constitutive

law (Eq. 32). We thus replace Ws in Eq. (31) by WNH
s given by Eq. (33). As in section 5.2,

the wall thickness ratio α is fixed to 3% and the effect of Cav is analyzed. We find again that

the higher Cav is, the more elongated the capsule is in the flow direction (Figure 10a). This is

confirmed by the evolution of the Taylor parameter D∞
13 in Figure 7a. However, as the NH law is
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Figure 9: Influence of α on the capsule mid–surface at steady-state (Cav = 0.015, GH law). Mid–surface cross profiles

in the flow plane (a) and in the perpendicular plane (b).
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Figure 10: Influence of Cav on the capsule mid–surface deformation at steady-state (γ̇t = 5, α = 3%, NH law).

Mid–surface cross profiles in the flow plane (a) and in the perpendicular plane (b).
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Figure 11: Influence of the constitutive law on the capsule mid–surface deformation at steady-state (α = 3%) at

Cav = 0.0003 (a), 0.0045 (b), 0.0075 (c). Mid–surface cross profiles in the flow plane are represented in left and in

the perpendicular plane in right.
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strain-softening, for a given Cav, the capsule is more stretched in the flow direction than with the

strain-hardening generalized Hooke’s law. It follows that the values of D∞
13 are larger for a NH wall

than for a GH wall. For 0.003 ≤ Cav ≤ 0.006, the maximum bending to membrane energy ratio

max(Eb(Ni)/Em(Ni) is larger than 20%. Wrinkles appear in the central region (Figure 10b), with a

fairly large amplitude. The mid–surface constitutive law thus influences also the wrinkle formation

in the central region.

Figure 11 compares the capsule deformed profiles obtained with two different membrane laws,

for the case α = 3% and for the three values of capillary number of Figure 10 with the objective to

better visualize the influence of the mid–surface constitutive law. We clearly see that the capsule

is more elongated in the flow plane (x1x3) for the strain-softening NH law than for the strain-

hardening GH law. But the most interesting aspect is the large difference in post-buckling shapes

observed within the perpendicular plane (x1x2). Both the wrinkle wavelength and amplitude are

smaller for the GH law than for the NH law. This indicates that buckled shapes strongly depend

on the capsule wall mechanical behaviour.

5.5. Comparison with a membrane model

We now compare the results obtained with either the GSMB model or a classical membrane

model, as described in Section 2.3.3. We use the NH law and consider a thickness ratio α = 3%

for the shell model. The relevant parameter for the comparison is the surface capillary number

Cas, defined in Eq. (37). We take Cas = 0.15, for which buckling occurs. The GSMB results thus

correspond to Cav = 0.0045, α = 3%, Cas = 0.15. Two different mesh types with 5120 or 8192

elements are also used for the comparison. The deformed mid–surface profiles are shown in Figure

12. In the flow plane (x1x3), the profiles obtained with a 5120–element mesh, for either a membrane

or 3%-thickness GSMB model coincide very well (Figure 12a). The same remark applies for higher

values of thickness up to α = 10% and for the 8192–element mesh (not shown). However, such is

not the case in the cross plane, where buckling occurs. The buckled shape predicted by the GSMB

model is stable and does not depend on the type of mesh (Figure 12b), as was mentioned in section

4.2. However, for the membrane model, which is devoid of bending resistance, buckling is only

controlled by numerical parameters, such as the mesh size and/or structure. When part of the wall

is undergoing compression, the deformed profile depends on the surface grid, as indicated clearly in

Figure 12c. It follows that the buckled profile predicted by the membrane model is unphysical and
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Figure 12: Mid–surface profiles at steady-state (NH membrane) obtained with a membrane model (Cas = 0.15)

or with a GSMB model (Cav = 0.0045, α = 3%, Cas = 0.15) and two meshes types (5120 or 8192 elements). (a)

Membrane and GSMB profiles in the flow plane: the profiles obtained with 5120 elements are almost superimposed;

(b) GSMB profiles in the cross-plane: the profiles are independent of the mesh type; (c) membrane model profiles in

the cross-plane: the profiles strongly depend on the mesh type.

L1 L2 L3 Le1 Le2 Le3

membrane 1.46 1.03 0.71 1.46 1.00 0.67

α = 3% 1.46 1.09 0.75 1.45 1.03 0.67

α = 10% 1.45 1.13 0.77 1.41 1.04 0.70

Table 1: Geometrical characteristics of the deformed profile obtained with a membrane or shell model for Cas = 0.15:

Li and Lei are the axial lengths of the actual profile or of the ellipsoid of inertia, respectively.

differs significantly from the one obtained when bending resistance is properly taken into account.

For high flow strength, e.g. Cas = 0.25, the wall is stretched enough that no buckling occurs.

In this situation, the membrane and shell models predict the same deformed profile, typically like

the ones shown in Figure 11c for Cav = 0.0075 and α = 3%.

It is customary to compute the capsule deformation by replacing the actual deformed lengths

Li with the three principal axes Lei of the mid-surface ellipsoid of inertia. This procedure tends

to smooth out oscillations of the profile and thus alleviates any error on the details of the buckled

surface. When comparing the deformation values obtained with the shell or membrane models

(Table 1) we find that the difference in the actual lengths Li between the membrane and shell

models is at most 10%. This difference decreases to 3− 4% when we use the lengths of the ellipsoid

of inertia, Lei.
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6. Discussion and conclusion

When a capsule is suspended in a flowing liquid, there are situations where part of the capsule

wall is subjected to compressive stresses and thus tends to buckle. In order to account for such a

phenomenon, the dynamics of the solid wall must include bending effects. We have thus designed

the GSMB thin shell model, which takes into account the shear deformation across the capsule

wall thickness. Compared to more elaborate shell models like thick- or 3D-shell models [31], the

advantage of the GSMB model is that it allows accounting for wall materials that have nonlinear

material properties and are either strain-hardening or softening under extension. However, the de-

formation and stresses in the wall thickness are simplified to leading order with a linear constitutive

law. This simplification is made possible by the thinness assumption, whereby terms O(α2) and

higher are neglected compared to terms O(α). The advantage of the model is that it is numerically

well behaved and does not lead to numerical locking artefacts [22]. The computational cost of the

GSMB model is about 40% higher than that of a simple membrane model, when used in a typical

capsule flow problem.

The question that arises is then: when should we use a GSMB to model the capsule wall? In

the case of a spherical capsule with a GH membrane, subjected to unbounded shear flow, Dupont

et al. [18, 19] show that for high shear rates and any thickness, the predictions of a basic shell

shell model are the same as those of the well documented membrane model. This is due to the fact

that a spherical capsule must extend its wall surface area in order to deform at constant volume:

stretching of the mid–surface is then the dominant phenomenon. In this situation, bending effects

are only important at low shear rates where buckling occurs. A GSMB (or a simple SMB model)

must be used to predict the fold characteristics (wavelength, amplitude) as a function of α and Ca.

Note that, since folds occur at low shear rate (i.e. low deformation), the specific constitutive law of

the membrane is irrelevant, so that a basic shell model model can be used.

However, when the initial reference shape of the capsule is not spherical, part of the membrane

can be subjected to compressive stresses even at large deformation. This phenomenon occurs

for an ellipsoidal capsule freely suspended in shear flow. As an illustration we have chosen the

simple case of an ellipsoidal capsule subjected to plane hyperbolic flow: the advantage of this

configuration is that the capsule does not rotate and only deforms. We then show that, for stringent

deformations, the profiles obtained with a membrane model are significantly different from those
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obtained when bending resistance is accounted for. The difference appears in the cross flow plane,

where the membrane buckles. We also show that the buckling behavior depends on the membrane

constitutive law. It is interesting to note that this phenomenon may stay hidden both numerically

or experimentally if only the profile in the flow plane is analyzed.

There are other more complex situations where we can expect bending resistance to alter the

motion and deformation of a capsule. The case of an ellipsoidal capsule in simple shear flow is one

of them. Another situation is confined flow, where even a spherical capsule is undergoing curvature

inversion with associated bending effects.

The GSMB model is developed for thin walled capsules. It will be interesting in the future to

study its domain of validity. It is likely that the GSMB model will remain valid even for thick

wall capsules under unconfined flows, similarly to what was shown for cylindrical tubes [32]. If

thicker walled capsules need to be considered under confined flows, the thin shell model is no longer

appropriate: the wall must be treated as a three-dimensional medium with distinct outer and inner

boundaries. We then loose the thin shell advantage; i.e. that all quantities, solid and fluid, are

evaluated on the mid-surface and that the same grid is used for the fluid and solid problems.

The GSMB model is developed for thin walled capsules with a thickness ratio less or equal

typically to ∼ 10%. If thicker walled capsules need to be considered, the wall must be treated

as a three-dimensional medium with distinct outer and inner boundaries. We then loose the thin

shell advantage, i.e. that all quantities, solid and fluid, are evaluated on the mid-surface and that

the same grid is used for the fluid and solid problems. Altogether, a comparison between results

obtained with either the thin shell model or a three-dimensional wall, should establish the range of

validity of the GSMB model, which may depend on the flow configuration.
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