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Keywords: 

We present a microfluidic method to measure the elastic properties of a population of microcapsules (liquid drops enclosed by a thin hyperelastic membrane). The method is based on the observation of flowing capsules in a cylindrical capillary tube and an automatic inverse analysis of the deformed profiles. The latter requires results from a full numerical model of the fluid-structure interaction accounting for nonlinear membrane elastic properties. For ease of use, we provide them under the form of databases, when the initially spherical capsule has a membrane governed by a neo-Hookean or a general Hooke's law with different surface Poisson ratios. Ultimately, the microfluidic method yields information on the type of elastic constitutive law that governs the capsule wall material together with the value of the elastic parameters. The method is applied on a population of ovalbumin microcapsules and is validated by means of independent experiments of the same capsules subjected to a different flow in a microrheological device. This is of great interest for quality control purposes, as small samples of capsule suspensions can be diverted to a measuring test section and mechanically tested with a 10% precision using an automated process.

1

Impact Statement

Encapsulation consists in enclosing a substance inside a membrane in order to protect it and control the exchanges with the environment. Recent innovative applications use capsules containing active principles, fragrances, flavors, phase change materials or organ cells. A microfluidic methodology is presented to measure the membrane elastic properties of microcapsules with a liquid core. The method is based on an inverse analysis of the deformed profiles of capsules flowing in a capillary tube. A fluid-structure numerical model that accounts for nonlinear large deformations of the capsule wall, corresponding to a strain-hardening orsoftening material behavior, provides the database for the inverse analysis. The method is applied on artificial microcapsules with a cross-linked ovalbumin membrane and is validated by comparison with measures in a microrheological device. The advantage of the microfluidic method is that it is simple to implement and can be automatized for on-line measurements.

Introduction 2

Encapsulation consists in enclosing some internal substance inside a membrane in order to control the 3 exchanges between the environment and the internal medium. The capsule contents are thus prevented 4 from dispersing or degrading and can eventually be released where and when needed. Capsules are 5 found in nature in the form of cells, bacteria, seeds, and eggs. For example, a red blood cell (RBC) 6 is a natural capsule that transports hemoglobin, allows oxygen and carbon dioxide exchanges through with a strain-softening behavior, as exhibited by polymer membranes with rubber-like elasticity. For 29 membranes with a network of strong covalent bonds, the strain-hardening behavior is often modeled 30 by a Skalak (SK) law, which was initially designed to represent the mechanical behavior of the bi-layer membrane of the red blood cell (Skalak et al., 1973). However, for artificial capsules, the generalized 32 Hooke's law (GH), which corresponds to the thin membrane limit of a homogeneous three-dimensional 33 law, constitutes an interesting alternative to the SK law. Indeed, the GH law assumes a linear relation 34 between the stress and the deformation in the reference undeformed configuration, but exhibits a nonlin-35 ear strain-hardening behavior under large deformation. Furthermore, it can account for variable degrees 36 of wall area distensibility.

37

Experimentally, the measurement of the wall mechanical properties is difficult because capsules are 38 small and fragile. For biological cells such as RBCs with a very deformable lipid bi-layer membrane, 39 micropipette aspiration (Heinrich & Rawicz, 2005) or optical tweezers (Avsievicha et al., 2020) have 40 been proposed. Those methods are not adapted to measure artificial microcapsules with a size ranging 41 from a few tens of micrometers to a millimeter, because the deforming forces that are applied are a few 42 pN. If this force level is sufficient to substantially deform cells, it is much too low to have any measurable effect on capsules. Correspondingly, different techniques to test capsules have been proposed over the 44 years, such as compression between two parallel plates for millimeter-size particles (Carin et al., 2003; e = 1 2 (F T • F -I ), where F = ∂ x/∂ X is the gradient of the transformation and I the identity tensor. Two invariants of e can be defined as

I 1 = tr(F T • F) -2 = λ 2 1 + λ 2 2 -2, I 2 = det(F T • F) -1 = λ 2 1 λ 2 2 -1, (1) 
where λ 1 and λ 2 represent the in-plane principal extension ratios. Invariant I 1 measures the shear deformation, whereas I 2 measures the local surface dilation. Since the membrane is infinitely thin, the three-dimensional stresses in the membrane are replaced by Cauchy tensions (forces per unit arc-length of deformed surface). The Cauchy tension tensor σ depends on a strain energy function w s (I 1 , I 2 ) per unit undeformed surface area

σ = 1 λ 1 λ 2 F • ∂w s ∂ e • F T . ( 2 
)
Several constitutive laws with constant material coefficients have been proposed to govern energydeformation relationships. They are usually derived from classical three-dimensional laws in the limit where the initial thickness h of the capsule wall tends to zero. The surface shear modulus is then related to the usual three-dimensional shear modulus G by G s = hG.

(3)

The simplest law, for isotropic and hyperelastic materials, is the generalized Hooke's (GH) law, in which w s is a quadratic function of e:

w GH s = G s tr(e 2 ) + ν s 1 -ν s [tr(e)] 2 = G s 4 2I 1 -2I 2 + 1 1 -ν s I 2 1 , (4) 
where tr(e) denotes the trace of e and -1 < ν s < 1 is a surface Poisson ratio. The area dilation modulus

94 is then K s = G s (1 + ν s )/(1 -ν s )
, which implies that ν s → 1 corresponds to an area incompressible 95 membrane. Note that σ is a linear function of e for small deformation (F ≃ I ), but becomes a nonlinear function of e for large deformation, with a strain-hardening type behavior.

97

The two-dimensional form of the Neo-Hookean (NH) law, classically used to describe volumeincompressible rubber-like materials, is given by

w NH s = G s 2 I 1 -1 + 1 I 2 + 1 . (5) 
Because of the hypothesis of volume incompressibility, area dilation is balanced by membrane thinning 98 so that K s = 3G s . Under large deformation, the Cauchy tensions exhibit a strain-softening type behavior.

99

In order to describe anisotropic biological bi-layers (such as the red blood cell membrane), Skalak et al. (1973) proposed a purely two-dimensional law (SK) with independent surface shear and area dilation modulus

w SK s = G s 4 (I 2 1 + 2I 1 -2I 2 ) + CI 2 2 . ( 6 
)
The area dilation modulus is K s = (1 + 2C)G s , in which the dimensionless parameter C regulates the 100 resistance to area dilation. Under large deformation, the Cauchy tensions exhibit a strain-hardening type 101 behavior, that becomes more pronounced as C increases.

102

For C = 1 and ν s = 0.5, corresponding to K s = 3G s , the three NH, GH, SK laws have the same small-103 deformation behavior, but predict different material responses for large strains (Barthès-Biesel et al., 104 2002;Lac et al., 2004).

105

When the inertia of the capsule membrane is neglected, the local equilibrium equation of the membrane reads where ∇ s is the surface gradient and q is the load, i.e. the external force per unit area of deformed capsule surface C t at time t. A no-slip condition is also imposed at the capsule wall

∇ s • σ + q = 0, ( 7 
) (¡,¢) C S in S out 10l l O z y a (¡,¢) L p L z L 1 L 2 z y 0 (a) (b) (c)
v(x, t) = ∂ x(X, t)/∂t x ∈ C t , (8) 
where v(x, t) is the velocity of the fluids on the capsule deformed surface.

106

Fluid-structure coupling and numerical method 107

The flows of the internal and external liquids are governed by the Stokes equations, subjected to no slip conditions on the capsule wall and on the flow domain outer boundary B. The velocity of the capsule wall is given by an integral equation (Pozrikidis, 2005)

v(x) = v ∞ (x) - 1 8π µ C t J • qdS( y) + B J • f + dS( y) , x ∈ C t . (9) 
where v ∞ (x) is the unperturbed flow velocity in absence of capsule. The force q on the membrane is determined from the mechanics of the capsule wall (Equation 7). The additional friction force on the domain boundaries f + must be computed as part of the solution (Hu et al., 2012). The Green function J is defined as

J = 1 || x -y|| I + (x -y) ⊗ (x -y) || x -y|| 3 . ( 10 
)
The problem is governed by the following non-dimensional parameters:

108

• The size ratio a/l, where l is the flow characteristic length, to yield the velocity of the membrane. A second-order Runge-Kutta method is then used to integrate 117 equation ( 8) and obtain the new deformed position of the membrane material points. This information 118 is sent to the FEM solid solver to compute the load q, which is then sent to the fluid solver to repeat the 119 process. The explicit nature of the time integration, implies very small time steps for the scheme to be 120 stable. Here, we use a time step ∆tV /l = 5 × 10 -4 , which guarantees stability. All the reported results

121

pertain to a steady state, for which the surface area of the capsule varies by less than 10 -3 × (4πa 2 ) 122 over a non-dimensional time tV/l = 1. The precision of the numerical scheme has been shown to be 123 O(∆h c /l) 2 when P1 elements are used (Walter et al., 2010;Dupont et al., 2015).

Numerical prediction of the capsule deformed shape

125

Deformation of a capsule flowing in a cylindrical tube 126

We first consider the case where a closely fitting capsule is subjected to a bounded Poiseuille flow 127 with mean velocity V , created in a straight channel with a circular cross section of radius l (Figure 128 1a). We seek the steady motion and deformation of a centered capsule. Since there is a liquid film 129 around the capsule (Figure 1b), its velocity v c is different from V and must be computed as part 130 of the solution. Presently, results are available for capsules with a NH or SK membrane flowing in 131 circular (Pozrikidis, 2005;Lefebvre & Barthès-Biesel, 2007;Hu et al., 2012) or square section tubes 132 (Kuriakose & Dimitrakopoulos, 2011;Hu et al., 2013). In this section, we provide new results for 133 capsules with a GH membrane law.

134

The capsule centre O is initially located on the channel axis, in the middle of the tube (total length 20l) and is moved back there at each time step. The flow domain boundary B consists of the channel wall and of the entrance S in and exit S out sections. On the channel wall, no-slip conditions are enforced. The entrance and exit sections are far enough from the capsule for undisturbed Poiseuille flow conditions to prevail

v ∞ = 2V [1 -(x 2 + y 2 )/l 2 ]e z . ( 11 
)
The coupled BIM-FEM solver is used, where the characteristic dimension of the channel boundary 135 elements is ∆h w /l = 0.14, except in a central part with length 2l, where a refined mesh is used with 136 ∆h w /l = 0.07. For a/l ≥ 0.9, we pre-deform the capsule into an ellipsoid that can fit inside the channel 137 and we then follow the same procedure, while accounting for the induced pre-deformation stresses.

138

For a specific membrane law, the problem solution yields the capsule deformed profile and velocity 139 v c /V for given values of a/l and Ca s . The overall capsule deformation is quantified with two parameters: 140 the total length L z /l and the parachute depth L p /l that are easy to measure experimentally (Figure 1b). The results are similar to those reported previously for other membrane laws. The capsule length L z 144 increases with flow strength. A parachute always forms for confinement ratios up to 0.9, with depth 145 L p increasing with Ca s . For higher confinements a/l > 0.9, the parachute forms only when the flow 146 strength exceeds a critical value Ca sc , which increases with a/l: specifically Ca sc increases from 0.03 147 to 0.06 when a/l increases from 1 to 1.1.

148

The new results in Figure 2 pertain to the effect of the membrane dilation modulus as measured by 149 ν s . We first note that ν s has no effect on the front profile of the capsule for given values of a/l and Ca s .

150

The same remark applies to the global capsule profile for small flow strength (e.g. Ca s = 0.01) and 151 thus moderate deformation (Figure 2a). Any influence of ν s occurs at the rear of the capsule: the main 152 effect of a reduced resistance to dilation is an increase of the parachute depth (Figure 2b,c), resulting in 153 a sharp parachute edge at high flow strength (Figure 2c). When such a sharp edge appears, the capsule 154 is near the transition to continuous elongation, where it cannot reach a steady shape.

155

The plots in Figures 3a,b give the evolution of the two lengths L z and L p (characterizing the capsule 156 deformation) with the confinement ratio a/l and capillary number Ca s . Note that the capsule velocity 157 v c is larger than the average flow velocity V , due to the film around the capsule (Figure 3c). The ratio as a consequence, a capsule with a strain-softening NH membrane deforms more than capsules with 166 strain-hardening SK or GH membranes (Figure 4a). Eventually, the large (a/l = 1.1) NH capsule 

Deformation of a capsule in a simple shear flow 189

The deformation of a spherical capsule in a simple shear flow is well documented (see the review by Barthès-Biesel (2016) and the references therein). The influence of different membrane laws (NH, SK) has been studied, except for the case where the capsule wall is governed by a GH law with different values of the surface Poisson ratio. It is thus one aim of this paper to fill this void and provide a full database for this situation. We now consider the case where the capsule is freely suspended in an unbounded simple shear flow with undisturbed velocity given by where γ is the shear rate. The flow problem is governed by Equation ( 9), where the boundary B is taken is also of 248 order ±2%.

v ∞ = γye z . (12) 

249

The inverse analysis strategy consists of identifying the mechanical properties from the experimental deformed profiles using the data-driven automatic procedure of Quesada et al. (2020). The databases contain the predicted steady-state values of L z and L p as functions of parameters Ca s and a/l for the different constitutive laws (NH, GH ν s = 0.5, 0.2, 0) corresponding to Figures 3 and5. For a given constitutive law, we project the experimental values L ex p z and L ex p p onto the (L z , L z -L p ) hypersurface that contains all the admissible solutions. The corresponding Ca s and a/l values are identified by means of diffuse approximation. This approximation uses a local weighted least squares fitting that is valid in a small neighborhood created within the lengths-space around the point (L

ex p z , L ex p z -L ex p p )
and containing 14 neighbors of the database. Knowing the lengths-parameters relationship for the 14 1. 1. Size ratio a/l, surface capillary number Ca s , surface shear modulus G s and non-dimensional modified Hausdorff distance H/a corresponding to the different profile fits of Figure 8. The NH and GH (ν s = 0.2, 0.5) results correspond to Fit 1.

data points, we deduce the values of Ca f it s and (a/l) f it for the measured lengths by solving an inverse problem. The surface representing v c /V as a function of a/l and Ca s is decomposed into triangles with vertices on the database points. The point {Ca f it s , (a/l) f it } corresponds to one triangle of the velocity surface and the ratio (v c /V ) f it is the distance weighted average of the values of v c /V on the three vertices (Delaunay triangulation procedure). The membrane shear modulus G s is then

G s = µv ex p c Ca f it s V v c f it . ( 13 
)
As a check, we compute the numerical deformed profile of the capsule, corresponding to the values 1. For the smaller capsule (a/l ≃ 0.9), the five fits are equally good in terms of

261

Hausdorff distance, but lead to a 27% dispersion of shear modulus values (G s = 0.048 ± 0.0013N/m):

262
this dispersion is mostly due to the fact that, for capsules smaller than the tube radius (a/l ≤ 0.9), the 263 lengths L z or L p do not vary much with Ca s (Figure 5) thus a small variation of L z leads to a large 264 variation of Ca s . For the larger capsule (a/l ≃ 1), the Hausdorff distance is near the acceptable limit of 265 0.06a (except for Fit 4 which is discarded), mainly, because the tips are not fitted very well. However, the 266 capsule being large, the dispersion is only 13% on the shear modulus values (G s = 0.039 ± 0.0005N/m).

267

This shows that an absolute value of the precision of the inverse analysis procedure cannot be evaluated on the law as shown in Table 1. 

299

The non-linear constitutive law, which is appropriate to model the capsule membrane, is the one that 300 yields the same constant value of G s for any deformation level Λ. Note that all laws should lead to the 301 same small deformation value of G s , since they are then equivalent.

302

The results from the microfluidic device are shown in Figure 10, where the values of G s , obtained This validates the microfluidic approach to measure microcapsule properties. 

Conclusion 353

The main objective of this paper was to propose a microfluidic methodology to measure the elastic 354 properties of a population of microcapsules. Why this method? Because the operating principle is simple 355 and the experimental set-up fairly inexpensive, apart from the vizualisation devices (microscope and 356 high-speed camera), which are indispensable to any dynamic micro-apparatus. The method is based on nonlinear membrane elastic properties, which we provide under the form of databases for an initially to decide which law is best adapted to describe the constitutive behavior of the membrane material. On 

390

The feasibility study on artificial ovalbumin capsules allows us to define the optimal conditions to 391 diminish the impact of inherent uncertainties. For the microfluidic method to be precise, the capsule 392 global deformation should be large enough, i.e. the elongation ratio Λ of the perimeter of the observed 393 profiles should be larger than 1.05. Furthermore, the size ratio between the capsule and the tube radii, 394 should not be smaller than 0.9: indeed, for smaller ratios, the deformation does not vary much with 395 flow strength, thus leading to large errors in the determination of the latter. Note that the capsule must 396 be transparent enough to allow measurement of the penetration length of the parachute, which is an 397 essential feature of the deformation. Consequently, the microfluidic method will not work on opaque 398 capsules, whereas the rheometric method would still be pertinent.

399

Potentially, the great strength of this technique is that it allows to determine the type of membrane 400 constitutive behavior: strain-hardening or -softening. This is very important as, under given flow stress, 401 strain-softening capsules may be more prone to deformation induced damage than strain-hardening ones.

402

Furthermore, the microfluidic method is well adapted for quality control, as it allows small batches of a 403 capsule suspension to be diverted from a production line to a measuring test section. Of course, images 

Figure 1 .

 1 Figure 1. Schematic illustration of an initially spherical capsule (contour C 0 ) subjected to Poiseuille flow in a cylindrical channel with radius l (a). Typical lengths characterizing the capsule deformation (contour C t at time t): L z , L p in the channel (b) and L 1 , L 2 in an unbounded simple shear flow (c).

  of Ca s and of ν s on the deformed profiles of the capsule are shown in Figure2.

  143

  158v c /V decreases from 2 for zero size capsules (that would travel with the maximum fluid velocity) to 159 almost unity for very large capsules (that would travel with almost the average fluid velocity).

Figure 2 .Figure 3 .Figure 4 .Figure 5 .

 2345 Figure 2. Tube flow: effect of flow strength and surface Poisson ratio ν s on the steady-state capsule profile in the yz-plane. (a) Ca s = 0.01; (b) Ca s = 0.07; (c) Ca s = 0.15.

  Figure5for strain-softening and strain-hardening membranes (where SK results have been eliminated, 174

  188

Figure 6 .

 6 Figure 6. Simple shear flow: plots of the (a) capsule deformation in the shear plane and (b) profile semi-axis L 3 along the vorticity direction for NH and GH laws.

190

  far enough from the capsule center for the perturbation f + to be negligible. As a consequence only 191 the first integral remains in Equation (9). The only problem parameters are then the capillary number, 192 now defined as Ca s = µ γa/G s and the ratio K s /G s . For a given membrane law, the model provides 193 the deformed profile of the capsule as a function of Ca s . As the deformed capsule is approximately 194 ellipsoidal, we determine its ellipsoid of inertia which has semi-principal axes L 1 , L 2 in the shear plane 195 (Figure 1c) and L 3 in the vorticity direction. The deformation in the shear plane is then quantified by the 196 Taylor parameter D 12 = |L 1 -L 2 |/(L 1 + L 2 ). Results for D 12 are available in the case K s /G s = 3 for NH, 197 SK and GH membranes (Lac & Barthès-Biesel, 2005; Walter et al., 2010; Dupont et al., 2015), and L 3 198 is never given, although it is necessary to determine the deformed capsule volume. New results for GH 199 and NH membranes are thus presented in Figure 6, where the relation between D 12 and Ca s is given as 200 well as the evolution of L 3 with D 12 . For a GH membrane, the effect of decreasing ν s , i.e. the dilation 201 modulus, is to increase the deformation for the same flow strength. For ν s = 0, the capsule undergoes 202 continuous elongation and eventually ruptures for Ca s 0.4. The same phenomenon appears around 203 Ca s = 1 and D 12 ≃ 0.6, for a NH membrane. 204 The plots of Figure 6 are simple to use: for a given membrane law, the value of deformation D 12 205 yields the value of L 3 and Ca s . Knowing L 3 , L 1 and L 2 , it is easy to compute the volume of the capsule 206 and its initial radius a. The elastic modulus G s is obtained from Ca s , knowing the values of γ and µ, 207 both given by the shear apparatus.

Figure 7 .

 7 Figure 7. (a) Microfluidic set-up; (b) microrheometry set-up. All lengths are in µm.

  (a, d) Experimental image of the capsule in a cylindrical tube (diameter 75 µm) with extracted contour (full line); (b, e) two potential fits of the extracted profiles using a NH law; (c, f) Profile fits with different membrane laws. The parameters of the different fits are gathered in Table

Figure 9 .

 9 Figure 9. Experimental image of the capsule in a simple shear flow with extracted contour. The scale indicates 75 µm.

268

  with a single parameter such as H/a as it depends on the quality of the fit and also on the capsule size 269 and deformation level. The same procedure can be applied to fit the profile with other membrane laws 270 as shown in Figures 8c,f where only the results of Fit 2 are shown. Of course, the values of G s depend 271

  of wall elasticity using microrheometry 273 We now use a microrheometric device to determine the capsule membrane properties by subjecting 274 the particles to a simple shear flow. A 10 ml volume of a capsule suspension in glycerol (volume deformation D 12 from which we deduce Ca s and L 3 /a using the plots in Figure 6. The capsule radius is thus a = √ L 1 L 2 L 3 /a and the shear modulus is G s = µ γa/Ca s . The capsule presented in Figure 9 is 292 subjected to a 350 s -1 shear rate in a fluid with viscosity 0.756 Pa.s. The radius is a = 45 µm and the 293 deformation D 12 = 0.38 provides a value of shear elastic modulus equal to G s = 0.044 N/m for a NH 294 membrane and to 0.024 or 0.038 N/m for a GH membrane with ν s = 0.5 or 0.2, respectively. a capsule suspension in both set-ups, we can have results on a population. In order 297 to compare the values of G s obtained with different membrane laws, it is convenient to use the mean 298 profile elongation Λ = p/2πa where p is the perimeter of the capsule deformed profile in the yz-plane.

303Figure 10 .

 10 Figure 10. Plots of surface shear modulus G s as a function of capsule mean deformation Λ. Symbols represent the constitutive law. The lines show a linear best fit for the corresponding points. The shaded areas correspond to the mean value G s ±25% obtained with microrheometry.

Figure 11 .

 11 Figure 11. Left to right: successive profiles of a capsule showing continuous elongation in a square section channel (100 × 100 µm 2 , a = 50 µm, V c ∼ 23 mm/s, µ = 0.92 Pa.s). The capsule has travelled about 200 µm between two successive profiles and is clearly undergoing break-up in the last picture. Images taken by E. Hasiak.
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382

  average though, the high-deformation values of the membrane shear elastic modulus are the same with 383 the two methods for any given law: this validates the microfluidic methodology. A further potentiality of 384 the microfluidic methodology is that once G s is known, it is possible in principle to check if the capsule 385 membrane is strain-softening (NH law) or strain-hardening (GH law). This can be done by increasing 386 the flow rate to exceed the critical value of Ca s past which continuous elongation occurs when the 387 membrane is strain-softening. If continuous elongation is observed, the NH law is a good candidate to 388 model the wall behavior. If not, the wall is then strain-hardening and GH law should serve as a good 389 approximation.

  404and their contour should be acquired automatically, as done byMinetti et al. (2014) or Saadat et al.

  405(2020), and post-treated automatically as explained in this paper. tent of serum albumin microcapsules using trinitrobenzenesulfonic acid: effect of variations in 449 polycondensation pH. Int. J. Pharmaceut. 96, 85-90.

  The membrane capillary number Ca s = µV /G s , where V is the flow characteristic velocity,

	110	
	111	• The ratio between dilation and shear modulus K s /G s .
	112	We solve this fluid-structure problem by coupling the Boundary Integral Method (BIM) to calculate
	113	the flow field, to the Finite Element Method (FEM) to calculate the force exerted by the membrane on
	114	the fluids (Walter et al., 2010; Hu et al., 2012). Triangular P 1 elements are used to discretize all the
	115	boundaries. There are 5120 P 1 elements and 2562 nodes on the capsule membrane, corresponding to a
	116	characteristic element size ∆h c /l = 0.07. At each time step, the boundary integral equation (9) is solved

109

•

Risso & Carin, 2004), atomic force indentation(Fery & Weinkamer, 2007; de Loubens et al., 2014), 

capsules in distilled water, centrifugating the suspension, and resuspending the pellet in clean distilled
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least 3 hours, which is the maximum duration of an experiment, after which the capsules are discarded. 

Identification of wall elasticity by flowing microcapsules in a microfluidic cylindrical capillary 230

The microfluidic flow system, shown in Figure 7a, consists of a straight 28-mm-long cylindrical capillary 231 tube with an internal diameter 2l = 75 µm (Capillary tube 1), embedded in another tube (Capillary 232 tube 2), which is immersed in polydimethylsiloxane (PDMS Sylgard 184, Dow Corning) to eliminate 233 optical distortions (Lefebvre et al., 2008). Just prior to an experiment, 500 µl of filtered capsule pellet 234 is suspended in 12 ml glycerol (Sigma). The capsule suspension, which has a viscosity of µ = 0.92 235 Pa.s at 20 • C, is injected into the microchannel by means of a pressure controller (EZ-Flow, Fluigent).

236

Pressure values range from 800 mbar to 1500 mbar, which provide capsule velocities from 0.8 to 6 237 mm/s. Image acquisitions of individual capsules flowing in the tube are performed with a fast camera 238 (Fastcam MINI AX50, Photron) at frequencies f ranging from 2000 to 6000 Hz and an exposition time 239 1/ f . The camera is mounted on a DMI8 microscope (Leica) with a x40 magnification and 0.6 numerical 240 aperture objective.

241

Recordings are performed at least 5 mm downstream of the inlet to ensure that the capsule has reached L 2 (Figure 9). Note that the pictures are not as sharp as those obtained with the microfluidic set-up, due 285 to inferior performance of the camera included in the device and to the fact that it is challenging to keep 286 the capsule steady. The fuzziness of the profile leads to an error of ±20% on D 12 . Correspondingly, it 287 is unreasonable to try to analyze capsules with D 12 < 0.35.

288

The inverse analysis is straightforward, because the deformation of the capsule depends on only 289 one parameter, Ca s . For a given law and shear rate γ, the measured semi-axes L 1 and L 2 yield the with each law, is also shown.

308

The values of G s obtained with NH law are approximately constant with a mean value G s = 309 0.043±0.004 N/m. This indicates that the NH law is a good candidate to model the ovalbumin membrane 310 of the capsules. The results obtained with GH (ν s = 0.5) law are in the same range as the results for 311 NH law for small deformation (Λ = 1.06), as expected. However, the values of G s tend to decrease with 312 increasing deformation: this means that the strain-hardening GH law is not fit to model the membrane 313 behavior under large deformation, since the parameter G s must be decreased as deformation increases.

314

The larger dispersion of the NH values of G s compared to that of the GH ones is linked to the fact that 315 the values of Ca s are larger for the GH analysis than for the NH one.

316

Furthermore, it is possible to verify if, indeed, the capsule membrane is shear-softening. This is done 317 by increasing the flow strength until a continuous elongation regime is reached. The set-up described 318 in Figure 7a did not allow for high enough flow velocity to reach this regime. However, as a proof of 319 concept, we have flowed the same capsules in a slightly different microfluidic system consisting of a values of a/l as those used for the NH or GH (ν s = 0.5) fits: the size ratio has to be increased by 10 to GH law with values of ν s < 0.5 is not very appropriate to model this type of capsules.

333

When we analyze the microrheometric measurements, it is not possible to give a trend of the values 334 of G s with Λ because of the fairly large error on D 12 . We have measured 25 capsules with a radius value of the shear modulus depends on the law: it is found to be G s = 0.039 ± 0.01 N/m for NH law, 338 G s = 0.021 ± 0.007 N/m for GH (ν s = 0.5) and G s = 0.033 ± 0.01 N/m for GH (ν s = 0.2), all with 339 a standard deviation of ±25%. This large deviation is mostly linked to the error in the measurement of 340 D 12 . Another source of error is also due to the fact that the inverse analysis uses deformation curves 341 obtained for a viscosity ratio equal to unity between the internal and external liquids, whereas this ratio 342 is much smaller than 1 in the experiments. However, Foessel et al. (2011) showed that the influence of 343 this viscosity ratio is very small and does not modify significantly the relationship between D 12 and 344 Ca s , up to D 12 ≃ 0.5. This is why we have discarded results with deformation larger than 0.5.

345

Altogether, the microrheometric G s values, shown as shaded areas in Figure 10, overlap well with 346 the results obtained with the microfluidic tube for large deformation. This is clear for the NH law, for 347 which G s is found to have the nearly constant value 0.043±0.004 N/m by microfluidics or 0.039±0.01 348 N/m by microrheometry. In the case of GH (ν s = 0.5) law, this conclusion applies for the range of the observation of flowing capsules in a cylindrical capillary tube and an inverse analysis of the deformed 358 profiles. The latter requires a full numerical model of the fluid-structure interaction, that accounts for spherical capsule with a membrane governed by a neo-Hookean or general Hooke's law with different 361 surface Poisson ratios. We also detail how the inverse analysis can be automated to provide information 362 on the type of elastic constitutive law that governs the capsule wall material together with the value of the 363 corresponding elastic parameters. This is possible because the confinement imposed by the microfluidic 364 configuration allows for large deformation of the capsule membrane. Note that a microfluidic method, 365 based on a similar inverse analysis adapted to the specific case of red blood cells, has been proposed to 366 analyze automatically large cell populations (Saadat et al., 2020). The shape characterization is different from the one presented here, as it had to be adapted to smaller, discoidal particles.

Another microrheological method is used where the capsules are subjected to a simple shear flow 369 in a counter rotating Couette device. The method consists in capturing the deformed profile of those 370 capsules with their centre of mass in the zero velocity plane, which is somewhat tricky to perform. The 371 necessary databases for the inverse analysis are also provided for an initially spherical capsule with a 372 membrane governed by a neo-Hookean or general Hooke's law with different surface Poisson ratios.

373

We validate the two methods by confronting the results obtained with either one on a population of 374 artificial capsules with cross-linked ovalbumin membrane. We test three types of membrane laws, to 375 find for which constant values of G s are obtained: a strain-softening NH law and two strain-hardening 376 GH laws with dilation to shear ratios K s /G s = 3 or 1.5 (ν s = 0.5 or 0.2). The microfluidic method 377 predicts that the membrane shear modulus G s is approximately constant for a NH law: this indicates that 378 this constitutive law is appropriate to model the mechanical behavior of the ovalbumin membrane. In