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Damage tolerance analysis associates a Fracture Mechanical model with the Failure Assessment Diagram to dene the state of a space engine component. The reliability analysis treats the variability of numerical models assessing the probability of failure within Linear Elastic Fracture Mechanics (LEFM) hypotheses. However, these models, while providing quantitative information in the safe domain, give only qualitative information for failed components. This work proposes an original methodology to combine Kriging regression and the Support Vector Machine classication along with transition criteria between both approaches. To accurately describe the limit state, we dene a specic enrichment strategy. The eciency of the proposed methodology is illustrated on reference test cases.

Introduction

In the aerospace sector, designing a component under damage tolerance hypotheses involves considering the structure as inherently awed. It means that in a conservative way, each defect is considered as a crack and it is veried that the structure can withstand the loads throughout its lifetime. In space engine components context, a primary value of interest is the Failure Assessment Diagram (FAD) margin dened by the R6-rule [START_REF] Milne | Assessment of the integrity of structures containing defects[END_REF]. If the FAD margin is positive, the component is considered as safe. Otherwise, it fails. The FAD is used in the post-processing phase of the crack analysis, performed by quickly evaluated analytical models or forms [START_REF] Nasgro | Fracture mechanics and fatigue crack growth analysis software version 7[END_REF], but also by numerical approaches such as the extended nite element method (XFEM) [START_REF] Bordas | Enriched nite elements and level sets for damage tolerance assessment of complex structures[END_REF][START_REF] Bordas | Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment[END_REF][START_REF] Wyart | Substructuring fe{xfe approaches applied to three-dimensional crack propagation[END_REF] developed for complex structures.

However, as shown experimentally by Virkler [START_REF] Virkler | The statistical nature of fatigue crack propagation[END_REF], the crack propagation is subjected to uncertainties about geometry, material properties, loads [START_REF] Mattrand | Random load sequences and stochastic crack growth based on measured load data[END_REF] or considered defects [START_REF] Grooteman | A stochastic approach to determine lifetimes and inspection schemes for aircraft components[END_REF]. The approach to set the properties to the worth case [START_REF] Greenwood | A new tolerance analysis method for designers and manufacturers[END_REF], even if it ensures the strength of the component, may generate over-sizing. Uncertainties may also be considered through probabilistic approaches [START_REF] Sankararaman | Uncertainty quantication and model validation of fatigue crack growth prediction[END_REF]. The structural reliability provides, by setting stochastic models as inputs, the probability of failure which is required to be particularly low in the space application context [START_REF] Echard | Reliability assessment of an aerospace component subjected to fatigue loadings: Appro project, 4th Fatigue Design[END_REF].

In the low probability of failure assessment (< 10 6 ) scope, the zone of interest is localized in the extreme tail of the distribution. Using Monte Carlo Simulation (MCS), the chance is meager to generate failed experiments which drive the convergence of the probability estimator. Therefore, in the FAD context [START_REF] Altamura | Reliability assessment of high cycle fatigue under variable amplitude loading: Review and solutions[END_REF], MCS is limited due to a large number of evaluations required to get accurate results. To limit the number of simulations, advanced reliability methods such as Subset Simulation (SS) [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] restrict the sampling to a subsequence of MCS, xing the associated intermediate probability thresholds, until satisfaction of stopping criteria. The probability to generate failed experiments using SS is higher than with MCS reducing the variance of the estimators.

The use of Multi Level Monte Carlo approaches [START_REF] Clie | Multilevel monte carlo methods and applications to elliptic pdes with random coecients[END_REF][START_REF] Hauseux | Accelerating monte carlo estimation with derivatives of high-level nite element models[END_REF], based on local derivative informations, strongly accelerates the Monte Carlo estimation. However, their intrusive character is limiting in the space engine application. Non intrusive multi-delity techniques [START_REF] Gratiet | Recursive co-kriging model for design of cumputer experiments multiple levels of delity[END_REF][START_REF] Benamara | Adaptive inll sampling criterion for multi-delity optimization based on gappy-pod[END_REF], mainly developed for optimization, are promising but they require high and low delity models.

The lack of quantitative information in the failure domain, resulting from the Linear Elastic Fracture Mechanics (LEFM) hypotheses, limits the application of gradient-based optimization methods such as FORM [START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF][START_REF] Der Kiureghian | Multiple design points in rst and secondorder reliability[END_REF], and SORM [START_REF] Fiessler | Quadratic limit states in structural reliability[END_REF]. More sophisticated mechanical approaches such as plastication are omitted due to the use of dedicated model not required in the space engine component scope of this study. However, the same nding could be observed for any application for which post-failure behavior is not included within the working hypotheses.

To treat the issue of computational cost, advanced reliability methods based on surrogates, also named meta-models, are built according to a Design Of Experiments (DOE) to cover the design space such as Latin Hypercube Sampling (LHS) [START_REF] Helton | Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[END_REF], Centro dal Vorono tessellation or "Latinized" Centro dal Vorono tessellation [START_REF] Romero | Comparison of pure and latinized centroidal voronoi tessellation against various other statistical sampling methods[END_REF]. Even if the polynomial Response Surface Method [START_REF] Das | Cumulative formation of response surface and its use in reliability analysis[END_REF][START_REF] Gayton | Cq2rs: a new statistical approach to the response surface method for reliability analysis[END_REF][START_REF] Zhang | Diuse response surface model based on moving latin hypercube patterns for reliability-based design optimization of ultrahigh strength steel nc milling parameters[END_REF] is one of the most popular approaches, the interest for Kriging grows for structural reliability [START_REF] Kaymaz | Application of kriging method to structural reliability problems[END_REF][START_REF] Balesdent | Kriging-based adaptive importance sampling algorithms for rare event estimation[END_REF] due to the enrichment possibilities based on the underlying Gaussian process, such as ERGA [START_REF] Bichon | Ecient global reliability analysis for nonlinear implicit performance functions[END_REF] and Adaptive Kriging (AK) [START_REF] Echard | Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation[END_REF]. To assess low probabilities, methods such as AK-SS [START_REF] Huang | Assessing small failure probabilities by ak{ ss: an active learning method combining kriging and subset simulation[END_REF] and AK-SSIS [START_REF] Tong | A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling[END_REF] are adopted. However, these methods require a quantitative assessment of the FAD margin in both safe and failure domains. When only qualitative information, allowing only to qualify component as safe or unsafe, is available, classication methods based on Support Vector Machine (SVM) are preferable [START_REF] Hurtado | Structural reliability: statistical learning perspectives[END_REF][START_REF] Song | Adaptive virtual support vector machine for reliability analysis of high-dimensional problems[END_REF]. As for Kriging, several enrichment strategies have been proposed in the SVM context. The Adaptive SVM [START_REF] Pan | An ecient reliability method combining adaptive support vector machine and monte carlo simulation[END_REF] is based on the evaluation of a learning function whereas Max-Min [START_REF] Basudhar | An improved adaptive sampling scheme for the construction of explicit boundaries[END_REF] and Generalized Max-Min [START_REF] Lacaze | A generalized max-min sample for surrogate update[END_REF] solve an optimization problem. For low probability assessment, the 2SMART [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and support vector machines[END_REF] method based on a succession of SVM separators, is proposed. We can note that the ASVR -SS [START_REF] Bourinet | Rare-event probability estimation with adaptive support vector regression surrogates[END_REF] method uses the SVM for regression to assess low probabilities.

The present work proposes a specic procedure to assess the failure for damage tolerance using the FAD for Fracture Mechanics [START_REF] Milne | Assessment of the integrity of structures containing defects[END_REF]. To our best knowledge, the existing surrogate-based reliability methods choose between regression and classication approaches. As the information is quantitative for safe components and qualitative for failed ones, the present work proposes to conjointly exploit regression and classication combining advantages of both approaches dealing, respectively, with continuous and binary information. Therefore, the key contribution of this paper is the denition of transition criteria between regression and classication phases. To achieve low probability, the proposed method is based on the subset simulation principle moving step by step to identify the limit state between the safe and failure domain. Moreover, in this contribution, an original adaptive strategy is explored to limit the number of model evaluations for the classication phase. The proposed methodology is called Adaptive Regression and Classication based on Subset Simulation (ARC-Subset).

The paper is organized as follows. The rst section presents the damage tolerance analysis and introduces the denition of the probability of failure. The second section details the proposed ARC-Subset methodology starting with the regression phase. The classication phase is detailed with a new enrichment strategy based on the probability of misclassication [START_REF] Basudhar | Constrained ecient global optimization with support vector machines[END_REF]. Then, the transition between both phases is dened. In the last section, the methodology is applied to two test cases, based on the damage tolerance tool NASGRO [START_REF] Nasgro | Fracture mechanics and fatigue crack growth analysis software version 7[END_REF], and compared with reference methods.

Reliability analysis for damage tolerance

This section introduces the concepts of damage tolerance for Fracture Mechanics and the notion of probability of failure.

Damage tolerance

The damage tolerance approach aims at ensuring component safety during a given number of cycles. In engineering practice, Fracture Mechanics models are often limited to the LEFM hypotheses for computational eciency. At each step of the crack propagation, the outputs are processed considering failure scenarios depending on verication of two fracture criteria: the Stress Intensity Factor K attains the toughness K IC value:

K r = K K IC 1;
(1) the surface between the crack front and the closest free surface, called 'remaining ligament' (see Figure 1), completely plasties: (

) 2 
where nom is a non-physical stress value resulting from loads applied on the remaining ligament.

ref and ow are reference stress values depending on the material. Both criteria (1) and ( 2) are correlated by the Failure Assessment Limit (FAL) which is the boundary between the `accepted' and `rejected' domains. In the Failure Assessment Diagram (FAD) shown in Figure 2, for K r and L r values reported as point A, the FAD margin M FAD is dened as the distance ratio jOBj=jOAj from the origin. In the cyclic loading, the targeted lifetime N target is set. At each cycle i, M FAD (i) is evaluated. When point A crosses the FAL, the simulation is stopped, M FAD is not available as the LEFM hypothesis is not veried anymore, and the component is rejected. If the M FAD remains positive at the end of the lifetime, the component is accepted. In Figure 3, the dierent steps of two crack propagation cases are illustrated: one for a safe 150 component and one for a rejected one. Figure 4 illustrates the owchart of the damage tolerance procedure. Therefore, a safe component is characterized by N cycle = N target while a failed one by N cycle < N target . For the safe component, M FAD is a positive quantity, while for the failed one, the obtained negative value is not representative beyond the LEFM hypothesis and may be considered only 155 as qualitative.

Probability of failure

In the reliability context, the uncertainties are modeled by d random variables X which are dened using probability laws characterized by their distributions f X . Random variables are combined in a random vector X of length d dened by a joint density function f X . A component is characterized by the performance function G(X), G(X) > 0 in the safe domain and G(X) 0 in the failure one. In the present work, the considered performance function is: in the standard space where all input variables follow an uncorrelated normal distribution law with zero mean and unit standard deviation U $ x(0; I d ). The performance function is mapped to the standard space G(X) 3 H(U) divided into the failure region where H(U) < 0, the safe region with H(U) > 0 and the limit state H(U) = 0. The probability of failure is expressed as:

G(X) = M FAD (X): (3) 
p f = P (G(X) 0) = Z G(X) 0 f X dx = Z H(U) 0 U du (4) 
and may be integrated using the MCS method on random samples. Nevertheless, for example, a 10% condence level of a targeted probability around 10 9 requires % 10 11 performance function evaluations limiting the application of MCS for damage tolerance analysis. regression-based methods have diculties establishing H(U) = 0. Thus, this is the motivation for the development of a hybrid method detailed in the following section.

Methodology to evaluate the probability of failure

This section presents an adaptive strategy combining regression and classication approaches to assess the probability of failure within the damage tolerance hypothesis. The algorithm, based on the Subset Simulation principle [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF], is divided into two phases:

in the exploration phase, a regression-based approach is coupled with active learning [START_REF] Echard | Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation[END_REF]; the trends of the model are accounted to characterize intermediate thresholds;

in the exploitation phase, a classication-based approach is associated with adaptive strategy because of the lack of quantitative information in the failure space; the goal is to accurately determine the limit state in the last iteration.

This hybrid 'Adaptive Regression and Classication' algorithm is based on Subset Simulation (ARC-Subset). The following paragraphs rstly describe the regression steps. Then, the classication is detailed and an active learning for classication based on the multi-objective optimization is proposed. The 5b: Performance function in the U space for a through crack in a beam in traction using NAS-GRO [START_REF] Nasgro | Fracture mechanics and fatigue crack growth analysis software version 7[END_REF]. Two random variables are considered: the length of the crack c U[0:1mm; 1mm] and the load S 0 N(52:5MPa; 10%). Note the dashed circle lines representing the iso-values of standard deviation to give information about the distance to the failure region. crucial point is the transition phase between the regression and classication 195 steps (Section 3.3). The DOE is enriched by Adaptive Kriging (AK) [START_REF] Echard | Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation[END_REF] chosen for its simplicity and eciency. Nevertheless, the AK stopping criterion proposed in [START_REF] Echard | Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation[END_REF] seems to be too conservative for rst subset steps. As the goal is to cross these steps quickly, Tong [START_REF] Tong | A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling[END_REF] presents a new stopping criterion for threshold convergence adapted for the Subset Simulation context.

Regression phase

Classication phase

Due to LEFM hypothesis, the model does not provide quantitative information for failed experiments. An alternative way to identify the limit state is to use SVM classication, based solely on the sign of the performance function. At this step:

the DOE contains at least one failed experiment, the subset population is the last population generated by the regression step.

Description of the algorithms

The owchart of the classication part of the ARC-Subset methodology is detailed in Figure 7 [START_REF] Mattrand | Random load sequences and stochastic crack growth based on measured load data[END_REF] If the quality criterion of the SVM separator (d) is not achieved, the DOE is enriched (d') by the adaptive method improved for classication, presented in the next paragraph. Otherwise, the ARC-Subset stops and the reliability infor-mation is returned.

As the last classication step determines the quality of the reliability assessment, this paper proposes an enrichment strategy based on a compromise between exploration and exploitation.

Enrichment strategy

At this stage, the DOE contains experiments of both classes. The SVM separator denes the limit state, but it may suer from a lack of accuracy around the zone of interest. Enrichment strategies for SVM are developed, principally based on the distance from the DOE. A multi-objective approach proposed in this section couples two criteria: a distance-based criterion and the probability of misclassication.

Distance-based criterion. To improve the accuracy of a boundary, Basudhar [START_REF] Basudhar | An improved adaptive sampling scheme for the construction of explicit boundaries[END_REF] proposes the Max-Min criterion based on the distance from the DOE coupled with a constraint on the distance from the SVM separator. The new experiment is selected by solving the following constrained optimization problem u MM = arg max u min 

This exploration approach is ecient enough to globally describe the limit state, but it does not account for the proximity to the center of the standard space. The generalized Max-Min is introduced by Lacaze 

Both optimizations may be solved by a local optimizer using the Chebychev norm.

Probability of misclassication. The SVM classier aims at building a binary decomposition of the standard space. Platt [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF] introduces the notion of the Probabilistic SVM (PSVM) which gives the probability of a point to belong to a given class. It proposes the sigmoid formulation mainly based on the distance to the separator P (+1ju) = 1 1 + exp(A HSVM (u) + B) ; [START_REF] Sankararaman | Uncertainty quantication and model validation of fatigue crack growth prediction[END_REF] where A and B are deterministic PSVM parameters obtained by maximum likelihood. Basudhar [START_REF] Basudhar | Constrained ecient global optimization with support vector machines[END_REF] improves this model introducing the Distance PSVM (DPSVM)

P (+1ju) = 1 1 + exp(A HSVM (u) + B( d d++PSVM d+ d +PSVM )) ; ( 11 
)
where PSVM is a conditioning parameter, and d + and d are respectively the distance to the closest positive and negative experiments.

Consequently, it is possible to dene the probability of misclassication P mc (u). Basudhar [START_REF] Basudhar | Constrained ecient global optimization with support vector machines[END_REF] includes this notion to select a new experiment which has a high probability of being misclassied.

This paper proposes to combine both Max-Min criteria interpreted either as an exploration for the classical Max-Min or exploitation for the generalized one. The idea is to solve both optimization problems simultaneously and then select the new experiment which has the highest probability of misclassication. The next evaluated experiment is u new = arg max (P mc (u)) ; u P fu MM ; u GMM g: [START_REF] Altamura | Reliability assessment of high cycle fatigue under variable amplitude loading: Review and solutions[END_REF] In this approach, a compromise between exploration and exploitation is based on the probability of misclassication.

Transition between the regression and classication phases

One of the main points of ARC-Subset is to determine when the transition between regression and classication happens. When the limit state is achieved, the Subset Simulation criterion [START_REF] Clie | Multilevel monte carlo methods and applications to elliptic pdes with random coecients[END_REF] where I H(U) 0 is the indicator function. In the following, k DOE is arbitrarily set to twice, the dimension of the reliability problem. The pseudo-code of the transition phase is given in Algorithm 3.

Application to damage tolerance analysis

ARC-Subset methodology is applied applied to test cases based on NASGRO [START_REF] Nasgro | Fracture mechanics and fatigue crack growth analysis software version 7[END_REF], a damage tolerance tool allowing to assess the FAD margin of a component after crack propagation when the targeted lifetime is reached or when the FAL is crossed (Section 2.1). The goal is to limit the number of damage tolerance evaluations required to assess low probabilities comparing with reference methods such as Subset Simulation [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] and 2SMART [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and support vector machines[END_REF]. The failure scenarios (1) and (2) are correlated using the R6 rule and the FAL is dened within same limits for the following test cases. The rst case concerns a through crack and the second one refers to a surface crack in a beam. The rst case considers a through-crack in a beam in traction (type TC11 in NASGRO, Figure 5a). Two of the most signicant variables are set as random: the size of the defect c and the load magnitude S 0 . Table 1 describes the distribution of parameters. The ARC-Subset is compared with the classical Subset Simulation [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF], adapted for low probability estimation. 2SMART [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and support vector machines[END_REF] is also 260 applied to complete the comparison. This method combines SVM and Subset Simulation to reduce the number of model evaluations for low probabilities. intermediate separators. Therefore, when the margin is positive, we can assume that regression surrogates are more ecient than classication. This explains why the ARC-Subset is more ecient than 2SMART which needs an important number of experiments to describe intermediate subset limit states.

4.2. Surface Crack in a beam with 9 random variables A surface crack in a beam is shown in Figure 10 (type SC17 in NASGRO). Nine parameters are set as random variables. The three methods provide nearly the same probability of failure at 1:19 ¢ 10 7 (Table 3). As for the rst test case, the ARC-Subset method saves respectively one and three orders of magnitude regarding the number of simulations compared to 2SMART and Subset Simulation. Even if the target probability is higher than in the rst example, the ARC-Subset requires more damage tolerance evaluations, due to the higher The advantage of ARC-Subset is the possibility to assess a low probability of failure with a reduced number of simulations without quantitative information from failed experiments. This method can be extended to prevent code crash considering it as failed experiment dened as a qualitative information. The main limitation of this methodology is the curse of dimensionality which mainly impacts the regression phase. However, the modularity allows using a more suitable regression surrogate. Moreover, the condence about p f is based on the Subset Simulation estimators computed on the surrogates. The SVM separator gives no condence level because the SVM margin, interpreted as a zone of uncertainty, is only based on support vectors and not on the whole DOE as it is the case for the Kriging variance. Therefore, this information is not available to estimate the condence bounds of p f .

Conclusion

The ARC-Subset methodology provides promising performance for damage tolerance applications by reducing the number of model evaluations while keeping the same level of accuracy as existing approaches. Nevertheless, we can identify some limitations. The test cases, even if issued from industrial practice, are of a relatively low complexity from the computational point of view. The scalability of the proposed approach is limited to relatively low dimensional applications due to the use of Kriging. Future work concerns the application of ARC-Subset on more complex test cases based on the extended nite element method (XFEM). The enrichment strategy may be further improved using a multi-objective optimization of both Max-Min criteria. Moreover, the extension of the ARC-Subset requires surrogate models better adapted to large dimensions.
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 1 Figure 1: Illustration of the principle of the remaining ligament (dashed surface).

Figure 2 :

 2 Figure 2: Failure Assessment Diagram (FAD) for damage tolerance in Fracture Mechanics.The red line is the Failure Assessment Limit (FAL). O is the origin of the FAD, point A is dened by (Kr,Lr) and B is the intersection between the FAL and (OA) allowing to compute M FAD .

Figure 3 :

 3 Figure3: FAD: The dashed-dotted blue line with triangle markers shows the cycles for a safe component and allows the computation of the FAD margin at every step. The purple dashed line with square markers presents the steps of a failed component, the FAD margin is not quantiable beyond the FAL with the LEFM hypothesis.

Figure 5b illustrates theFigure 4 :

 4 Figure5billustrates the performance function evolution in the standard space for the damage tolerance reliability analysis of a cracked beam in traction considering two random variables (Figure5a). In the failure region, the gradient is close to zero impacting negatively the performance of the gradientbased optimization algorithm required for FORM. Moreover, the non-positive M FAD values form a plateau where only the sign of H(U) is available. The

Figure 5 :

 5 Figure 5: 5a: Cracked beam in traction.

Figure 6 and

 6 Algorithm 1 respectively provide the owchart and the pseudocode of the regression part of the ARC-Subset. The initial DOE (b) is generated using optimized sampling or expert judgement and evaluated (c) to identify the global trends of the model based on the rst subset population (a). A Kriging regression surrogate HKrig (u) is trained on the DOE (d) and is used to evaluate the subset population u (kSS) SS (e). The intermediate thresholds q (kSS) are intermediate subset probabilities. To improve the quality of the surrogate, enrichment strategies are employed (g') until quality stopping criteria are satised (g). If the transition criteria are not satised (h), a new subset 200 population is generated (h'). The DOE is enriched selecting 2 ¢ d experiments by k-means clustering [40] of the new subset population (h").
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 6 Figure 6: Regression steps of the ARC-Subset algorithm. The grey, blue and red boxes illustrate respectively Subset Simulation, surrogate and model requirements.

Figure 7 :

 7 Figure 7: Classication step of the ARC-Subset algorithm. Color meaning is given in Figure 6. enriched by k-means clustering of the last subset population (a) in order to train a SVM separator (b) to assess the nal subset probability p m (e) by surrogate evaluation (c) p m =

  i=1:::nDOE ku u DOE k s.t.HSVM (u) = 0:

  [START_REF] Lacaze | A generalized max-min sample for surrogate update[END_REF] by multiplying the objective (8) by the joint density function U u GMM = arg max u min i=1:::nDOE ku u DOE k

  by the regression model if it is trained on a DOE containing failure experiments. A second criterion prevents a worse evaluation of the threshold due to failed experiments. The classication phase starts when k failure experiments

Figure 8 :

 8 Figure 8: Damage tolerance evaluations required by ARC-Subset in the standard space. The blue triangle markers are the safe evaluations, and the red circles are failed ones. The green dashed line represents the actual limit state, and the solid black line is the one obtained by SVM.

Figure 8 Figure 9 :

 89 Figure 8 shows in the standard space the 115 damage tolerance evaluation sites required by ARC-Subset to compute the failure probability 1:55 ¢ 10 9

Figure 10 :

 10 Figure 10: Surface Crack beam in traction [2].Table 3: Results of the surface crack beam in traction considering nine random variables. Method Evaluations p f Subset Simulation (10000=step) 81978

  

Table 1 :

 1 Properties of input random variables for the Through Crack in a beam

		Variable Distribution Type Mean	Standard deviation
		c	Uniform	0:55 mm 0:26 mm
		S 0	Normal	52:5 MPa 5:25 MPa
	255	4.1. Through Crack in a beam

Table 2 :

 2 Results of the through crack in a tension beam considering two random variables.

	Method	Evaluations p f
	Subset Simulation (10000=step) 104889 2SMART [37] 3089	1:53 ¢ 10 9 (8:64%) 1:54 ¢ 10 9

ARC-Subset (¢10)

103:8 (8%) 1:55 ¢ 10 9 (8:58%)
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Algorithm 1 ARC-Subset pseudo-code algorithm of the regression phase initialization p f = 1, k SS = 1, p target = 0:1, n DOE = 5 ¢ d, n SS = 10e4

. Preconised