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Highlights 

 

 

 Rat liver organ-on-chip model was used to study pesticides toxicity 

 The model was exposed to DDT, permethrin and their mixtures at 15 and 150 µM 

 Transcriptome and metabolome profile showed a dose-dependent effect 

 Liver steatosis, inflammation and cell death were common signature for high-doses 

 Mixture of DDT and PMT led to additive and increased effects  



Abstract 

 

Several studies have reported a correlation between pesticides exposure and metabolic 

disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides 

highly prevalent in the environment, have been associated to dysregulation of liver lipids and 

glucose metabolisms and none-alcoholic fatty liver disease (NAFLD). However, the effects of 

DDT/PMT mixtures and mechanisms mediating their action remain unclear. Here, we used 

multi-omic to investigate the liver damage induced by DDT, PMT and their mixture in rat liver 

organ-on-chip. Organ-on-chip allow the reproduction of in vivo-like micro-environment. Two 

concentrations, 15 and 150µM, were used to expose the hepatocytes for 24h under perfusion. 

The transcriptome and metabolome analysis suggested a dose-dependent effect for all 

conditions, with a profile close to control for pesticides low-doses. The comparison between 

control and high-doses detected 266/24, 256/24 and 1349/30 genes/metabolites differentially 

expressed for DDT150, PMT150 and Mix150 (DDT150/PMT150). Transcriptome modulation 

reflected liver inflammation, steatosis, necrosis, PPAR signaling and fatty acid metabolism. 

The metabolome analysis highlighted common signature of three treatments including lipid and 

carbohydrates production, and a decrease in amino acids and krebs cycle intermediates. Our 

study illustrates the potential of organ-on-chip coupled to multi-omics for chemical risk 

assessment and provides tools to move from studies based on animal experiments. 
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Abstract 

 

Several studies have reported a correlation between pesticides exposure and metabolic 

disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides 

highly prevalent in the environment, have been associated to dysregulation of liver lipids and 

glucose metabolisms and none-alcoholic fatty liver disease (NAFLD). However, the effects of 

DDT/PMT mixtures and mechanisms mediating their action remain unclear. Here, we used 

multi-omic to investigate the liver damage induced by DDT, PMT and their mixture in rat liver 

organ-on-chip. Organ-on-chip allow the reproduction of in vivo-like micro-environment. Two 

concentrations, 15 and 150µM, were used to expose the hepatocytes for 24h under perfusion. 

The transcriptome and metabolome analysis suggested a dose-dependent effect for all 

conditions, with a profile close to control for pesticides low-doses. The comparison between 

control and high-doses detected 266/24, 256/24 and 1349/30 genes/metabolites differentially 

expressed for DDT150, PMT150 and Mix150 (DDT150/PMT150). Transcriptome modulation 

reflected liver inflammation, steatosis, necrosis, PPAR signaling and fatty acid metabolism. 

The metabolome analysis highlighted common signature of three treatments including lipid and 

carbohydrates production, and a decrease in amino acids and krebs cycle intermediates. Our 

study illustrates the potential of organ-on-chip coupled to multi-omics for chemical risk 

assessment and provides tools to move from studies based on animal experiments. 
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Introduction 

 

Pesticides are extensively used all over the world to provide high agricultural productivity 

and control of vector-borne diseases (Ghisari et al., 2015). As a result, pesticide residues are 

present in the human food supply, soil, water, atmosphere and agricultural product (Ghisari et 

al., 2015; Rizzati et al., 2016). Nowadays, exposure to pesticides is a widely recognized concern 

for human biosafety. Permethrin (PMT, 3-phenoxybenzyl (±) cis/trans-3-(2,2-dichlorovinyl)-

2,2-dimethylcyclopropane-1-carboxylate), the most popular pyrethroid, is a broad-spectrum 

insecticide used worldwide to treat a wide range of insects in agriculture, public health, and 

homes (Willemin et al., 2016; Xiao et al., 2017). Several studies reported the presence of 

significant levels of PMT and its metabolites in fruits, vegetables, breast milk and human urine 

and hair (Fedeli et al., 2017; Béranger et al., 2018; Xiang et al., 2018). Dichlorodiphenyl-

trichloroethane (DDT) is an organochlorine insecticide that has been largely used to control 

agricultural pest and eradicate malaria, typhus and other diseases (Harrada et al., 2016). Despite 

its interdiction in most countries since 1970, DDT and its metabolites remain in the environment 

due to their low degradability and bio-accumulative properties (Jin et al., 2014). Additionally, 

DDT is still used in some countries for malaria control and for dicofol production (Peng et al., 

2020; Huq et al., 2020). Consequently, DDT are still consistently found in soil, food, seawater, 

porewater, human, and animal samples (Russo et al., 2019; Song et al., 2019; Peng et al., 2020). 

 

PMT and DDT, with its metabolite DDE (dichlorodiphenyl dichloroethylene), was 

associated to several harmful effects in animals and humans. Both pesticides cause a variety of 

toxicities in immune, nervous, endocrine and reproductive systems (Harrada et al., 2016; Wang 

et al., 2016; Willemin et al., 2016; Jellali et al., 2018; Huq et al., 2020). As the primary target 

of chemical pollutants, the liver is severely affected by exposure to pesticides. PMT and DDT 

exposure increases hepatic oxidative stress and liver weight, and causes hepatic cell death 

(Kostka et al., 2000; Wang et al., 2016; Harrada et al., 2016; Jellali et al., 2018a). DDT and its 

metabolites are also associated with high liver cancer risk (VoPham et al., 2017). In the last 

years, accumulating evidences suggest an association between PMT, DDT (with DDE) and 

diseases related to metabolic disorders including obesity, dysregulation of lipid and glucose 

metabolisms, insulin resistance, none-alcoholic fatty liver disease (NAFLD), and type 2 

diabetes (Howell et al., 2015; Liu et al., 2017a; Xiao et al., 2017; Yang and Park 2018; Xiao et 

al., 2018; Yang et al., 2019; Wu et al., 2019; He et al., 2020; Hu et al., 2020). In particular, 

NAFLD is currently a major health concern, with 25% of adults affected worldwide (Yang et 
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al., 2019). Al Eryani et al., reported that pesticides were among the chemicals most frequently 

associated with NAFLD in rodents toxicology studies (Al Eryani et al., 2015). However, 

although the association between pesticides (including PMT and DDT) and metabolic disorders 

was established, the underlying mechanisms for how pesticides would lead these disorders have 

not yet been fully clarified. Furthermore, there is a serious lack of information on the toxicity 

of PMT and DDT mixtures. 

 

Muti-omics studies including transcriptomics, metabolomics and proteomics represent a 

promising tool to investigate pesticides toxicity and to elucidate the mechanisms and pathways 

by which these chemicals manifest their toxicities (Brockmeier et al., 2017; Canzler et al., 

2020). Metabolomics, or the study of the metabolome, focuses on the detection and 

identification of low molecular weight (< 1500 Da) compounds produced by chemical reactions 

taking place in cells or the whole organism (Canzler et al., 2020). It makes it possible to identify 

both variations in the composition of the culture medium or cellular fluid, and metabolic 

changes occurring after exposure to pesticides (Song et al.,2016). Transcriptomics consists of 

analysing all species of transcripts, including mRNAs, non-coding RNAs and small RNAs, and 

can provide a complete analysis of the hereditary material in a biological system (Wang et al., 

2009; Prot et al., 2012). Transcriptional profiling can be employed to detect changes in gene 

expression following exposure to pesticides. These changes representing early and 

mechanistically relevant cellular events can potentially provide valuable information for 

understanding the mode of action of pesticides (De Abrew et al., 2015; Joseph 2017). In last 

years, metabolomics and/or transcriptomics have been widely used to investigate effects of 

pesticides and investigate their mechanisms of action (Liang et al., 2013; Roede et al., 2014; 

Jeffries et al., 2015; Zuluaga et al., 2016; Krauskopf et al., 2017; Morales-Prieto et al., 2018; 

Jellali et al., 2018b; Hu et al., 2020). However, to our knowledge, there is no study integrating 

metabolomics and transcriptomics to investigate effects of DDT, PMT and their mixture on 

liver cells. 

 

In pesticides toxicology research, most commonly, animal models or in vitro 2D cell 

cultures in Petri dishes are employed. However, the animal models lose their relevance when 

extrapolating the results to humans and 2D culture are poorly predictive of human in vivo 

metabolism and toxicity (  In recent year, 3D cultures, 

co-cultures and organ-on-chip, which more adequately resemble in vivo cell behavior, were 

increasingly used in toxicological studies (Aggerbeck and Blanc 2018). Of those models, 
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dynamic organ-on-chip culture seems to be one of the best-suited methods for reproducing the 

behavior of an organ or a group of organs, the controlled physiological micro-environment and 

in vivo cellular metabolic responses (Merlier et al., 2017; Kimura et al., 2018). Our group has 

proposed organ-on-chip solutions coupled to omics analysis and presented new insight in liver 

metabolism (Jellali et al., 2016a), crosstalk and synergy between different organs (Choucha

Snouber et al., 2013; Bricks et al., 2014; Essaouiba et al., 2020), as well as predictive toxicology 

by identifying biomarkers and metabolic signatures in response to drugs and pesticides (Prot et 

al., 2012, Choucha Snouber et al., 2012, Jellali et al., 2018a, 2018b). In the present 

investigation, we describe the changes in metabolomics and transcriptomics profiles of rat liver-

on-chip exposed to PMT, DDT and their mixture. Our study highlighted steatosis-associated 

biomarkers of exposure to these chemicals. 

 

2. Materials and methods  

 

2.1. Biochip and fluidic platform 

 

The biochips and fluidic platform have already been detailed in our previous work 

(Baudoin et al., 2012; Jellali et al., 216b). The microfluidic device (liver biochip) was 

manufactured with two polydimethylsiloxane layers (PDMS, Sylgard 184 kit, Dow Corning), 

sealed by reactive air plasma treatment (plasma cleaner, Harrick Plasma). The microstructures 

in bottom layer define several cell cultures chambers and microchannels (depth of 100 µm, 

Fig.S1, supplementary file). The top layer, with a reservoir (depth of 100 µm), includes an inlet 

and outlet for culture medium perfusion (Fig.S1, supplementary file 1).  

 

For dynamic culture, the biochips were connected to our IDCCM device (Integrated 

Dynamic Cell Cultures in Microsystems, Fig.S1, supplementary file1).  The IDCCM device is 

a polycarbonate platform (with the conventional format of 24-well plate) manufactured by 

molding injection. The biochips are connected at the bottom of the IDCCM device by a simple 

series of connectors. Each biochip is connected between two wells (volume of 2 mL per well), 

allowing the parallelization of 12 biochips. The perfusion was performed using peristaltic pump 

connected to the cover of the IDCCM device by PTFE tubes (Fig.S1, supplementary file 1). 
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2.2. Culture medium and chemical reagents 

 

The primary hepatocytes seeding medium (adhesion phase) was composed of 

E medium (Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco), GlutaMAX 

(Gibco) at 10 mM, In 

dynamic culture phase, the hepatocytes were cultivated in culture medium: 

ycin, 

GlutaMAX at 10 mM, 1% non-essential amino acids (Gibco), 3% Bovine Serum Albumin 

(BSA, Sigma-Aldrich), 1% Insulin-Transferrin-Selenium ITS-

Dexamethasone (Sigma-Aldrich), 0.5 mM ascorbic acid 2-phosphate (from magnesium salt n-

hydrate, Sigma-Aldrich) and 20 mM HEPES (Gibco). 

 

-dichlorodiphenyltrichloroethane (DDT,) and Cis-Permethrin (3-phenoxybenzyl 

(1RS)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropane carboxylate, PMT) were purchased 

from Sigma-Aldrich and Supelco Analytical, respectively. Solutions stock of both pesticides 

(at different concentrations) were prepared in dimethyl sulfoxide (DMSO, Sigma-Aldrich). 

Further dilutions in culture medium were realized to achieve the final concentrations of 

expositions. The final concentration of DMSO in the culture medium did not exceed 0.2% (v/v) 

that did not affect cell viability and culture medium with 0.2 % of DMSO was used as control. 

 

2.3. Primary rat hepatocytes culture in microfluidic biochip 

 

Primary rat hepatocytes were isolated from 5-week-old male Sprague-Dawley rats 

(Janvier Labs, France) using the two-step collagenase protocol based on the protocol of Seglen 

(1973). The details of the hepatocytes extraction protocol are given in our previous work and 

in supplementary file 2 (Jellali et al., 2018a). Rats were housed in ventilated, humidity and 

temperature-controlled rooms with a 12/12-h light/dark cycle, with food and water ad libitum. 

All procedures were performed with the approval of the Veterinary Authorities of France in 

accordance with the European Communities Council Directive of 22 September 2010:63/UE. 

This study was approved by the ethics committee of the Université de Technologie de 

Compiègne.  

 

The biochips, IDCCM device and tubing were sterilized by autoclaving and dried in an 

oven. The biochips were connected to the IDCCM device, coated with rat tail type I collagen 
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(Corning®, 300 µg/mL in phosphate buffered saline: PBS, Gibco) and incubated at 37°C in 

an atmosphere supplied with 5% CO2. After 1h, the collagen solution was washed using the 

seeding medium and the freshly isolated hepatocytes (5.5x105±0.2x105 cells/biochip) loaded 

into the biochips via IDCCM inlet ports using a micropipette tip. Each well of IDCCM box was 

promote cell adhesion, the seeding medium was replaced by the culture medium, the IDCCM 

device connected to the peristaltic pump and the perfusion was started (25 µL/min). Finally, the 

pesticides solutions were added and the experiment was continued for 24 hours in dynamic 

conditions. At the end of the experiment, the culture medium and cells were collected for 

analysis. The detailed experimental procedure is shown in Fig.1A. 

 

The pesticides concentrations were selected based on the literature data (Leibold and 

Schwarz 1992; Zucchini-Pascal et al., 2012; Willemin et al., 2015; Willemin et al., 2016; Yang 

et al., 2019). In this work, DDT and PMT were supplied at 15 (DDT15 and PMT15) and 150 

µM (DDT150 and PMT150). We also tested mixtures of DDT and PMT at 15 (Mix15) and 150 

µM (Mix150). Although the concentrations of DDT and PMT used were higher than reported 

human cases, both pesticides are very lipophilic molecules and can accumulate in hydrophobic 

tissue, such as in adipose tissue (Yang et al., 2019). 

 

2.3. Cell viability and functionality 

 

Cell counting was performed on a Malassez cell following cell detachment with trypsin-

EDTA (Fisher Scientific) and the viability was quantitatively analyzed using trypan blue 

staining. The productions of albumin and urea were measured using ELISA assays (Rat 

Albumin ELISA quantification set, Bethyl) and QuantiChromTM Urea Assay Kit (DIUR-500), 

respectively (detailed protocols are provided in supplementary file 2).  

 

For statistical analysis, one-

using GraphPad Prism 8 software (State College, USA). A P value less than 0.05 was 

considered as statistically significant. 
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2.4. Transcriptomic analysis 

 

Total RNA was extracted using the Nucleospin® RNA XS isolation kit (Macherey-Nagel 

EURL, Hoerdt, France). After validation of the RNA quality with Bioanalyzer 2100 (using 

Agilent RNA6000 nano chip kit), 500 ng of total RNA is reverse transcribed following the 

GeneChip® WT Plus Reagent Kit (Affymetrix). Briefly, the resulting double strand cDNA is 

used for in vitro transcription with T7 RNA polymerase (all these steps are included in the WT 

cDNA synthesis and amplification kit of Affymetrix). After purification according to 

Affymetrix protocol, 5.5 ug of the cDNA obtained are fragmented and biotin labelled using 

Terminal Transferase (using the WT terminal labelling kit of Affymetrix). cDNA is then 

17 hours. After overnight hybridization, chips are washed on the fluidic station FS450 following 

specific protocols (Affymetrix) and scanned using the GCS3000 7G.  

 

The scanned images are then analyzed with Expression Console software (Affymetrix) to 

obtain raw data (.cel files) and metrics for Quality Controls. The observations of some of these 

metrics and the study of the distribution of raw data show no outlier experiment. Robust 

Multichip Algorithm (RMA) normalization was realized using R and normalized data were 

subjected to statistical tests. To find differentially expressed genes (DEGs), a t-test was 

performed using MeV 4.9 software.  

 

The gene lists selected by the t-test (P value of less than 0.05) were filtered according to 

the fold change in order to conserve only the genes with a fold change of more than 1.2 (up-

regulated) or less than -1.2 (down-regulated). The corresponding lists of DEGs were fed to 

Ingenuity Pathway Analysis (IPA) to obtain biological functions, top network and gene ID. The 

ISMARA webserver (https://ismara.unibas.ch/mara/) was used for Motif Activity Response 

Analysis (MARA, Balwierz, et al., 2014). 

 

2.5. Metabolomic analysis 

 

Metabolomic analysis was performed with the culture medium collected at the end of 

each step using gas chromatography (Agilent 7890B) coupled to mass spectrometry (Agilent 

5977A, GC-MS). The column was a Rxi-5SilMS from Restek (30 m with a 10 m Integra-Guard 

column - ref 13623-127). Sample preparation and metabolite extraction were performed 
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according to our previous work (Jellali et al., 2018a). All the GC-MS injection and analysis 

steps were carried out as described in Fiehn et al., (Fiehn 2006; Fiehn et al., 2008). The data 

files obtained were analyzed using AMDIS software (http://chemdata.nist.gov/mass-

spc/amdis/). Peak areas were determined using Masshunter Quantitative Analysis (Agilent) and 

normalized to ribitol. Metabolite contents are expressed in arbitrary units. The complete 

protocols for the metabolite extraction and samples injection are detailed in supplementary file 

2. 

 

The metabolomic multivariate data analysis was performed using XLSTAT.2016 

software (Addinsoft) and MetaboAnalyst 4.0 (Chong et al., 2018). Firstly, unsupervised 

principal component analysis (PCA) was performed to identify the similarity or the differences 

between sample profiles and to assess the clustering behavior between groups. Secondly, 

orthogonal projections to latent structures discriminant analysis (OPLS-DA) was applied to get 

the maximum separation between control and treated groups, and to explore the variables that 

contributed to this separation. The quality of OPLS-DA model was evaluated by the R2Y (fitting 

degree) and Q2 (prediction parameter) values. To determine the best discriminators metabolites, 

the loading from OPLS-DA was constructed by plotting the modelled covariance p[1] on the 

x axis and the modelled correlation p(corr)[1] on the y axis (S plot). Variables with higher 

absolute value of correlation (p(corr) > 0.6) represent possible discriminating metabolites (those 

with higher p[1] values  have a larger impact on the variance between the groups) (Bervoets et 

al., 2014). The significant metabolites were confirmed using variable importance in the 

projection value t-test (P < 0.05). Finally, MetaboAnalyst software 

were used to integrate metabolomics and transcriptomics data.    

 

3. Results 

 

3.1. Morphology and cell functionality 

 

The hepatocytes cultures were performed over 72 h, including 24 h of static adhesion and 

48 h of perfusion. After static phase, the cells were successfully adhered in bottom of biochips. 

The number of counted cells was about of 4.7x105±0.5x105 cells/biochip. The hepatocyte 

morphologies at the end of the experiments (24 h of exposure) are presented in Fig.1B and 

Fig.S2 (supplementary file 1). As shown in Fig.S2, the control and the biochips treated with 15 

µM of DDT and 15 µM of PMT (DDT15 and PMT15) presented similar morphologies. The 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



hepatocytes formed homogeneous and confluent tissue on the microchambers and 

microchannels bottom surface. By contrast, at DDT150, PMT150, Mix15 and Mix150, the 

hepatocytes were less dense and cell-free areas were observed in the biochips (Fig.1B and 

Fig.S2, supplementary file 1). Furthermore, the cell-free areas were more important in the 

biochip exposed to Mix150. The morphological observations were confirmed by cell counting 

(Fig.1C). Indeed, the number of collected living cells was of 4.1±0.23x105, 3.8±0.45x105, 

3.9±0.38x105, 3±0.45x105, 3.05±0.35x105, 3.1±0.31x105and 2.1±0.13x105 cells in biochip CT, 

DDT15, PMT15, Mix15, DDT150, PMT150 and Mix150, respectively. 

 

The hepatocytes functionality was illustrated by albumin and urea production (Fig.1C and 

Fig.S3 in supplementary file 1, respectively). As shown in Fig.1C, albumin production was 

about 800-900 ng/h/106 cells. However, we did not detect any significant effect of pesticides 

expositions on albumin. For urea production, a significant increase was observed when 

hepatocytes were exposed to Mix150 (15±2.2 µg/h/106 cells vs. 8±1.1 µg/h/106 cells for 

control). For all other exposed biochip, the urea production was close to control.  

 

3.2. Transcriptomic analysis 

 

PCA and supervised PLS-DA were performed on transcriptomic data to acquire an 

overview of variations among the groups. The PCA analysis could not sufficiently separate the 

groups (Fig.S4A, supplementary file 1). The PLS-DA analysis applied to the dataset led to 

separation between two groups, as shown in Fig.2A and Fig.S4B (supplementary file 1). The 

first group includes the control biochips and the samples exposed to DDT15, PMT15 and 

Mix15, whereas the second group consists of biochips exposed to high pesticides doses. These 

results were confirmed by PLS-DA presented in Fig.2B (control vs. high-dose) and Fig.S4C 

(control vs. low-dose). 

 

The separation between the high-dose groups and the control, and the overlap between 

low-dose and control groups suggested that the effects caused PMT, DDT and PMT/DDT 

mixtures are dose-dependent. However, as shown in the heatmap in Fig.2C, PMT15, DDT15 

and Mix15 presented transcriptomic profiles very close to control. As a result, thereafter, we 

treated only high-dose versus control groups to investigate pesticides effects and carry out 

discussions. 
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3.2.1. DDT Profile 

 

The statistical comparison of the control versus DDT150 revealed 266 differentially 

expressed genes (DEGs) with a P value below 0.05 and a fold change (FC) of ±1.2 (127 

downregulated and 139 upregulated, Fig.3A and supplementary file 3). Among them, the top 5 

upregulated genes were Slc25a4 (mitochondrial ADP/ATP transport), Pla2g7 (coding for a 

phospholipase that hydrolyze phospholipids into fatty acids and other lipophilic molecules), 

Scd2 (involved in the fatty acid biosynthesis), Hmgn2 (opening chromatin process) and Cxcl10 

(pro inflammatory cytokine). The top 5 downregulated genes were Bdh1 (3-Hydroxybutyrate 

Dehydrogenase-1, 3-hydroxybutyrate is one of the major ketone bodies produced during fatty 

acid catabolism), Diaph3 (involved in actin remolding), Cyp3a5/7 (xenobiotic metabolism), 

Pemt (involved in the production of phosphatidylcholine and of phospholipid in liver), Cyp17a1 

(involved in the corticoid and androgen biosynthesis).  

 

The pathways extracted by IPA analysis are summarized in Table 1 (full analysis 

presented in supplementary file 3). The top 5 canonical pathways highlighted by IPA were the 

glutathione mediated detoxification (Gstt2/Gstt2b, Gsta2, Mgst2, Ggh), the proline 

biosynthesis/arginine degradation (Pycrl, Pycr1), the inhibition of the RXR function 

(Gstt2/Gstt2b, Gsta2, Il18, Aldh1l2, Scarb1, Mgst2, Nr1i3, Fabp5, Cyp4a11) and the 

tryptophan degradation (Haao, Ehhadh, Hadh). The top tox function appeared to be the liver 

steatosis (20 hits), the liver inflammation (14 hits) and liver necrosis (9 hits). Finally, the 

potential upstream regulators were Ucp1 (mitochondrial process), Srebf1 (sterol regulation) and 

IFNB1 (interferon). 

 

In order to complete the IPA analysis, we performed a second analysis using the 

microarray dataset with the ISMARA processing. The comparison of the biochip control versus 

the DDT150 treated conditions led to extract 46 transcription factors (TFs) that were 

differentially activated (z_value above 1, supplementary file 4). Among them Hnf4a, Hnf4g, 

Ahr and Essra were over activated in control whereas Esr1 was over activated in DDT150. In 

the top ten TFs, we extracted the over activation of Max, Yy1, Nfia, Mxi1, Atf4, Hic2 in the 

control biochip. The Meis3, Tfdp1, Pml, Hoxb7 genes presented an over activity in the DDT150 

conditions. Their targets are presented in Table 2 (the full target is given in supplementary file 

5). They included important liver markers (Hnf3, urea cycle), lipid, carbohydrates and insulin 
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regulation. Response to inflammation processes (Nfkb, Ifn, Tgfb, p53, GSH) and liver 

regeneration (Tgfb) were also extracted consistently with IPA analysis. 

 

3.2.2. PMT profile 

 

The comparison of the control versus PMT150 are presented in supplementary file 6. The 

differential analysis led to identify 256 DEGs (P < 0.05 and FC ±1.2) between the two 

conditions (Fig.3A and supplementary file 6). Among them, the top 5 upregulated genes were 

Cyp4a11 (metabolism of fatty acid), Pck1 (gluconeogenesis regulation), Hmgn2 (opening 

chromatin process) and Ehhadh (beta-oxidation pathway), Slc34a2 (phosphate transport). The 

top 5 downregulated genes were Diaph3, Akr1b10 (regulation of lipid production/ lipid 

degradation), Defb1 (  defensing-1), Cyp17a1, Cyp3a5/7. The list of DEGs were then 

processed using IPA. The top canonical pathways identified were the glycogen biosynthesis 

(Gbe1, Gys2), the inhibition of the RXR (8 hits), fatty acid -oxidation (3 hits) and adipogenesis 

pathway (6 hits).  Regarding the tox function / tox list, the liver steatosis (Acaca, Acadm, 

Cyp4a11, Ehhadh, Fabp5, Fgf21, Lpin1, Mat1a, Mthfr, Nr1i3, Pck1, Prkab1), liver cirrhosis 

(Fbln1), CAR/RXR activation (Nr1i3, Mdm2, Pck1) and fatty acid metabolism (Iws1, Ehhadh, 

Cyp4a11, Acadm, Hadh) appeared among . The potential 

upstream regulators included Ucp1 (mitochondrial process), Rxrg (co activator of PPAR, VDR, 

LXR receptors), Srebf1 (sterol regulation), Ppara (lipid carbohydrates homeostasis) and Mlxipl 

(I activates, in a glucose-dependent manner, the carbohydrate response element (ChoRE) motifs 

in the promoters of triglyceride synthesis genes). The top pathways and the detailed IPA 

analysis are presented in Table 1 and supplementary file 6, respectively. 

 

The comparison of the biochip control with the PMT150 treated biochip using ISMARA 

led to extract 65 transcription factors that were differentially activated (z_value above 1, 

supplementary file 4). Among them, Hnf4a, Cebpe, Cebpb were over activated in control 

whereas Nanog, Fos, Rarg, Esr1, Esr2 were over expressed in PMT150. In the top ten, we 

extracted the over activation of E2f1, Zfp110, Max, Gabpa, Chd2, Hsf2 in the control biochip. 

The Tgif1, Pou1f1, Zeb1, Mta3 genes presented an over activity in the PMT conditions. Their 

targets related to liver process and to potential pesticides liver toxicity are presented in Table 3 

(the full target is presented in supplementary file 7). The targets included liver marker (Hnf3b), 

lipid and carbohydrates process, and more specifically RNA processes. 
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3.2.3. Mixture profiles 

 

The differential analysis Mix150 vs CT led to a huge difference between the treated and 

control conditions, as far as up to 1349 DEGs were extracted (P < 0.05 and FC ±1.2, Fig.3A, 

list of genes in supplementary file 8). Among these DEGs, 788 genes were upregulated and 561 

genes were downregulated (Fig.3A). The top 5 upregulated genes were Pck1, Hmgm2, 

Cyp4a11, Slc15a1 (peptide transport), Ggh (glutamate derivated metabolism). The top 5 

downregulated genes were Inkbe (TGF  related protein), Fgf21, Fabp5 (fatty acid uptake, 

transport, metabolism), Cyp3a5/7, Apof (cholesterol transport regulation).  

 

The IPA pathways analysis revealed the fatty acid -oxidation III (Eci33, Eci2, Ehhadh, 

Eci1), MAPK signaling (13 hits), TGF  signalling (15 hits), tryptophan metabolism (6 hits) and 

estrogen receptor signaling (18 hits) among the top modulated canonical pathways (Table 4 and 

supplementary file 8). The top 4 tox function were related to liver necrosis and cell death (up 

to 26 hits). Liver steatosis, liver inflammation, gene regulation by peroxisome Proliferators via 

Ppar  and Tgf-  signaling were also extracted as top tox function /tox list, with 41 and 40, 17 

and 16 hits, respectively. The top potential upstream regulators proposed by IPA were miR-16-

5p, Hnf4a, Ppara, mir-30c-5p. All pathways extracted by IPA are presented in supplementary 

file 8. 

 

Using ISMARA processing (applied to CT and Mix150 dataset) we extracted 106 

transcription factors that were differentially activated (z_value above 1, supplementary file 4). 

Among them Foxa1_Foxa2, Foxa3, Hnf4a, Hnf4g, Ahr, Cebpe, Cebpb, Cebpa, Pparg_rxr, 

Nr1h2 (Lxr) were over activated in biochip CT, whereas Nr2f2, Stat2, Stat6 were over expressed 

in Mix150 conditions. In the top ten, we extracted the over activation of the Max, Maz, Mta3, 

Atf4 in the control biochip. The Chd1, Zfx, Mecp2, Nrf1, Sp1, Irf7 genes presented an over 

activity in Mix150. The top ten TFs targets related to liver process and to potential pesticides 

toxicity are presented in table 4 (the full target is given in supplementary file 9). 

 

3.2.4. Cross link between the treatment and specific profiles 

 

To complete the analysis, we crossed the DEGs lists in order to extracted common and 

specific signatures. As shown in Fig.3B, the Venn diagram representation revealed that 75, 111, 

71 and 11 genes were common to the three conditions, DDT150/Mix150, PMT150/Mix150 and 
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DDT150/PMT150, respectively. The number of genes specific to each exposure condition were 

of 1092, 69 and 99 for Mix150, DDT150 and PMT150, respectively (full Venn diagram analysis 

with genes names is provided in supplementary file 10). The correlation matrix performed using 

the transcriptomic dataset confirms the high similarity between Mix150/DDT150 (correlation 

coefficient, CC = 0.60) when compared to Mix150/PMT150 (CC = 0.37) and PMT150/DDT150 

(CC = 0.15, Fig.3C). 

 

The 75 genes common to three conditions (DDT150, PMT150 and Mix150) are involved 

in glutathione metabolism and ROS detoxification (G6pd, Gstt2, Gstt2b, Mgst2, Aqp8), fatty 

acids, lipids, steroids metabolisms and PPAR signaling (Cyp4a11, Cyp17a1, Ehhadh, Hadh, 

Fabp5, Acaca, Tkfc, Lpin1, Asah2). They also included inflammation pathway such as TGFb 

signaling (2 hits), cytokine receptor pathway (4 hits) and their targets (Stat2), some genes 

related to cell remolding (Cd59, Cttnbp2, Arhgef2) and carbohydrates (Gbe1, Tkfc, Acaca, 

supplementary file 10). Concerning the common genes modulated by DDT150 and Mix150 

(111 genes), the profile included cell necrosis, cytokine and inflammation markers (Irf3, 

Cxcl10, Fas, Ifnar1, Ifngr1, il18, Inhbc, Ripk1, Slc25a4, Map2k4), insulin resistance (Pck2, 

Pten, Rps6ka3, Trib3), AMPK signaling (Adipor2, Pck2, Fasn), cholesterol metabolism 

(Lrpap1) and glycine metabolism (Agtx, Gcat). Finally, the profile of common genes to 

PMT150 and Mix150 are related to WNT signaling (Fzd5, Gsk3b, Myc), inflammation (Nfkbiz, 

Tnfrsf1b, il17rc) and insulin resistance (Pklr, Pck1, Gsk3b). 

 

The 69 specific genes of DDT150 treatment included gene related to cell death such as 

the necrosis (Cflar, Eif2ak2, Tlr4, Nfkb, Myd88) and autophagy markers (C2orf72, Cflar, 

Rps6kb1, Ddit4). In parallel, the specific genes of PMT150 included more particularly genes 

related to RNA transport and ribosomes (Rpl3,4,24,30,32,36a,511, Nup43, Pnn) and insulin 

resistance (Agt, Gys2, Prkab1, Srebf1). The mixture of the two pesticides (Mix150) have 1092 

specific genes (associated pathways in supplementary file 10).  

 

3.3. Metabolomic profiling 

 

Unsupervised PCA was performed on the GC-MS datasets to compare the metabolic 

profiles of biochips exposed to pesticides and control. PCA score plots of four analysis (all 

samples; DDT150 vs. DDT15 vs. CT; DDT150 vs. DDT15 vs. CT and DDT150 vs. DDT15 vs. 

CT, Fig.S5) showed clear separation between control and biochips exposed to high doses. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Contrary, no obvious separation was observed for control and low pesticides doses. The 

similarity of biochips treated with low doses and control group was confirmed by the heatmap 

presented in Fig.S6. consequently, as for transcriptomic data, we treated only high-dose versus 

control groups to investigate pesticides effects. 

 

 OPLS-DA was then applied to data of control and samples treated with pesticides high-

dose (that is, CT vs. DDT150, CT and CT vs. Mix150). In the OPLS-DA score 

plot of the three analysis (Figs. 4A, 4B and 4C), pesticides-treated samples were clearly 

separated from the control group. The OPLS-DA models fitted well the data and showed good 

predictability 3, Q² = 0.71 [DDT150], 0.94, 0.87 [PMT150] and 0.97, 0.93 [Mix150]). 

To extract the biomarkers, the S-plot from OPLS-DA was plotted using the modelled 

covariance p[1] and the modelled correlation p(corr)[1] (Figs. 4D, 4E and 4F). When compared 

to control, the DDT150 exposure led to the modulation of 24 metabolites (P < 0.05, Fig.5A). 

The resulting heatmap and full statistical analysis are shown in Fig.5C and supplementary file 

11, respectively. We found an increase in benzoic acid, putrescine, lipid and fatty acids 

(palmitic, decanoic and octanoic acids), several carbohydrates, their derivatives and glycolysis 

derivatives (fructose, tagatose, sorbitol and glucaric, glyceric, threonic and pyruvic acids) and 

amino acids such as arginine, threonine and tyrosine. In parallel, the levels of cysteine, histidine, 

allantoin (uric acid oxidation) and 2-hydroxybutyric (byproduct of glutathione synthesis), 

aspartic, citric, and glucuronic acids were decreased. 

 

The PMT150 treatments were associated to the modulation of 24 metabolites (Fig.5A). 

They led to an increase in tetradecanoic acid, fructose, tagatose, glucaric acid, glycerol-3P, urea 

and ethanolamine (precursor of phospholipid phosphatidylethanolamine), and a decrease in 

levels of 2-hydroxybutyric acid, amino acids (glutamine, valine, leucine, isoleucine, asparagine, 

serine, arginine, lysine, cysteine, methionine, proline, histidine) and TCA intermediates 

(aspartic, glutamic and citric acids). Finally, 30 metabolites were differentially expressed 

between Mix150 and control samples (22 metabolites downregulated and 8 metabolites 

upregulated, Fig.5A). In particular, we monitored a higher level of octanoic acid (fatty acid), 

carbohydrates (fructose, tagatose, glucose), urea, and glucaric, glyceric and benzoic acids. 

Meanwhile, 2-hydroxybutyric acid, myo-inositol, amino acids (A-alanine, lysine, valine, 

leucine, isoleucine, asparagine, serine, arginine, ornithine, glycine, phenylalanine, cysteine, 

methionine, proline and threonine) and TCA intermediates (glutamic, lactic and citric acids) 
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were significantly decreased. The heatmap of modulated metabolites (with P value) is provided 

in Fig.5C (full statistical analysis in supplementary file 11). 

 

To explore the common and specific metabolomic biomarkers, we performed Venn's 

diagram. As shown in Fig.5B, 7, 5, 11 and 3 metabolites were common to 

DDT150/PMT150/Mix150, DDT150/Mix150, PMT150/Mix150 and DDT150/PMT150, 

respectively. The specific modulated metabolites were of 9, 3 and 7 DDT150, PMT150 and 

Mix150, respectively. Then, we plotted the heatmap of metabolites considering the basal culture 

medium, biochip controls and the three pesticide treatments (DDT150, PMT150 and Mix150, 

Fig.S7).  The three treatments presented a common signature including the production of lipids 

(palmitic, decanoic and tetradecanoic acids, and glycerol-3P) and carbohydrates (fructose, 

tagatose, glucose, sorbitol and glucaric acid). In parallel, we measured low levels of citric acid, 

aspartic acid, mannose and 2-hydroxybutyric acid. The common metabolites highlighted by 

Mix150 and PMT150 treatment included low level of glutamine, glutamic acid, leucine, 

isoleucine, methionine, asparagine, serine, lysine, proline, valine and high level of urea when 

compared to control and basal medium. Finally, High level of octanoic, benzoic and glyceric 

acids appeared as specific Mix150 and DDT150 joint markers. 

 

3.4. Transcriptomic and metabolomic integration 

 

In order to gain insights into the action of pesticides, we integrated the metabolomic and 

transcriptomic data using MetaboAnalyst. The integrated pathway analysis highlighted the 

central carbon metabolism in cancer pathway in the three treatments (11-26 hits, Fig.6 and 

supplementary file 12). The DDT150 exposure led to modulation of glycine, serine and 

threonine metabolism (9 hits), fatty acid biosynthesis (6 hits), PPAR signaling pathway (6 hits), 

fatty acid degradation (5 hits), necroptosis (9 hits) and insulin resistance (7 hits). Among the 

pathways perturbated by PMT150 treatment, we extracted the aminoacyl-tRNA biosynthesis, 

arginine biosynthesis, insulin signaling pathway, insulin resistance, glycerolipid metabolism 

and fatty acid degradation (15, 8, 8, 7, 5 and 4 hits, respectively). Finally, the analysis with 

Mix150 DEGs and metabolites returned the following top modulated pathways: insulin 

signaling pathway (20 hits), PPAR signaling pathway (16 hits), Glucagon signaling pathway 

(22 hits), MAPK signaling pathway (35 hits) and glutathione metabolism (13 hits). 
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4. Discussion 

 

In this study, we have investigated the effect of two pesticides (DDT and permethrin: 

PMT) and their mixtures on rat liver-on-chip. The organ-on-chip technology allows the culture 

of rat hepatocytes in a controlled micro-environment mimicking physiological conditions. In 

an attempt to elucidate the mode of action of pesticides, the experiments were coupled to omics 

profiling. The transcriptomic and metabolomic analysis showed that hepatocytes treated with 

low-doses of pesticides (15 µM) presented omics profiles similar to control. Contrary, high 

doses induce major changes in transcriptomic and metabolomic profiles. The analysis of the 

data contributed to extract a common signature and specific patterns of the tested conditions. 

 

4.1. Common signature of the DDT, PMT and DDT-PMT mixtures 

  

The common signature was illustrated at the transcriptome level by the liver steatosis 

profile extracted from the toxicity analysis of IPA. This was characterized by the upregulation 

of the genes Cyp4a11, Ehhadh, Hadh, Asah2, downregulation of Fabp5, Cyp17a1, Acaca, Tkfc, 

and Lpin1 involved in PPAR signaling, fatty acid and lipid metabolism, and steroid 

biosynthesis. IPA extracted important lipid transcription factors as potential upstream regulator 

such as Srebf1. Furthermore, the ISMARA processing highlighted the reduction of the motif 

activity of important liver transcription factors such as HNF4A in the cultures exposed to the 

pesticides. At the metabolome level, we observed an over expression of various fatty acids and 

lipids in treated cultures such as the production of decanoic, tetradecanoic and palmitic acids 

(heatmap of Figs. 5C and S7). The common signature detected in the metabolome included 

higher level of glucose, fructose and tagatose. Interestingly, high level of fructose is a pro 

lipogenesis molecule and contribute to steatosis (Hannou et al., 2018). Excess of fructose and 

glucose can be produced by several sources including the glycogen degradation (we found 

downregulation of Gsy2 and Gbe1, glycogen storage, in transcriptome data), the tentative of 

degradation of accumulated lipid (up regulation of Ehhadh, Hadh involved in fatty acid beta 

oxydation), the metabolism of glycerol (high level of glycero-3P, activation of the pentose 

phosphate pathway illustrated by sorbitol and tagatose productions). In parallel, high level of 

sorbitol is related to degradation of glucose and production of fructose during hyperglycemia 

(Brownlee 2005). It was correlated in the literature to the reduction of GSH and the increase 

ROS production (due to the competition of the use of NADPH necessary to produce both the 

GSH and the aldose reductase required for glucose metabolism into sorbitol). This ROS 
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increase led to increase the protein kinase C pathway, TGB and NFKB activation and 

hexoamine over expression (Brownlee 2005). That appeared particularly consistent with the 

observations in DDT and MIX conditions in which pro inflammatory and necrotic pathways 

were over activated (see discussion below) when compared to control and PMT cases. 

 

The common mechanism of toxicity also involved a reduction of the CYP450 liver 

detoxification capability, as far as we detected the downregulation of Cyp3a5/7 mRNA in all 

treatment. However, glucuronidation process seems over activated as we detected for all 

treatment the high level of glucaric acid, a biomarker of this process (Notten et al., 1975).  We 

observed low level of cysteine, an important GSH precursor. Under cysteine limitation, 2-

Hydroxybutyric acid is produced as a byproduct of cystathionine conversion to cysteine prior 

its incorporation into GSH. However, 2-hydroxybutyric acid was downregulated in our dataset. 

2-Hydroxybutyric acid is reported to be a liver steatosis biomarker and its production is reported 

to be an early marker for both insulin resistance and impaired glucose regulation in human (Gall 

et al., 2010). This difference with the present steatosis like signature illustrated a difference in 

the pesticides-induced steatosis, when compared to typical metabolic syndrome pathology. In 

parallel, GST mRNA levels (Gstt2, Gstt2b, Mgst2) were decreased with pesticides treatments. 

Those enzymes inhibitions impairing the hepatic metabolism is largely reported in pesticide 

exposure (Ozaslan et al., 2018, Khan et al, 2005). Consistently, our finding illustrated also a 

weaker capability to detoxify the pesticides via the GSH routes and the necessity of an 

alternative pathway.  

 

The production of -ketoglutaric acid would illustrate an alternative detoxification 

pathway. It is report that -ketoglutaric acid could prevent the lipid peroxidation by increasing 

enzymatic activity of superoxide dismutase, glutathione peroxidase and catalase to facilitate fat 

metabolism, and then reduced hepatoxicity in rats (Velvizhi et al., 2002a, 2002b). Nevertheless, 

we did not find Sod, Gpx and Cat genes upregulation (as those enzymes are also inhibited by 

some pesticides exposure Khan et al., 2005). Interestingly, tagatose is reported to be an 

antioxidant and cytoprotective compound, reducing lipid peroxidation in mice hepatocytes 

presenting GSH depletion under organophosphate exposure (Paterna et al., 1998). It is also an 

intermediate to D-fructose-6P in the galactose pathway (Galk1 gene downregulated). Both 

fructose and tagatose reduced the iron-dependent reactive oxygen species (ROS)-mediated 

peroxidation, especially in lipid ROS (Dixon et al., 2012; Dixon and Stockwell 2014). This 

finding would be particularly consistent in DTT/PMT mixture exposure, in which (i) we 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



observed that Ncoa4 and Sat2 mRNA gene of the iron mediated ROS pathway were modulated 

(upregulation of Ncoa4, downregulation of Sat2); (ii) ISMARA highlighted the response to iron 

(via Sp1) and iron chelate transport (via Maz).  

 

4.2. DDT specific signature 

 

DDT is reported to conduct to insulin resistance (glucose intolerance and 

hyperinsulinemia, La Merill et al., 2014). This was consistent with the TF targets of ISMARA 

that were more particularly linked to insulin response (via Pml, Tfdp1 motifs) and diabetes (Max 

motif). NAFLD with insulin resistance induced by high fat diet and streptozocin are 

characterized in rat, in addition to typical steatosis response and inflammation (Tnf, p53, Nfkb, 

by AMPK signaling and the response to insulin, Liu et al., 2017b), which appeared in accord 

with our finding. Here, the DDT signature is also characterized in the metabolome by high level 

of arginine, proline and putrescine, and low level of urea and ornithine.  At the gene level, is 

was concomitant with downregulation of Pycrl and Pycr1 (arginine-proline pathway). This 

suggests a switch from urea production toward putrescine production via the agmatine-

putrescine route. First, NAFLD is reported to impair the urea cycle leading to low urea 

production and high ammonia accumulation in mice (de Chiara et al., 2018). The low ornithine 

level may also reflect another type of response to the steatosis like behavior. In NAFLD, 

ornithine is supposed to restore GSH production and alpha ketoglutaric acid reserves to detoxify 

NH4+ to glutamine (Canbay and Sowa 2019). Secondly, the increase of putrescine in liver is 

reported to act as protective effect and as a signal for liver regeneration process (Nishiguchi et 

al., 1990). This result agrees with the modulation at the transcriptome level of Jak/Stat and 

interferon signaling (upregulation of Ifngr1, Stat2, Ifnar1) and with literature observation on 

liver regeneration process in rat (Chen et al., 2010). 

 

Furthermore, ethanolamine appeared strongly increased in the DDT signature (fold 

change of 11, although P value was of 0.06). It is, with choline, a precursor of phospholipids 

and promotes rat hepatocyte proliferation and DNA synthesis via EGF receptor (Gibellini and 

Smith 2010; Sasaki et al., 1997; Kume and Sasaki 2006). That is consistent with our observation 

Egfr, Jat/Stat, Met targets in PML and Meis3 TFs in ISMARA). Thus, putrescine production 

- (illustrated by the lower 

transcription factor activity of important liver marker such as Hnf4a, Hnf4g and Ahr extracted 

by ISMARA) to promote liver regeneration. Finally, the DDT signature also include an over 
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representation of the gene involved in the cell death, necrosis and inflammation, illustrating a 

higher toxicity of the compound. 

 

4.3. PMT specific signature 

 

The necrosis and pro-inflammatory pathways were weakly activated at the transcriptome 

levels when compared to DDT and Mix (PMT/DDT) conditions. PMT is reported to potentiate 

insulin resistance and to induce steatosis like toxicity (Xiao et al., 2017). Our PMT data were 

consistent with those finding, but DDT and Mix appeared stronger inducer (see P value and 

fold change in supplementary file). PMT targeted the mRNA of genes related to ribosomal 

proteins and to the RNA transport. PMT led to high consumption of TCA substrate (aspartic, 

glutamic and citric acids), coupled with high consumption of amino acids such as alanine, 

glutamine (2 oxoglutarate and oxaloacetate entry points), leucine, isoleucine, valine (required 

for Acetyl-coA and succinyl-CoA productions), asparagine and arginine (fumarate entry point). 

We observed an opposite profile in PMT and DDT regarding nitrogen metabolism. It is 

illustrated by the high production of urea in PMT, (whereas we detected high level of allantoin, 

ornithine in DDT), and the low level of arginine, putrescine, glutamine and glutamic acid in 

PMT (whereas we found high level of putrescine, arginine in DDT). This set of metabolites 

would suggest firstly an acid uric metabolism as one potential source of urea production in PMT 

(allantoin being degraded to urea). Uric acid is a potent antioxidant and interacts with reactive 

oxygen species (ROS) to be non-enzymatically converted to allantoin (Mikami and Sorimachi 

2017). (nb1: Uric acid synthesis and transports are also among the targets of two of the top 10 

TFs, Wrnip1_Mta3_Rcor1 and of Tgif1_Meis3, in ISMARA PMT and DDT_PMT analysis, but 

with a lower likelihood when compared to the top 10 targets of the lists reported in supp. file; 

nb2 urate processes are not involved in the top 10 TFs related to DDT). This is also consistent 

with a potential purine metabolism, leading to uric acid as a degradation product of 

hypoxanthine and guanine (nb: both are important component in DNA and RNA, RNA process 

being particularly highlighted in the PMT exposures). Urea synthesis is impaired in NAFLD 

(De Chiara et al., 2018), and thus the higher accumulation of urea (when compared to DDT and 

control) may reflect a moderate steatosis like behavior in PMT cultures (that is consistent with 

lower level of lipids production when compared to DTT and the PMT/DTT mixture). Finally, 

the inflammation, cell death messages from the transcriptome analysis appeared weaker in 

PMT150, suggesting a moderate toxic response when compared to DDT and DDT-PMT 

mixture. 
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4.4. Specific mixture signatures 

 

In addition to the steatosis like signature, common to all conditions, the mixture 

presented a complex signature. A large transcriptome modulation was extracted in which we 

found the synergy of both pesticides such as the PMT perturbation of the RNA transport, and 

the DDT perturbation illustrated by the necrotic and inflammation profiles. Furthermore, the 

signature of those perturbations was enhanced when compared to pure DDT and pure PMT (for 

instance 14 genes in the RNA transport in mixture vs PMT150, 15 genes in the necroptosis in 

mixture vs in DDT150). Furthermore, at the metabolome level, we observed the intense 

depletion of all the amino acids, excepted for cysteine and histidine. We checked if the intense 

signature of MIX contributed to reproduce a move from NAFLD to NASH. NASH compared 

to NAFLD is characterized at the metabolome level by accumulation of S-Adenosyl-L-

methionine (SAM) and by decreased of Mat1a expression in mice (Gitto et al., 2018). We did 

not observe such tendency for Mat1a that was commonly upregulated in Mix150 and PMT150 

experiences. SAM synthesis appeared commonly as one target among the top 10 TFs motif of 

PMT150 and Mix150 analysis in ISMARA (not in DDT).  

 

When compared to literature, the Mix150 signature seemed consistent with the 

modulation of the immune and inflammatory response, programmed cell death and NF- B 

signaling pathway, coupled with low level of methionine, tyrosine, phenylalanine and arginine 

that is reported in NASH model induced by methionine-choline deficient diet rats (Liu et al., 

2017b). Finally, it is reported that the several stage of the NALD (NAFLD, NAFLD with insulin 

resistance, NASH) depend on the level of chemokine expression, coupled with development of 

the inflammation, the response via Nfkb and with the downstream p53 signalling activation (Liu 

et al., 2017). This appeared fully consistent with our dataset for Mix 150 treatment.  

 

Conclusion 

 

In summary, we investigated the effects at the transcriptomic and metabolomic level of PMT 

and DDT, or both together on primary rat hepatocytes cultivated in microfluidic biochips. The 

pesticides treatments at low-dose (15 µM) presented transcriptome and metabolome profile 

similar to control. However, multivariate statistical analysis showed a slight separation between 

low-dose and control groups and complete separation of both from high-dose group, suggesting 

a dose-dependent effect. At high-dose, the common signature of the three treatments reflected 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



liver steatosis profile highlighted by the modulation of genes related to PPAR signaling, fatty 

acid, lipid metabolism and steroid biosynthesis. This profile was confirmed by metabolomic, 

which showed high level of fatty acids and lipids (decanoic, tetradecanoic and palmitic acids), 

glucose, fructose and tagatose. As expected, the mixture of DDT and PMT presented a complex 

signature, with 1349 modulated genes. The Mix150 treatment was characterized by the additive 

effects of DDT and PMT such as the perturbation of the RNA transport and necrotic/ 

inflammation profiles specific to PMT and DDT, respectively. Furthermore, these signatures 

were enhanced, when compared to pure DDT and pure PMT. These results provide an attractive 

insight into the combination of organ-on-chip and multi-omics to elucidate toxicological effects 

of pesticides.  
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Table 1. Top ten transcription factors extracted by ISMARA processing comparing 
DDT and Control, 

Canonical pathway 
(P value, Hits) 

Tox function/ tox list 
(P value, Hits) 

Upstream 
regulators 
(P value) 

D
D

T
15

0 
v

s.
 C

T
 

Glutathione-mediated detoxification 
(3e-4, 4) 

Liver steatosis 
(1.13e-7, 20) 

Ucp1 
(4e-9) 

LPS/IL-1 mediated inhibition of RXR 
unction (0.002, 9) 

Liver inflammation/hepatitis 
(0.0003, 14) 

Srebf1 
(4.77e-9) 

Tryptophan degradation  
(0.0028, 3) 

Liver necrosis/cell death 
(0.0008, 9) 

Insig1 
(1.1e-6) 

Proline biosynthesis II (from Arginine) 
(0.0029, 2) 

Glutathione depletion-phase II reactions (0.001, 
3) 

TO-901317 
(5e-6) 

Arginine degradation VI 

(0.0029, 2) 

LPS/IL-1 mediated inhibition of RXR function 
(0.0016, 10) 

Ifnb1 
(7e-6) 

P
M

T
1

5
0 

v
s.

 C
T

 

Glycogen biosynthesis II 
(0.0019, 2) 

Liver steatosis 
(0.003, 12) 

Ucp1 
(2.7e-7)  

LPS/IL-1 mediated inhibition of RXR 
Function (0.007, 8) 

Liver cirrhosis 
(0.02, 1) 

Rxrg 
(5.4e-7) 

Fatty a -oxidation I 
(0.009, 3) 

CAR/RXR activation 
(0.004, 3) 

Srebf1 
(0.0002) 

Adipogenesis pathway 
(0.009, 6) 

LPS/IL-1 mediated inhibition of RXR function 
(0.01, 8) 

Ppara 
(0.00028) 

IL-17A signaling in fibroblasts 
(0.01, 3) 

Fatty Acid Metabolism 
(0.01, 5) 

Mlxipl 
(0.0003) 

M
ix

1
50

 v
s.

 C
T

 

-oxidation III 
(3.5x10-5, 4) 

Liver necrosis/cell death 
(0.0008, 26) 

miR-16-5p 
(1.4e-11) 

MAPK signaling 
(0.001, 13) 

Liver inflammation/hepatitis 
(0.002, 40) 

Hnf4a 
(1.2e-9) 

TGF- signaling 
(0.002, 15) 

Liver steatosis 
(0.003, 41) 

Ppara 
(1.1e-7, 14) 

Estrogen receptor signaling 
(0.003, 18) 

Mechanism of gene regulation by peroxisome 
 (8.3e-4, 17) 

miR-30c-5p 
(1.9e-7, 14) 

ErbB2-ErbB3 signaling 
(0.005, 12) 

TGF- signaling 
(9.7e-4, 16) 

TO-901317 
(4e-7, 14) 

 



Table 2. Top ten transcription factors extracted by ISMARA processing comparing 
DDT and Control. [HCP] corresponded to the gene of the Motif name having the 
strongest (absolute value) coefficient of Pearson; Motif logo is associated to the HCP 
gene ; Profil correspond to the biochip location with the high activity of the motif ; 
Potential liver target are extracted from supplementary file 5. 
 

Motif info Z_value Potential liver target 

MAX_MYCN 
[MAX] CT 
GAGCACGTGGT 
 

4,13 Esra_Esrb, Sox8, Fasn, Fabp5, Slc2a5, Pdp2 genes 
Lipid, triglyceride, acetylCoA synthesis process 
Bile acids, fructose transports, androgen R activity, pyruvate DH 
complex, glucose transporters, polyamines reactomes 

HOXB7 
[HOXB7] DDT 
TAAT 

4,07 Esrg, Nr4a1_Nr2f1 genes 
IFN process, NFKB pathway 
Apoptotic cleavage reactome 

CDH1_PML 
[PML] DDT 
CCGCCGCCGC
TGCCGCCGC 

3,10 Ppard, Hnf6 genes 
EGFR, JAT/STAT, choline signallings 
MET, insulin, NFKB, pathways 

YY1_YY2 
[YY1] CT 
GCCATC 

2,73 Ribosomal process 
Oxygen transporter, NADH activities 
Mitonchondrial protein, respiratory electron transport reactomes  

NFIA 
[NFIA] CT 
CTTGGCA 
 
 

2,48 Nr1h4, Cyp17a1, G6pc, Fgf21 genes 
Iron chelate transport, response to methionine, to acetate, 
triglyceride biosynthesis, G6PC transport 
HNF3B, RXR/VDR pathways, programmed cell death 
Glucuronidation, glucose transport, GSH, androgen reactomes 

TFDP1_WT1_EG
R2 
[TFDP1] DDT 
GGCGCG 

2,46 Lipoprotein lipase activity, insulin/glucose interaction 
Insulin, IL6, TGFb, IFNg pathways 
ECM regulators 
TGFb/EMT, SMADs, cell cycles, insulin secretion reactomes 

HEY1_MYC_MXI
1 
[MIX1] CT 
CCACGTG 
 

2,36 Fabp5, Srm, Ifrd2, Prmt1 genes 
Spermidine, choline synthesis 
Fructose transport, ribosomal process, 
Androgen R, G2/M, FAS pathways 
Pyruvate DH, gluconeogenesis, glucose transport reactomes 

TGIF1_MEIS3 
[MEIS3] DDT 
TTGACAGG 
 
 

2,21 Foxa2_Foxa1, Nr5a2, Esrg, Pou4f3, Acss2, Ces2i, Ces2a genes 
Urea cycle, homocysteine process, GSH process 
AP1, androgen R, EGFR, HNF3B pathways 
Fatty acid b oxidation, glycoshingolipid, IFNg reactomes 

ATF4 
[ATF4] CT 
GGATGATGCAA
TA 
 

2,08 Fgf21, Chac1, Inhbe genes 
Response to methionine, GSH process, serine biosynthesis, 
lipoprotein process, rrginine transport,  
TGFb-R, iL1 , FGF-R bindings 
Amino acid process and transport reactomes 

HIC2 
[HIC2] CT 
ATGCCCACC 

1,91 Nr2f1_Nr4a1, Fgf6 genes 
Wnt signaling via JNK, P53 binding 
P38-MAPK, iL12-STAT4, IFNg, FGF reactomes,  

 



Table 3. Top ten transcription factors extracted by ISMARA processing comparing 

PMT and Controls, sorted by z_value. HCP corresponded to the gene of the Motif 

name having the strongest (absolute value) coefficient of Pearson ; Motif logo is 

associated to the HCP gene ; Profil correspond to the biochip location with the high 

activity of the motif ; Potential liver target are extracted from supplementary file 7. 

Motif info Z_value Potential liver target 

MAX_MYCN 
[MAX] CT 
GAGCACGTGGT 

3,74 Fasn, Slc2a5, Pdp2 genes 
RNA process, IFNb production, Lipid synthesis process 
Fructose binding, IL1, IGF1, HIF1pathways, p53 effectors 
Pyruvate DH complex, diabetes pathway reactomes 

ZFP110 
[ZFP110] CT 
TAGGGTTTCTCT
CCAGTATG 

3,03 Response to retinoic acid, glycogen process 
WNT/Ca2+/GMP signalling 

WRNIP1_MTA3_
RCOR1 
[MTA3] PMT 
CCTCCTCCCC 

2,80 Hexoses, glucose transports,  
ECM reactome 
Ion, amine, carbohydrates, organic acids, bile salts transports 
reactomes 

E2F1 
[E2F1] CT 
CTGGCGGGAA 
 

2,45 Foxa1_Foxa2 genes 
E2F, ATM, ERK-MAPK pathways 
Cell cycle damage reactome,  
polyamine metabolism reactome 

SNAI1_ZEB1_SN
AI2 
[ZEB1] PMT 
CTCACCTG 

2,33 Nr2f6, Foxl1_Foxo1, Foxo6, Pou4f3, Pou2f3, Bmp3 genes 
Regulation of epidermal cell, energy-proton transport, SMAD 
traduction process 
WNT/Ca2+/GMP signaling, NFAT, WNT, FGF, TNF, RXR/VDR 
pathways 
NOTCH, amine ligand reactomes 

POU1F1 
[POU1F1] PMT 
AATTCATAATTA
TATACA 

2,31 Pparg_Rxrg, Hnf4a genes 
ECM related pathways 

HSF2 
[HSF2] CT 
AGAATGTTCT 

2,22 Cyp17a1 
RNA DNA process, response to acetate 
GPX activity, ECM binding 
Sterol, aquaporins transport, alcohol oxidation reactomes 

ZBTB33_CHD2 
[CHD2] CT 
TCTCGCAGATT
T 

2,22 RNA process, ribosomal binding 
Iron responsive element binding 
mTOR pathway, Hippo signaling  

TGIF1_MEIS3 
[TGIF1] PMT 
TGACAG 
 

2,19 Foxa2_Foxa1, Hnf1b, Esrg, Pou4f3, Ces2a genes 
Choline, SAM, GSH processes, ECM signaling 
WNT, RXR/VDR, HNF3B pathways 
ECM, Lipid, GSH, sulfur amino acid metab. reactomes 

ETV1_ETV5_GA
BPA 
[GABPA] CT 
CAATACCGGAA
GTGTA 

2,09 RNA, ribosomal process, mitochondrial signal 
cMYC, cell cycle, HIF1 pathway 
p53 reactome, RNA related reactome 

 



Table 4. Top ten transcription factors extracted by ISMARA processing comparing MIX 
and Controls, sorted by z_value. HCP corresponded to the gene of the Motif name 
having the strongest (absolute value) coefficient of Pearson ; Motif logo is associated 
to the HCP gene ; Profil correspond to the biochip location with the high activity of the 
motif ; Potential liver target are extracted from Supplementary file 9. 
 

Motif info Z_value Potential liver target 

CHD1_PML 
[CHD1] MIX 
CGCCGCCGCCC
CCGC 

7,48 Ppard, Foxo6, Mycbp2, Chd2 genes 
JAK/STAT signaling, HNF3A, MET, b Catenin, NFKB pathways 
Adherent junctions reactome 

ZFX_ZFP711 
[ZFX] MIX 
GGGGGCCCCAG
GCCTCGGC 

5,84 Ppard, Foxo6 genes 
Phospholipid translocation 
TNF, p53, NOTCH, HIF1A, iL5 pathways 

MAX_MYCN 
[MAX] CT 
GAGCACGTGGT 

5,56 Essra_Essrb, Smad2, Sox8, Fasn, Slc2a5, Fabp5, Prmt1 genes 
Ribosomal process, fatty acid, triglyceride process fructose 
transport 
HIF, ECM, WNT, Androgen-R pathways 

MECP2 
[MECP2] MIX 
CCCGGAG 

5,10 Ahr, Foxo3, Foxo6, Nr4a2, Nox4 genes 
Protein palmitoylation, homocysteine process 
TNF, EGF, TGFb, ECM, WNT, Androgen-R pathways 
Sphingolipid synthesis, insulin secretion reactome 

MAZ_ZFP281 
[MAZ] CT 
GGGGGGGGGAG
GGAGGG 

4,19 Fatty acid synthesis, iron chelate transport 
HIF, ECM, MYC pathways 
Collagen, Glycolysis, glucagon, IGF reactomes 

NRF1 
[NRF1] MIX 
TGCGCATGCGCA
GTG 

4,15 Pou2f1, Foxo3, Smad4, Onecut1_Cux2 genes 
iL1, ERK/MAPK, BMP, JNK/MAPK, androgen-R pathways 
ABCA transporters in lipid homeostasis, Insulin process, 
respiration electron transport reactomes 

IRF2_IRF1_IRF8_I
RF9_IRF7 
[IRF7] MIX 
AAGGAAAGCGAA
ACCGAAAC 

3,86 Stat1, Stat2, Cxcl10, Cxcl16, Cxcl11 genes 
WNT regulation, SAM synthesis, response to IFNg 
FOXO signaling, cytokine related pathways 
Sulfur amino acid metab, Hippo, IFN, chemokines reactome 

ATF4 
[ATF4] CT 
GGATGATGCAAT
A 

3,72 Cebpa_Cebpg, Fgf21, Inhbe, Chac1 genes 
Response to methionine, regulation of lipoprotein, GSH, L-serine, 
arginine processes 
P38 signalling, AP1, iL4 pathways 
TGFb, Amino acid synthesis, IFN reactomes  

SP1 
[SP1] MIX 
GGGGGCGGGGC 

3,54 Hif, Foxo3, Ahr, Abca5 genes 
Response to iron 
NFKB, p38, HNF3B, FAS, lysophospholipid pathways 
Adherent junctions, ECM, IFN, amino ac. metab. reactomes 

WRNIP1_MTA3_R
COR1 
[MTA3] CT 
CCTCCTCCCC 

3,44 Pou3f2, Nr1i3, Pou4f1_Pou6f1, Fgf21, G6pd, Cyp17a1 genes 
Ribosomal/RNA processes, Acetyl-CoA, triglyceride, serine 
synthesis, ECM, HIF pathways 
Glycolysis, IGF, triglyceride, collagen reactomes 

 



Figures Captions 

 

Fig.1. (A) Experimental procedures; (B) Cell morphology at the end of the experiments in 

control (CT) and biochips exposed to DDT150, PMT150 and Mix150; (C) and (D) 

collected cell number and albumin production in control and treated samples after 24 

hours of exposition (72 hours of culture). The red arrows indicate the cell-free areas, *P 

< 0.05; **P < 0.01 (comparison with control, ANOVA one way; Dunnett's test). 

Fig.2. Transcriptome profiles: (A) and (B) PLS-DA score plots of all samples and CT vs. 

high-doses, respectively; (C) heatmap showing the variation in the top 5000 genes in 

transcriptome profile between CT and biochip treated with pesticides (DDT15, PMT15, 

Mix15, DDT150, PMT150 and Mix150). 

Fig.3. (A) Number of differentially expressed genes (GEGs) in biochips treated with 

DDT150, PMT150 and Mix150; (B) and (C) Venn diagram and correlation matrix 

analysis showing the correlation between transcriptome profiles of samples exposed to 

the pesticides high-doses (DDT150, PMT150 and Mix 150).  

Fig.4. Metabolome profiles: (A), (B) and (C) OPLS-DA score plots of DDT150 vs. CT, 

PMT150 vs. CT and Mix150 vs. CT, respectively; (D), (E) and (F) S-plot from OPLS-

DA analysis of DDT150 vs. CT, PMT150 vs. CT and Mix150 vs. CT, respectively 

(significantly modulated metabolites were selected based on p(corr) > 0.6, higher p[1] 

values and P < 0.05). Red and blue colors represent metabolites increased and decreased 

in treated samples. (1: tyrosine, 2: octanoic ac, 3: decanoic ac, 4: pyruvic ac, 5: glyceric 

ac, 6: fructose, 7: aspartic ac, 8: citric ac, 9: 2-hydroxybutyric ac, 10: cysteine, 11: 

allantoin, 12: glutamine, 13: valine, 14: leucine, 15: Ileucine, 16: lysine, 17: glutamic 

ac, 18: urea, 19: tagatose, 20: glucaric ac, 21: glycerol 3P, 22: A-alanine, 23: proline, 

24: ornithine, 25: lactic ac, 26: glucose) 

Fig.5. (A) Number of differentially expressed metabolites in biochips treated with DDT150, 

PMT150 and Mix150; (B) Venn diagram showing the correlation between metabolome 

profiles of samples exposed to the pesticides high-doses (DDT150, PMT150 and Mix 

150); (C) heatmap showing the variation of differentially expressed metabolites between 

CT and biochip treated with pesticides DDT150, PMT150 and Mix150 (*P < 0.05; **P 

< 0.01 *P < 0.05; **P < 0.01  

Fig.6. Results of pathway analysis performed using MetaboAnalyst software with the list of 

DEGs and discriminating metabolites: (A) DDT150 vs.CT; (B) PMT150 vs.CT and (C) 

Mix150 vs. CT. * Number of hits modulated in the pathway (1: central carbon 



metabolism in cancer, 2: glycine, serine and threonine metabolism, 3: fatty acid 

biosynthesis, 4: PPAR signaling pathway, 5: fatty acid degradation, 6: necroptosis, 7: 

insulin resistance, 8: insulin signaling pathway, 9: aminoacyl-tRNA biosynthesis, 10: 

glycerolipid metabolism, 11: Arginine biosynthesis, 12: glucagon signaling pathway, 

13: MAPK signaling pathway, 14: Glutathione metabolism).  
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