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Abstract
A novel data-driven real-time procedure based on diffuse approximation is proposed to characterize the mechanical
behavior of liquid-core microcapsules from their deformed shape and identify the mechanical properties of the sub-
micron-thick membrane that protects the inner core through inverse analysis. The method first consists of experimentally
acquiring the deformed shape that a given microcapsule takes at steady-state when it flows through a microfluidic
microchannel of comparable cross-sectional size. From the mid-plane capsule profile, we deduce two characteristic
geometrical quantities that uniquely characterize the shape taken by the microcapsule under the external hydrodynamic
stresses. To identify the value of the unknown rigidity of the membrane and the size of the capsule, we compare the
geometrical quantities to the values predicted numerically using a fluid-structure-interaction model by solving the three-
dimensional capsule-flow interactions. The complete numerical data set is obtained off-line by systematically varying
the governing parameters of the problem, i.e. the capsule-to-tube confinement ratio and the capillary number, ratio
of the viscous to elastic forces. We show that diffuse approximation efficiently estimates the unknown mechanical
resistance of the capsule membrane. We validate the data-driven procedure by applying it to the geometrical and
mechanical characterization of ovalbumin microcapsules (diameter of the order of a few tens of microns). As soon
as the capsule is sufficiently deformed to exhibit a parachute shape at the rear, the capsule size and surface shear
modulus are determined with an error of only 0.2% and 2.7%, respectively, as compared to 2-3% and 25% without it, in
the best cases (Hu et al. PRE 2013). Diffuse approximation thus allows to quasi-instantly provide the capsule size and
resistance with a very high precision. It opens interesting perspectives for all the industrial applications that require a
tight control of the capsule mechanical properties in order to secure their behavior when they transport active material.
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Introduction

A capsule is a liquid droplet enclosed within a thin
elastic membrane. Capsules are found in nature in the
form of cells or eggs, but they can also be artificially
synthesized for multiple industrial and clinical purposes
(1; 2). The pharmaceutical (3), textile (4), cosmetic (5) and
food industries (6) make a wide use of artificial capsules
to control the release of active ingredients (drugs, cells,
viruses, ...), aromas or flavors. The capsule radius is typically
micrometric, ranging from a few microns to a few tens of
microns.

Whether natural or artificial, capsules are always in
suspension in an external fluid, which subjects the capsules
to hydrodynamic forces when it flows and leads to their
deformation. The dynamic behavior of capsules is thus
governed by three-dimensional fluid-structure interactions,
in which the membrane plays a crucial role. It ensures
the protection and transport of the internal content, the
control of its potential release and the deformability of the
capsule thanks to its thinness and elastic resistance. However,
the small size and fragility of the microcapsule make the
assessment of its mechanical properties a challenging task.
Different experimental methods exist to deform micrometric
capsules and estimate the mechanical properties. For
individual cells and vesicles, micropipette aspiration is the

most used technique (7). The mechanical properties are
obtained by aspirating the particle into a micropipette at
different pressure conditions and measuring the resulting
deformation. Atomic Force Microscopy (AFM) can also be
used to deform capsules under known forces (8). For capsule
populations in suspension, more recent techniques have been
developed based on microfluidic experiments. They consist
in flowing the capsules through a microchannel in order to
apply inverse analysis techniques to the observed deformed
profiles (9; 10; 11).

In all the cases, a numerical model is needed to determine
the values of the mechanical properties. For the microfluidic
experiments, numerical simulations based on the resolution
of complex fluid-structure interactions (12; 13; 14) provide
the deformed profile of the capsules at steady-state. However,
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Figure 1. Initial configuration of a spherical capsule of radius a
in a square-section microchannel of side 2`. Longitudinal and
cross-sectional views.

a. b. c. d.

Figure 2. Numerical simulation of the evolution of a capsule,
from rest to steady-state, as it flows along the microchannel.
The capsule is shown for Ca = 0.12 and a/` = 0.9 at the
non-dimensional times Ut/` = 0 (a), 0.2 (b), 0.6 (c) and 2.4 (d).

identifying the mechanical properties of a capsule by
comparing its deformation with those obtained in the
numerical simulations remains challenging. None of the
existing studies proposed a consistent method to solve the
inverse problem.

In this work, we present a fast, accurate, self-contained
technique for inverse analysis using a data-driven method
based on the diffuse approximation (15). We focus on
experimental data obtained by flowing a microcapsule in
microfluidic square-section channel of comparable size.
The experimental data consists of the capsule velocity and
mid-plane profile at steady-state, from which we deduce
geometrical quantities (e.g. maximum extension length and
axial length) that are characteristic of it. Numerical models of
this exact problem exist (16; 13). The one by Hu et al. (13)
is used off-line to get a complete numerical data-set of the
three-dimensional steady-state shapes adopted by the capsule
inside the microchannel for a wide range of values of the
input parameters: the size ratio, which corresponds to the
capsule-to-tube confinement ratio, and the capillary number,
ratio of the viscous friction force acting onto the capsule to
the restoring membrane elastic force. A database of two-
dimensional capsule contours (cross-cuts) is obtained from
these numerical simulations along with their geometrical
quantities. The algorithm used to identify the mechanical
properties of the capsules consists of applying the diffuse
approximation method to the numerical database to deduce
the size ratio and capillary number that correspond to the
measured values of the geometrical parameters of the capsule
profile.

Materials and methods

Problem description
We consider an initially spherical capsule of radius a
flowing within a long prismatic microchannel with constant
square cross-section of side 2` (Fig. 1). The thin membrane
of the capsule is made of an impermeable hyperelastic
isotropic material with surface shear modulus GS . As the
capsule flows, the hydrodynamic forces inside the channel
gradually deform its membrane (Fig. 2). Eventually, the
capsule reaches a steady-state shape that is function of

a.

b.

Figure 3. (a) Experimental images of ovalbumin microcapsules
flowing at steady-state (10). (b) In red, their corresponding
contours captured using ImageJ; in dashed blue, the contour
identified by diffuse approximation: Ca = 0.064 and a/` = 1.02
(left); Ca = 0.082 and a/` = 0.96 (center); and Ca = 0.012
and a/` = 0.75 (right).

the constitutive law of the membrane and two independent
parameters:

• The capillary number Ca, defined as

Ca = µU/GS , (1)

where µ is the viscosity of the external liquid and U is
the mean axial velocity of the undisturbed Poiseuille
flow.

• The size ratio a/` between the capsule radius and the
channel cross-dimension.

Our objective is to obtain the value of GS , which is the
mechanical property that governs the capsule membrane
behavior.

Experimental procedure
A suspension of polydisperse ovalbumin microcapsules of
average diameter equal to 50 µm and of submicronic
membrane thickness is prepared as described in (17) and
injected into a microfluidic system by means of a syringe
pump at different flow rates. The microfluidic system
consists of a straight channel of square section, 5 mm in
length and ` ∼ 50 µm. It is fabricated in PDMS following the
procedure provided in (18; 19). The motion and deformation
of each capsule is observed with a microscope connected to
a high-resolution high-speed camera. Two-dimensional side-
view gray-scale images of capsules are obtained as they flow
in the microchannel (Fig. 3a). More technical details on the
experimental setup can be found in (9; 10).

The deformed profile of the capsules acquired experimen-
tally can be characterized by geometrical quantities that we
normalize using the channel characteristic size ` (Fig. 4).
The inverse analysis algorithm proposed here requires the
measurement of only two of those quantities:

• The maximum extension of the capsule along the
longitudinal axis Lz/`.

• The axial length La/`.

Together, they provide the information on the depth of the
parachute depth,Lp = Lz − La (Fig. 4), which measures the
concavity at the rear part of the capsule, and was shown to
relate well with the global deformation of the capsule (20).
It is, however, not appropriate to use it as one of the two
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Figure 4. Some geometrical quantities that can be measured
from the capsule deformed profile: the maximum extension Lz

along the z-axis, the axial length La and the parachute depth
Lp = Lz − La (if any).

geometrical parameters, as the errors of its estimation are
much larger than for Lz and La.

The other quantity obtained experimentally is the velocity
of the center of mass of the capsule vo. It is determined at
steady-state by measuring the position of a specific point on
the membrane on successive time frames. Three quantities
are, however, unknown:

• The membrane surface shear modulus GS .
• The capsule radius a, which greatly varies from one

capsule of the suspension to the next.
• The mean undisturbed external flow velocity U , which

is impossible to know with precision, since the flow
rate provided by syringe pumps always fluctuate a little
over time.

Equations governing the forward fluid-structure
interaction problem
The inertialess flow of the deformable micrometric capsule
along the channel is obtained by solving the Stokes equations
in the external (β = 1) and internal fluids (β = 2), together
with the membrane equilibrium equation. For the fluid
problem, let v(β), σ(β) and p(β) be the velocity, stress and
pressure fields in the two fluids, non-dimensionalized using
` as characteristic length, `/U as characteristic time andGS`
as characteristic force. The Stokes equations

∇p(β) = Ca∇2v(β), ∇ · v(β) = 0, β = 1, 2. (2)

are solved in the domain shown in Fig. 1, assuming no flow
disturbance far from the capsule (i.e. the velocity field is the
one in the absence of capsule at the inlet and outlet of the
square channel), a no-slip boundary condition on the channel
and capsule walls and the continuity of the normal load on
the capsule wall:

(σ(1) − σ(2)) · n = q, (3)

where n is the unit normal vector pointing towards the
external fluid and q is the non-dimensionalized external load
per unit area exerted by the fluids on the membrane due to
viscous traction. For the solid problem, let τ be the non-
dimensionalized Cauchy tension tensor, which corresponds
to the forces per unit arclength in the plane of the membrane.
The local equilibrium equation governing the inertialess

Figure 5. Values of Ca and a/` included in the database. The
domain where a steady-state capsule deformation exists is
delimited by the black line in the case of capsules following the
neo-Hookean constitutive law (21).

Figure 6. Values of vo/U as a function of Ca and a/`.

membrane is then

∇s · τ + q = 0, (4)

where∇s· is the surface divergence operator.

Numerical model
Eq. 2 and 4, along with the above boundary conditions,
are solved with the numerical model described in (13).
This model, hereafter referred to BI–FE model, couples the
Boundary Integral method to solve the fluid flows with the
Finite Element method to solve the membrane mechanics.
It is used to obtain an extensive database of steady-state
shapes of capsules in flow. The values of the parameters
Ca and a/`, as well as the constitutive law that governs
the capsule membrane behavior, are the input parameters of
the numerical model. The neo-Hookean law, whose strain-
softening behavior under large deformation has proven to be
appropriate to describe ovalbumin capsules (9), is presently
considered to model the membrane. The deformed profile of
the capsule at steady-state and the velocity ratio vo/U are
some of the outputs of the model.

A database of M = 137 three-dimensional steady-state
deformed capsules has been generated using the numerical
model. The different values of Ca and a/`, for which the
simulations have been computed, are shown in Fig. 5, and
their associated values of vo/U are represented in Fig. 6.
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We shall call T the set of points θi =
(
θi1, θ

i
2, θ

i
3

)
, where

the superscript i (for i = 1 . . .M ) refers to the i-th capsule
simulation, and where θi1, θi2 and θi3 refer to its corresponding
values ofCa, a/` and vo/U , respectively. The representation
of the points of T in the θ-space shows that they all lie on a
surface ST (Fig. 7). The contours of all the shapes in the
plane x = 0 have then been obtained, for comparison with
the experimental profiles. For each of them, the geometrical
quantities of their deformed profiles have been computed
and added to the database. We shall call L the set of points
λi =

(
λi1, λ

i
2

)
, where the superscript i (for i = 1 . . .M )

identically refers to the i-th capsule simulation, and where
λi1 and λi2 refer to its corresponding values of Lz/` and La/`
(Fig. 8a).

Inverse analysis approach

The inverse analysis method presented here characterizes
the mechanical behavior of the capsule membrane by
determining the value of its surface shear modulus GS ,
as well as the capsule radius a and the external flow
speed U , using two steps further described below. From the
geometrical quantities measured experimentally (Lz/` and
La/`) and with the help of the database computed using the
BI–FE model, we first use a diffuse approximation technique
to obtain the unknown values of the capillary number Ca
and size ratio a/`, which are the two independent parameters
on which the capsule deformation depends. Knowing Ca
and a/`, we then determine the velocity ratio vo/U by
interpolating the numerical results of Fig. 7. The surface
shear modulus GS is finally deduced from the values of
Ca and vo/U using Eq. 1, since the velocity of the capsule
center of mass vo is estimated from the acquired images
and the viscosity of the external liquid µ measured prior to
conducting the experiments.

Diffuse approximation

Only the two independent parameters of the problem Ca and
a/` are considered when applying the diffuse approximation
method. We shall call T̂ the reduced set of points θ̂i =(
θi1, θ

i
2

)
. From Fig. 8a, one can notice that the points of L

are inclined. To apply diffuse approximation more easily, a
rotation of -45° around the axis perpendicular to the plane
defined byL and centered on (0,0) is applied. We shall callL′
the set of points λ′i (Fig. 8b). The points of T̂ and L′ define
respectively the surfaces ST̂ and SL′ . We deduce that any
point not present in the database (λ′ /∈ L′) but lying on the
surface SL′ corresponds to admissible geometrical quantities
that may be obtained experimentally (22).

Using diffuse approximation techniques (15), we map an
arbitrary point λ′ /∈ L′ on the surface SL′ to a corresponding
point θ̂ /∈ T̂ on the surface ST̂ . The idea is to use
this mapping to estimate the unknown values of Ca and
a/` knowing the values of the experimentally measured
geometrical quantities L′z/` and L′a/`. To achieve this,
diffuse approximation makes use of a local weighted least
squares fitting that is valid in a small neighborhood aroundλ′

and is based on the points included within it (Fig. 9). Within
this domain centered on λ′, the coefficients λ′j (j = 1, 2) can

Figure 7. Points of T in the θ-space conforming the surface
ST .

a. b.

Figure 8. a. View of the points of L in the λ-space: they lie on a
narrow, elongated and tilted surface SL. b. To ease the
application of the diffuse approximation technique, we apply a
rotation of -45° around the axis perpendicular to the plane
defined by L and centered on (0,0). Lz/` and La/` thus
become L′

z/` and L′
a/`.

Figure 9. Region of the λ′-space showing an arbitrary point
λ′ /∈ L′ and its elliptical neighborhood, which includes N = 14
points λ′i ∈ L′.

be locally approximated by the expression

λ′j = p(θ)Taj =
[

1 θ1 θ2
]  aj0

aj1
aj2

 , (5)

where p is a vector of independent polynomial functions and
aj are the approximation coefficient vectors.

To approximate λ′, we weight the contribution of
the points λ′i (i = 1 . . .M ), contained in the elliptical
neighborhood, proportionally to the distance d between the
points λ′i and λ′. Distances are computed as

di =

 2∑
j=1

γj
(
λ′ij − λ′j

)2 1
2

.
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Figure 10. Weight function w(d).

The parameters γj (for j = 1, 2) are equal to 1 in the case
of a circular neighborhood, but in the present case, we used
γ1 = 1 and γ2 = 0.05 to suit the elongated shape of the
surface SL (Fig. 9).

The weight assigned to each λ′i is chosen to be

w(D) =

{
2D3 − 3D2 + 1, if D ≤ 1
0, otherwise ,

where the normalized distance D = di/δ is 0 for a point
in the center of the neighborhood (di = 0) and 1 for a
point located at its boundary (di = δ). The value of w(D)
ranges from 1 to 0, decreasing monotonically as D increases
(Fig. 10). To ensure that the system of equations (see below)
is not overdetermined, the neighborhood must include more
points λ′i ∈ L′ than the number of elements in vector
aj (i.e. N > 3 in this case). To meet this constraint, the
neighborhood is chosen to have a variable size, but to keep
its elliptical shape with fixed proportions in order to always
include N = 14 points regardless the position of λ′ in SL′ .
This is achieved by setting δ (the distance to the boundary of
the neighborhood) as the N -th largest distance of di.

To find the vectors aj , diffuse approximation uses least
squares to minimize the following function J :

J(a1,a2) =
1

2

N∑
n=1

w(dn)

 2∑
j=1

(
λ

′n
j − p(θ̂n)Taj

)2.
This results in

aj =
(
P TWP

)−1
P TWL′

j ,

where P is a N × 3 matrix containing the vectors p of the
N points included inside the neighborhood;L′j , for j = 1, 2,
are two vectors containing the N values of λ′j of the points
in the neighborhood; and W is a N ×N diagonal matrix
with the values of the weights associated to each point in the
neighborhood:

P =


p(θ1)T

p(θ2)T

...
p(θN )T

 , L′j =


λ

′1
j

λ
′2
j
...

λ
′N
j

 ,

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wN

 .

Once the vectors a1 and a2 are known, θ̂ can be computed
by

θ̂ = A†X,

where

X =

[
λ′1 − a10
λ′2 − a20

]
, A =

[
a11 a12
a21 a22

]
andA† is the Moore-Penrose pseudoinverse ofA.

Interpolation
The diffuse approximation allows us to estimate the values of
Ca and a/` for any arbitrary point λ′ /∈ L′ but the quantity
v0/U remains unknown. To estimate it, we apply a Delaunay
triangulation on ST and identify the triangle corresponding
to θ̂ by projecting it onto ST . The velocity ratio v0/U is
obtained by doing the weighted average of the values of
v0/U at the three vertices of the triangle (23). The weights
are the ratio between the area of the subtriangle formed by
the projected point and two vertices of the triangle and the
area of the entire triangle.

Results

Validation of the method for an ovalbumin
capsule
By way of illustration, we estimate the values of Ca, a/` and
vo/U for the ovalbumin microcapsule depicted in the middle
of Fig. 3a. The input geometrical quantities required by the
method are the ones measured using the software ImageJ:
Lz/` = 2.14 and La/` = 1.81. The resulting output values
provided by the inverse analysis method are Ca = 0.082,
a/` = 0.96 and vo/U = 1.29. Since this case was not part
of the database, we deduce the corresponding numerical
contour by weight-averaging the contours of the N = 14
neighbors. The superposition of the experimental image
with the estimated numerical contour is shown Fig. 3b.
The very good qualitative correspondence of the measured
and predicted capsule profiles is consolidated by the mean
distance between both sets of points (i.e. the Hausdorff
Distance normalized by a), which presently is 0.066. This
validates the use of the diffuse approximation method for
mechanical identification.

Error estimation in the entire parameter space
An algorithm has been designed to assess the accuracy of
the solutions θ provided by the method. A series of M test
sets L∗i , for i = 1, . . . , 137, has been generated in such a way
that L∗i = L − {λi}. For each test set L∗i , we thus remove a
point λi that emulates an experimental result. By applying
the described method, θ = (Ca, a/`, vo/U) is obtained. It
is expected to have the same value as θi ∈ T . The relative
errors between θ and θi are computed as

εij =

∣∣θj − θij∣∣
θij

,

with j = 1, 2, 3.
An overview of the resulting relative errors is provided

for each parameter in Fig. 11 by heat maps. The errors are
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(a)

(b)

(c)

Figure 11. Heat maps of the relative errors ε, as a function of
Ca and a/`, when estimating (a) Ca, (b) a/` and (c) vo/U . The
region to the left of the dashed black line indicates capsule
stretch ratios Λ ≤ 1.04.

generally higher along the borders of the domain than in the
central region, especially for Ca. Previous studies showed
that the identification method is only robust for sufficiently
deformed capsules (10; 20). They based the criterion of
reliability of the method on a global capsule stretch ratio
Λ = P/2πa, P being the perimeter of the deformed capsule

profile and 2πa the capsule perimeter at rest. They choose
Λ > 1.04 as criterion (dashed black line in Fig 11).

If we only consider the cases that respect the criterion, we
find mean relative errors equal to ε̄1 = 2.7%± 4.1% for Ca,
ε̄2 = 0.2%± 0.1% for a/l, and ε̄3 = 0.2%± 0.2% for vo/U
(despite the notations, one must note that the errors cannot be
negative). We thus find that the errors are ten times smaller
on a/` and vo/U than on Ca.

Discussion
The high correspondence between the capsule contour
measured experimentally and that identified from the
numerical simulation using diffuse approximation (e. g.
Fig. 3b) indicates that it is a very efficient technique
to identify the mechanical properties of micrometric
deformable capsules.

The mean error values indicate that the method is able to
retrieve the unknown values of the microcapsule size a (from
a/l) and mean flow velocity U (from vo/U ) with a precision
well below 1%. As for the value of the surface shear modulus
GS of the very thin microcapsule membrane, it is determined
with a precision below 3%, which is remarkable for such
small objects. The final precision on the determination ofGS
will additionally depend on the precision of the measurement
of the viscosity µ of the suspending fluid, which is likely to
be within a few percent (20).

The present results provide very interesting insight on
the limit of the microchannel identification method. They
show that the reliability criterion based on the global capsule
stretch ratio Λ is very relevant. The advantage is that Λ is a
quantity that can be determined from the images acquired
experimentally and can thus provide an indication on the
level of deformation of the microcapsule membrane. The
limiting value was defined as Λ = 1.03 for Hu et al. (10),
which was corrected to Λ = 1.04 by Gubspun, Gires et
al (20). Fig. 11, on which the lines Λ = 1.04 have been
added for indication, shows that a good accuracy is reached
even for confinement ratios 0.70 ≤ a/l ≤ 0.85. No such
results were obtained in the previous studies, because the
microcapsules are too little deformed in the range. The
diffuse approximation method thus allows to greatly extend
the domain of validity of identification.

There is only one zone where the identification method
leads to high errors even though the criterion is satisfied:
a/` ≥ 1.1 and Ca ≤ 0.03. It is firstly caused by the intrinsic
very low value of the capillary number in this region: small
variations in the estimation of Ca lead to greater relative
errors, especially in the Ca-range [0.005, 0.04]. Another
cause is the abrupt changes in capsule deformed shapes that
may happen for small increments of Ca when it is smaller
than 0.02. Indeed, the capsule may not have a parachute
shape (Lp = 0) for the very small values of Ca. The large
elliptical neighborhood (with N = 14) thus contains the two
kinds of deformed capsule profiles, some with a parachute
and others without, which greatly impairs the identification
precision.

When compared to previously developed inverse analysis
procedures based on microfluidics (9; 10), much lower
errors are currently found with the diffuse approximation
technique. As soon as the capsule is sufficiently deformed,
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the capsule size and surface shear modulus are determined
with an error of only 0.2% and 2.7%, respectively. Hu et al.
(10) detemined these quantities with an error of 2-3% and
25% in the best cases. Similar precision on the determination
of mechanical properties was found using micropipette
aspiration. Zhelev et al. (24), for instance, estimated the
error to be within 25%. Using diffuse approximation for
identification thus improves both the accuracy and reliability
of the results.

The present results have been obtained for the neo-
Hookean law, since we were interested in applying
the technique to characterize the mechanical properties
of ovalbumin capsules. The method is, however, valid
regardless of the constitutive law used and could be applied
to any artificial or natural (micro)capsule. The only challenge
to use it on cells such as the red blood cells is purely
experimental: the cells will indeed have to be flowed in a
microchannel of about 10 microns. The results will have to
be analyzed using the numerical database obtained for the
Skalak’s law (10), which has been shown to well model their
membrane deformation (25).

Conclusion

We have presented a novel inverse analysis procedure
that uses a data-driven diffuse approximation technique
to identify the mechanical properties of microcapsule
populations. This procedure is applied to the flow of
a capsule through a long prismatic microfluidic channel
of comparable size. The hydrodynamic forces inside the
channel lead to the deformation of the membrane of the
capsule, which eventually reaches a steady-state shape. The
latter depends on the constitutive law of the membrane and
two independent parameters: the capillary number Ca and
the size ratio a/`. Geometrical quantities characterizing the
capsule deformed profiles at steady state are determined from
the images acquired experimentally using a rapid camera
mounted on a microscope.

The identification method is based on the results of
numerical simulations of the fluid-structure interactions
between the capsule wall and the fluid flows, obtained off-
line. A comprehensive database of microcapsule deformed
profiles and velocity ratios vo/U has been generated with the
BI–FE numerical model described in (13) for different values
of Ca and a/`. Diffuse approximation uses this database to
efficiently estimate the unknown values ofCa, a/` and vo/U
of each capsule from its characteristic geometrical quantities
measured experimentally. Low errors are achieved over a
wide range of values of the estimated parameters, which
indicates that the method allows to determine the surface
shear modulus GS of the microcapsule membrane with a
precision below 3%. It opens interesting perspectives for
industrial applications that rely on microcapsules to transport
active material, and require a tight control of the capsule
mechanical properties to secure the targeted delivery.

Conflicts of Interest

The authors certify that they have no conflict of interest.

References

[1] Barthès-Biesel D. Motion and deformation of elastic capsules
and vesicles in flow. Annu Rev Fluid Mech 2016; 48: 25–52.

[2] Ma G and Su Z. Microspheres and Microcapsules in
Biotechnology: Design, Preparation and Applications. CRC
Press, 2013.

[3] Yih TC and Al-Fandi M. Engineered nanoparticles as precise
drug delivery systems. J Cell Biochem 2006; 97(6): 1184–
1190.

[4] Nelson G. Application of microencapsulation in textiles. Int
J Pharm 2002; 242(1): 55–62.

[5] Miyazawa K, Yajima I, Kaneda I et al. Preparation of a new
soft capsule for cosmetics. J Soc Cosmet Chem 2000; 51(4):
239–252.

[6] Gibbs BF, Kermasha S, Alli I et al. Encapsulation in the food
industry: a review. Int J Food Sci Nutr 1999; 50(3): 213–224.

[7] Needham D and Zhelev DV. The mechanochemistry of lipid
vesicles examined by micropipet manipulation techniques.
Surfactant Sci Ser 1996; 62: 373–444.

[8] Fery A and Weinkamer R. Mechanical properties of micro-
and nanocapsules: Single-capsule measurements. Polymer
2007; 48(25): 7221–7235.

[9] Chu TX, Salsac AV, Leclerc E et al. Comparison between
measurements of elasticity and free amino group content of
ovalbumin microcapsule membranes: discrimination of the
cross-linking degree. J Colloid Interface Sci 2011; 355(1):
81–88.
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