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Abstract In this paper we propose different multi-field variational for-
mulations for electrostatics and magnetostatics, which can provide optimal
discrete approximation of any particular vector field. The proposed formu-
lations are constructed by appealing to mechanics point of view amenable
to using general constitutive equations, which is quite different from elec-
trostatics and magnetostatics formulations typical of physics and electrical
engineering focusing on the corresponding global form suitable only for lin-
ear case. In particular, the formulations we propose can be combined with
mixed discrete approximations that can ensure the continuity of tangential
component of electric or magnetic field and normal component of electric
displacement and magnetic flux even for low order interpolations. The choice
of this kind is quite different from currently favorite choice of high order
finite element interpolations used for coupling electromagnetism with me-
chanics. The discrete approximation is based upon Whitney’s interpolations
representing the vector fields in terms of corresponding differential forms,
with electric and magnetic fields as one-form and electric displacement and
magnetic flux as two-form. The implementation of interpolations of this
kind is made for 3D tetrahedron elements with non-standard approxima-
tion parameters defined not only at vertices (for zero-form), but at edges
(for one-form) and at facets (for two-form). The results of several numerical
simulations are presented to illustrate the performance of different formu-
lations proposed herein.
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1 Introduction

Many applications of current interest require merging different engineering
fields, such as mechanical, electrical on civil engineering. The corresponding
multi-physics problems will have to use different fields, which are each ob-
tained by a particular solution procedure and a dedicated computer code.
The most efficient approach to such multi-physics problems is to create a
master code that allows to exchange information in real time and for every
iteration among dedicated mono-physics simulation codes. The latter was
accomplished successfully for fluid-structure interactions (e.g., [25] and [26]),
by using the partitioned solution procedure [14] that allows reusing existing
codes. This currently seems not to be possible when it comes to the coupling
of mechanics and electromagnetism, due to complete different philosophy in
representing different fields and governing global equations on either side,
with equilibrium versus global constitutive law.

Thus, the vast majority of works on coupled mechanics and electromag-
netism turned toward extending the philosophy specialized for their par-
ticular field to all the other fields computations. The current approach by
mechanics experts relies upon the standard isoparametric finite element ap-
proximations and the simplest case of using a scalar potential for electric and
magnetic fields [32], [33], which can accommodate, for instance, piezoelec-
tric or piezomagnetic devices. This type of approach is further extended to
higher order approximations, large displacement and homogenization tech-
niques always using the finite element approximation for all fields; see [15],
[40] and [27], among others.

A completely different approach is followed by experts in physics and
electrical engineering, with a typical attempt by [43] where the formalism
most suitable for electromagnetism is generalized to also describe mechanics.
The theoretical formulation of this kind does not consider the local fields,
but rather the global quantities set within the corresponding mathematical
structure, often called De Rham’s complex [7]. The discrete approximation
based on such formulation is rather different than standard finite element
method [48], and is based on differential forms and exterior calculus.

The mathematical foundation of that kind of discretization is found
in [34] or [4] and one of the first applications appears in the literature un-
der the name of edge elements, allowing to calculate variables on edges for
a particular kind of problem in electromagnetism, the calculation of eddy-
currents [8]. The step forward in the right direction is offered by Whitney’s
elements with a more complete choice of unknowns where not only edges,
but also facets and volumes could allocate variables [9]. Since then, several
works explored linear tetrahedron edge elements, [1] or [11], prisms, pyra-
mids and hexahedron linear elements [13], [17] or [34], and more recently
some higher order elements [30], [46], [45] or [47]. However, many of these
elements cannot be fully invariant (as verified for hexahedral elements im-
plementing Whitney’s discretization) for distorted meshes as revealed by
the basic 3D patch test [48], [29]; the proof is given in [34], where only
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hexahedral element produced by affine isoparametric transformation can be
used; in other words, the element cannot be used for a degenerated paral-
lelepiped. We note in passing that such condition is always fulfilled for linear
tetrahedron, since the transformation is always affine, unless the Jacobian
is negative or zero.

The cell method proposed in [39], [2] or [43] makes use of different geo-
metrical entities in every element, such as vertices, edges, faces and volumes
in order to provide the best locations for unknown parameters. The advan-
tage of such an approach is its ability to preserve tangential and normal
continuity for electric and magnetic variables. This is achieved by cell-based
discretization of the global governing equations transforming continuum op-
erators into discrete operators over each cell. The choice of discrete approxi-
mation and element connectivity is based entirely on the complete topology
of the problem and the connections of the different elements between them.
The main disadvantage from standpoint of coupling is the end product
of discretization, which is equivalent to the global constitutive equations,
which would be very difficult (if not impossible) to generalize to any other
but linear case. In addition, this method complicates meshing since it re-
quires perfect match between the primal and the dual mesh when allocating
the dual variables [38].

For eventual coupling with mechanics it is important to note that the
cell method approach is in contrast to the standard finite element philoso-
phy. The latter relies upon the weak formulation of (equilibrium) equations
to provide the corresponding discretization [48]. Solving such weak form
does not guarantee that the equation is ensured at every point of the do-
main, but rather in average sense in a partitioned volume. All unknown
variables, called degrees of freedom, are placed at nodes; inside the element
the discrete approximation is continuous and offers an important advantage
of partition-of-unity to make sure the basic case (patch test) is verified.
Yet, the finite element approximation typically does not offer the continuity
of field derivatives across element boundaries, which was the main obsta-
cle of extending the low-order finite element approximations to electric or
magnetic fields.

Similarly, the cell method approach is not easily adapted to mechan-
ics with several attempts to recast all fields within such unified framework
typical for physics, such as [10] or electromagnetics code like GetDP [12].
Namely, despite similarities in theoretical formalisms, the mechanics primal
and dual variables are second order tensors as opposed to electric, magnetic,
and thermal fields where they remain vectors. Attempts to generalize the cell
method approach to solve the problems with more complicated mechanics
models have not been recorded, and furthermore, they seem very difficult to
imagine. Namely, plasticity coupled with electric field [32] requires precise
localization of the plastic zone that keeps changing throughout computa-
tions, making a global constitutive equation impossible to describe. How-
ever, a few authors have used the exterior calculus formalism to adapt it to
finite element method philosophy such as [3]
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As for theoretical aspects of the problem, the electromagnetics commu-
nity also evaluated a potential energy-type of variational formulation [35],
[20], [21], which is no different from mechanical approach in, for instance, [22].
Alternatively, other variational formulations explored concern the comple-
mentary potential energy approach, which dual to the former variational
form, as suggested in [36], [37] or [16]. These latter works are again cast in
the standard format of electro-engineering with the formulation trying to
bracket the error estimates in term of the constitutive equations. Interest-
ingly enough, one type of error estimates for mechanics proposed in [28] also
considers the same approach where the potential energy based formulation
gives the upper limit while the complementary gives the lower limit.

The main motivation for this work is seeking the optimal formulation
for coupled electromagnetic and thermomechanical fields, which will be
amenable to the material and mechanics point-of-view and the finite element
discrete approximations that can be combined with existing approaches and
be integrated within the standard computer code architecture. This is espe-
cially the case when considering a currently very important issue of seeking
to open up the path toward exploration of the engineering materials which
can be heterogeneous or experience hardening and permanent damage with
microscale point-of-view that proved very successfully in mechanics (e.g., [5]
or [23]). This approach is in contrast with the cell method, where variables
are discretized by means of global operators as opposed to the localization
that requires phenomena like plasticity or damage. In contrast to the current
tendency to introduce higher order approximations, the discrete approxima-
tions proposed in this work are low-order (linear), which makes them more
suitable for heterogeneous materials and inelasticity regime where the so-
lution in general is not smooth. In addition, we recast the novel approach
to electrostatics and magnetostatics where the constitutive equations are
explicit part of the formulation to be easily generalized to more complex
behavior like ferroelectricity. We also recast the discrete approximation in
the manner that can be combined with finite element codes, by exploiting
the partition-of-unity property of the finite element discretization.

The outline of the paper is as follows. In Section 2, two points of view for
electromagnetism are presented and the differences are discussed. Different
variational formulations, both primal and dual, are introduced in Section 3
in the spirit of mechanics with their corresponding weak forms. The discrete
approximations are constructed in agreement with Whitney’s elements, and
details are presented for tetrahedron element in Section 4. In Section 5,
several validation tests and examples are calculated by using the proposed
formulations and implementation in a research version of FEAP- Finite
Element Analysis Program. Finally, some concluding remarks are stated in
Section 6.
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2 Electrostatic and magnetostatic phenomena
2.1 Classical formulation

The traditional description of the electromagnetic phenomena is defined
by four laws first proposed by Faraday, Ampere and Gauss. These equa-
tions feature electric field E, magnetic field H and their dual fields, electric
displacement D and magnetic induction B. They can jointly be cast in
terms of four differential equations, known as Maxwell’s equations for elec-
tromagnetism [5]. The latter provides, from the macroscopic point-of-view,
an adequate description for many electromagnetic phenomena observations
on how these fields evolve in the presence of the free electric flux J and free

electric charge density pg:

VxFE=-B
VxH=J+D
_ (1)
V-D =p}
V-B=0

These equations are enough to describe a pure electromagnetic prob-
lem. However, if mechanics are involved, the definition of Lorentz’s force
must be added. One can also recover from (1)z and (1)3 the condition on
the conservation of electric charge that constraints p{; and J for coupled
electromagnetic case according to:

pr+v-J=0 (2)

Considering static case for the sake of simplicity, with negligible rate
of change of electric and magnetic fields and time derivatives B, D and
p{; equal to zero, we uncouple electrostatics and magnetostatics; thus, one
obtains two separate problems, one for i) electrostatics:

VxE=0
{V Py 3

and another for ii) magnetostatics:

V-B=0 @

{VXHJ
Moreover, for static case the result in (2) simplifies to V - J = 0, placing
a constraint on the electric flux, treated as a source term in magnetostatic
formulation. Thanks to this kind of weak coupling, each of these problems
can be handled independently from one another. For clarity, we first focus on
electrostatics, and then briefly revisit magnetostatic case in order to point
out the prominent differences.
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One has to deal with two diametrically different constitutive behaviors
for electric field in terms of conductors versus insulators. The key difference
between those two types of behavior is that the electrons for the conductors
are free to move, whereas for the insulators the electrons remain bounded
to their nucleus [5], [23].

In conductors, the field of interest is electric flux J, which measures the
flow of electrons through a surface. For the simplest linear relation between
the electric field and the electric flux defined for conductors through the
conductivity coefficient -, we can write:

J=+E (5)

which indicates that the electric flux will clearly go in the same direction as
the electric field. For perfect conductors, the conductivity coefficient v — oo
whereas for perfect insulators v — 0. Most of all real materials fall in-
between these two extremes. Namely, an insulator like glass has free electric
flux, although it remains many orders of magnitude lower than the one in a
conductor such as copper; for instance, the two materials we just compared
have a relation of conductivities of the order yeon & 10275 [31]. Thus, the
flux in an insulator material is simply considered as zero.

In fact, insulators react to electric fields by orienting dipoles, deformed
atoms or molecules with two opposite charges held in place by molecular
forces. Thus, these charges are not free to move as it happens with con-
ductors. The orientation of dipoles is measured by the polarization vector
P. Dielectric materials are a particular case of insulators where the polar-
ization is proportional to E. Therefore, the electric displacement definition
can be written as:

D:€0E+P:€0(I+XG)E:€E (6)

with €y as the permittivity of the vacuum, € as the permittivity of the
material, and I as the second-order identity tensor.

In Fig. 1, we illustrate the behavior of conductors and dielectric materials
with respect to an applied electric field. For conductors, the electrons move
through the domain in the direction of E. For the insulator, the dipoles
inside the domain are also oriented in the same direction, but net charges
appear only at the boundaries, due to cancellation of opposite charges inside
the domain [19].

In contrast to the complexity of electric behavior placed between two
extremes of conductors and insulators, the magnetic constitutive behavior
is simpler and it does not have a conductor analogy. For this paper, only
diamagnetic materials are taken into account, where the magnetization M
is proportional to H. Thus, we define the magnetic induction through linear
constitutive relation:

B=po(H+M)=po(I+xy)H=pH (7)

with po as the permeability of vacuum and p as the permeability of the
material.
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Fig. 1 Different behavior of conductors (left) and dielectric (right) electric ma-
terials.

2.2 Proposed theoretical formulations

In this section we present our main objectives of generalizing the electro-
magnetics formulation for the case that can include heterogeneous materi-
als, and further account for combined constitutive behavior with mechanics.
Hence, we seek to establish a clear analogy with mechanics point-of-view in
formulating the boundary value problems in electrostatics in the vein of the
mechanical problem formulation. Consider a domain 2, with two different
parts distinguished: the interior of domain (2 and its boundary I". In addi-
tion, the boundary can be separated into two different parts, depending on
the primary or dual variable imposed. For electrostatics, on I'yy we impose
the essential or Dirichlet boundary condition through scalar electric poten-
tial V, and on I'p the natural or Neumann boundary condition through
the normal component of D [5], [23]. The complete set of equations that
describe the electrostatic phenomena for such domain can then be written
as follows:
Field equations:

Kinematics E=-VV

Constitutive D =¢€FE in 2

Equilibrium V-D= pf; (8)
Boundary conditions:

Essential BC V=V - in I'y

Natural BC D-n=D inlp

We indicated in the first equation in (8), that a “kinematics” equation links
V and E in the equivalent manner as displacements are related to strains
in mechanics. This equation automatically implies the electrostatic version
of Faraday’s law (3);. The second equation in (8) shows the constitutive
relation between E and D through the permittivity tensor, in a similar way
that stresses are related to strains through the elasticity tensor. The final
equation balancing the divergence of D with p{; corresponds to mechanics
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equilibrium equation relating the divergence of the stress tensor with the
volume force.

A complementary problem formulation in terms of dual variables can
also be posed. It will be illustrated for magnetostatics by using magnetic
vector potential A, equivalent to Airy’s function for the stress tensor o.
The corresponding complementary single-field formulation can be written
as:

Field equations:

Compatibility B=VxA

Constitutive H=vB in 2

Equilibrium VxH=J (9)
Boundary conditions:

Essential BC A=A B in Iy

Natural BC nxH=J in 'y

where v = p~! is the reluctancy of the material. The key difference from
related problems in mechanics is the choice of vector potential and the
curl operator instead of the gradient to define B . Such a choice allows to
automatically satisfy (4)s.

3 Variational formulations

In this section, three variational formulations of the electrostatic problem
are presented providing the basis for the corresponding choice of the finite
element discrete approximation. The first two are single-field formulations:
one is based on total potential energy with scalar potential V' as the main
variable, and the other is based on the total complementary potential energy
with D. A mixed formulation is proposed as well based on the Hellinger-
Reissner principle for mechanics adapted to electrostatics with two indepen-
dent variables V and D. A magnetic formulation is provided in the last place
to highlight the analogy between the complementary energy formulation of
electrostatic and the corresponding formulation for magnetostatics.

3.1 Single field electrostatic formulation with scalar potential

The simplest approach for the electrostatic problems is by using a single
independent field as electric scalar potential V' [21], [44]. The remaining
fields are obtained by using the strong form equations (8); and (8)3. Namely,
the weak form of balance equation in (8)3 leads to variational formulation
of the electrostatics:

1 —
HV(V)/Q{QEVV~VVVp{;} dQ+/F VDdr (10

where D is the electric displacement imposed at the Neumann boundary.
Any trial functions must satisfy the Dirichlet boundary condition with
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V| ry = V', which should be applied at least at one point in order to guaran-
tee a unique solution. Minimizing this potential leads to the corresponding
variational equation:

GV (V;V*) = [ VV*.eVV d2 — / V*pg dn + V*DdIl =0 (11)
Q Q I'p

where V* is the variation of V', which should take zero value at the Dirich-

let boundary V*| = 0. The standard choice of finite element discrete

approximation is suitable for this variational formulation [32].

3.2 Hellinger-Reissner hybrid formulation for electrostatics

It is possible to further weaken one of the equations in (8) in order to estab-
lish the variational formulation of the problem by using two independent
fields, V and D. This is the Hellinger-Reissner type of variational formu-
lation [44], for which the mechanics equivalent is obtained featuring the
complementary energy, which can be written as:

™ v.p) - |

1 _
{—e—lp.D—vv-D—Vpg} dQ+/ vV Ddr
19 2 I

GT)
Keeping these two fields V' and D independent allows to improve represen-
tation of the electric displacement field with respect to the one obtained
from the single field formulation in (10) above. The variational equations
corresponding to this potential can be obtained as:

GYyR(V,D;V*) =~ [ VV*-DdR— | V* pl dn
2 2

+/ V*Ddl=0; (13)
I'p
Gp* (V,D; DY) :=—/D*-e—1Dd9—/D*-VVdQ=o

2 2

The first variational equation recovers the strong form of the Gauss’ law
in (8)3 while the second recovers the constitutive relation in (8)s.

3.8 Complementary energy dual formulation with vector potential for
electrostatics

With this type of formulation, we use two different vector potentials, U
and S, in order to fully define the electric displacement field [21], [37], [36].
Namely, we compute D as the following decomposition:

D=S84+VxU (14)
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This decomposition allows to replace both potentials in (3)2 and then
treat (3); in weak form. It is possible to establish the variational formulation
for this total complementary potential energy:

HD(U,S):—/

{1 e_IVxU-VXU—&—}e_lS-S
o2 2

(15)

+€e'VxU-S} d!2+/

VS~ndF—/ nx E-UdI
Iy

Iy

Computing the corresponding variations with respect to the potentials,
the weak form can be obtained as a result:

Gh(U,8;U*) := 7/

VXU*~671VXUdQ—/VXU*~€715dQ
0

n

—/ nxE-U*dl=0;

I'y

GY (U, S;S*) ::—/ s*flscm—/ S* . eV x U dN
2 2

+/ VS* ndl'=0
I'y

_ _ (16)
with E and V as the imposed electric field and electric scalar potential.

3.4 Complementary energy dual formulation with single vector potential
for magnetostatics

The dual formulation of this kind is yet easier to construct for the magne-
tostatic problem defined in (9), since no source term will appear [35]. The
complementary energy variational formulation can then be written as:

HA(A):/ 1u—leA-vXAdQ—/ A-Jde+ | A-J,dIl (17)
!22 02 I'y

The weak form is obtained by minimizing this variational formulation
with respect to the single field to obtain:

GA(A; A") ::/VxA*~p_1V><AdQ—/A*-Jd.Q+ A*.J,dr
2 2

I'y
(18)
where A™ is the corresponding variation.
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4 Finite element discrete approximation with Whitney’s element
basis

The main goal of Whitney’s elements is to construct discrete approximation
of vector fields by using differential forms [6]. These differential forms, yet
called i-forms (where i = 0,1,2 or 3), are linear functionals of vector fields
which can be used to fully define the particular vector field. The unknown
variables will the be the values of these differential forms, to be used as
the finite element method degrees of freedom. The main advantage of using
this kind of approximation is the ability of constructing them in somewhat
intrinsic manner, regardless of particular choice of reference frame. Another
big advantage of using differential forms is that every degree of freedom re-
mains a scalar, even though the discrete approximation represents a vector
field. Thus, the interpolation functions ought to be of vectorial character,
which allows to preserve boundary conditions in a natural way. More impor-
tantly, such discrete approximation can be used to enforce the corresponding
continuity across element boundary and thus improve the result accuracy.

The preferred formulation in mechanics in terms of vector fields [22],
can be recast in terms of differential forms. The latter are linear functionals
of the vector field, which are associated with both geometric and physi-
cal entities. Thus, for the discrete approximation constructed by the finite
elements, we can choose:

— O-form associated with vertices, which preserves point continuity.
— 1-form associated with edges, which preserves continuity of the electric
field tangential component:

ei:/CE-dl (19)

where dl is the vector associated to element edge C.
— 2-form associated with faces, which preserves continuity of the electric
displacement normal component over the facet:

di:/D-ndS (20)
S

where n is the unit exterior normal and dS is an infinitesimal element
of the surface.
— 3-form associated with volumes.

In order to recover the continuum vector fields from differential forms,
special interpolation functions are used. These functions are scalars for 0-
and 3-forms, and vectors for 1- and 2-forms. In order to reconstruct a par-
ticular field, a linear combination of all the corresponding geometric entities
is established for every element. For instance, for the voltage, the electric
field and the electric displacement:

Ny Ne ny
V:ZONava; Ezleaea; D:ZZNada (21)

a=1 a=1 a=1
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where N, ‘N, and 2N, are respectively, 0-, 1- and 2-form interpolation
functions for node, edge and facet a, whereas n, is the number of vertices,
ne is the number of edges and ny is the number of facets per element.

The choice of differential forms is especially suitable for describing a
unified mathematical structure of Maxwell’s equations in terms of the ex-
terior derivative (e.g. [4]). Here, we use an operator defined for each i-form
to obtain (¢ + 1)-form, which is expressed as follows:

O-form >  I-form 5  2form >  3-form (22)

We show in Fig. 2 operators acting on the different i-forms and the rela-
tions among them. Such a scheme is referred to as Tonti’s diagram, e.g. [10].
The exterior derivative for electrostatics with scalar potential formulation
reduces to:

V P 3
D=¢cF
D

1 E — 2

Fig. 2 Tonti diagram for electrostatic problem with scalar potential.

The use of differential forms can be represented by discrete approxima-
tion by using Whitney’s finite elements (e.g. [9]), which have the advantage
to unify the traitment of line, surface and volume integral in the sense of
partition-of-unity. In Fig. 3, we show the isoparametric reference element
used for tetrahedral mesh, where we indicate the different locations of nodes,
edges and faces and their corresponding orientations for Whitney’s element.
There are four vertex, six edge and four facet unknowns for each Whitney’s
tetrahedral element. Center of the reference frame {,7n,(} is located at
local node number 1 and each side starting at this node is of unit length.

The interpolation functions for O-form are:

M=1-¢-n—-C; "Ma=¢; “Mg=n;  ONi=¢ (23)

where the subscript a = 1,...,4 is the local number of node and the super-
script “0” denotes the corresponding index for a particular i-form. Each of
these interpolation functions take unit value on their corresponding node
and 0 at all other nodes, which make the nodal value at every node indepen-
dent of the others. This will guarantee the field continuity between adjacent
elements; Finally, these shape functions are differentiable inside the element
domain, and guarantee the partition-of-unity property:

My

SONEm Q=1 V(En.Q) €2 (24)

i=1
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e

Fig. 3 Locations of unknowns at nodes, edges and facets in a tetrahedral element
and the corresponding positive orientations, with the reference frame placed at
node 1.

This isoparametric element is used to construct the different tetrahedron
elements in the mesh by distorting the reference element. Interpolation func-
tions for O-form are used to create the mapping from reference coordinates
to physical coordinates through:

Ty

.T(g, m, C) = Z O-A/i (57 m, C)xz
1=1
2(€) = "Ni©z = y&n. Q)= "Ni&n.Qu  (25)
i=1 i=1
2(&m,0) =Y "Ni6n, )z
=1

where x;, y; and z; are the corresponding physical coordinates for every el-
ement node. The isoparametric mapping of element geometry can be char-
acterized by the corresponding Jacobian matrix 7, which can be written

* [Ox Oy 0z ]
B0 [ ta ) (2= 2)
J= 377 37] 377 = | (w3 — 1) (y3 —w1) (23 — 21) (26)
oxr 0y 0z (x4 — 1) (Ya —y1) (24 — 21)
a¢ a¢ ¢

We note that the Jacobian matrix for a tetrahedron element has constant
entries that depend only on the element nodal coordinates. The Jacobian
matrix provides direct connection between the gradients with respect to
natural and the one with respect to physical coordinates; denoting the latter
as V, and the former as V¢, we can easily show (e.g. [22]) that:

Ve=3"'Ve (27)

In order to create the gradients of the O-form interpolation functions
defining the electric field from scalar potential, we make use of this new
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definition of the nabla operator in order to write the corresponding discrete
approximation:

OBi=3'Ve'N; (28)

where °B; is the gradient of 0-form interpolation functions for node i.

The edge interpolation functions are constructed as the linear combina-
tion of O-forms and its gradients, resulting with vector values. For example,
for an edge a between nodes i and j, such a vector base function is defined
as:

W= Wi = 0 (NB, — B )

where two different notations are adopted, referring to either edge a or to
the edge from node 7 to node j, which illustrates the edge orientation more
clearly. The incidence coefficient ¢, takes values either +1 or —1, depend-
ing on the agreement between the edge orientation on the reference element
(see Fig. 3) with the corresponding edge in the global mesh. The conven-
tion sign for global edge orientation is taken arbitrarily. In this work, the
unique global orientation is obtained by following the global node numbers:
for an edge between nodes with global numbers i and j, the positive edge
orientation goes from i to j when i < j and negative in the opposite case.
Thus, it follows that lNiHj =1 i

By following this convention, we can write explicitly 1-form interpolation
functions for the six edges of a tetrahedron element:

Wi= W= i (1-1-CEO" ;
No=WNiss=gsi ' (p1—€6-Cn)'
N3 ="WNisa=¢s 5 (GCG1—E—n)'

(30)
INy=No3 =9 jfl(—%fao)T ;
1-/\[5 = 1-/\[2—>4:SD4 j_1 (C,Oaf)T ;

N ="Nisu=p65 " (0,~¢n)"

As depicted in (22), the exterior derivative of 1-form is the curl operator
and consequently, the derivation of the curl of these 1-forms 'C, is needed.
This definition is obtained by applying the curl operator to 'AN,:

1Ca = 1ciﬁj =V, X 1.’\/1'%]‘ = j71V5 X 1./\/1'%]‘ = 2, OBi X OBj (31)

where ¢, as the incidence coefficient and it is defined as for the 1-form.
This convention is in agreement with the right-hand screw rule since the
resulting flow is solenoidal with respect to edge a.

The facet interpolation functions are a combination of 0-form and the
cross product of the gradients. Facet a is defined with positive orientation
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if the set of nodes {i, j, k} defines the flow normal to the facet by the right-
hand rule. The corresponding vector base functions are constructed as:

No=Nissjok 22(OMOBJ’ x OBy + ON; "By x °B;

(32)

+ ONk OBi X OBj)
These the facet interpolations can be described as the combination of 0-
forms and curls of 1-form, following the idea of the mathematical structure
to define (¢ + 1)-forms:

2Na = 2Ni—>j—>k = OM lcj—>k + Ojvj 1ck—>i + OA[j 1Ck—>i (33)

4.1 Whitney’s element implementation

The finite element code chosen for this numerical implementation is FEAP
[42]. The mesh is prepared in pre-processing to allocate all kinds of variables
in different kinds of nodes which leads to the enhancement of the standard
computer architecture not with respect to the choice of degrees of freedom
but with respect to the corresponding shape functions (using different shape
functions for different kind of nodes).

@ On vertices (1-4)
B On edges (5-10)
3 n % Onfaces (11-14)

Fig. 4 Schema of the location of the nodes depending on their location on a
regular 15-node isoparametric tetrahedron.

Taking advantage of the 14-node isoparametric elements, the nodes are
classified into vertex, edge and facet nodes as sketched in Fig. 4, where
the numbering of the local nodes for the isoparametric tetrahedra is also
displayed. Depending on the geometrical entity, the corresponding degree
of freedom is put on nodes 1 to 4, 5 to 10 or 11 to 14. This ensures the
continuity of these variables among elements. For the chosen Whitney’s
interpolations, the position of the nodes does not matter as long as the
node is placed on the corresponding edge or facet.
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4.1.1 Implementation of single-field scalar potential for electrostatics The
definition of the discrete approximations for scalar potential, put on vertices
according to [37] and [36]:

V= Z NG (x)v; (34)

where v; are the degrees of freedom or unknowns that the code is going
to calculate. Introducing this approximation into the weak form (11), we
obtain the residual corresponding to the scalar potential, which is written
in matrix form:

4
RX::/ °B] € °B; v d(lf/
RO

i=1 Q
a=1,2,34

ONa pl d9+/ N, D drI";
I'p

(35)

By consistent linearization of this residual, we obtain the corresponding
tangent matrix, which can also be written in matrix notation:

IC[‘[b:—/ °B! € °B, d2; a,b=1,2,3,4 (36)
2

Note that this matrix and the residual pertain only to vertex nodes a
and b, whereas they are equal to zero for edge and facet nodes. The central
problem to solve for the unknown nodal values of scalar potential can be
written as:

Kv=f (37)

where f is the force vector. For this formulation, each entry of this vector
is defined as:

fa:—/ ONG Pl d(2+/ N, D dr (38)
(%}

I'p

4.1.2 Implementation of Hellinger-Reissner formulation The same method-
ology is taken for Hellinger-Reissner formulation, this time introducing a
new approximation for the electric displacement:

14
D~ °Ni(z)d; (39)

1=11
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where d; are the degrees of freedom associated with D. Introducing this
approximation in (13) the corresponding residuals can be obtained:

14 4
RaD=—/ NLE Y PN dQ—/ NT S [°B; vj] 42
2 i=11 §2 Jj=1

a=11,12,13,14 ;

14

Ravz—/ﬂ °B, Y [°Nidi] dQ—/

i=11 °
a=1,2,34

ON. p) dQ+/ ON, D dI';

I'p

(40)
Then, linearizing the previous equations, the problem to solve is:

<{4)- )

where the stiffness matrix IC can be split into four different sub-matrices:

o (S5 .
ab —
KVP o

The entries of that stiffness matrix are:
KhP — /Q INT e 2N, AR a,b=11,12,13,14
Khv :/ﬂ NT OB, A2 a=11,12,13,14; b=1,2,3,4; (43)
Kyp = /Q °B! 2N, A2, a=1,2,3,4; b=11,12,13,14
And the force vector f for node a is:

fom= [ Nopjaos [ N, DAri a=1230 ()
N I'p

4.1.8 Implementation of complementary energy dual formulation for elec-
trostatics with two vector potentials Introducing the split and separate
discrete approximations for U and S, the definition of D can be obtained
as:

10 14
D~ Z Ci(x)u; + Z 2N j(z)s, (45)
i=5 j=11

where u; and s; are the degrees of freedom or unknowns that we are going to
compute. Note that even though the potentials U and S are vectors, their
corresponding degrees of freedom (as differential forms) are scalars, since we
will use the vector-type interpolations (namely, one-forms). Moreover, the
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orientations of chosen unknown differential forms are defined by edge-curl
of 1-forms and face shape functions 2-forms.

Introducing the last definition into the weak forms above, the final resid-
uals can be written in matrix notation; namely, for D-form:

10 14
RU :/Q el et S ui d!2+/ el et Y [PN; s

i=5 2 j=11
+/ NT(mx Ey) dI'; a=5,6,...,10
I

10 14
Rgz/n NT e SN u] d(2+/g NT Y PN 8] de
=5

j=11

—/ NTp VA, a=11,12,13,14
I

(46)
Furthermore, the stiffness matrix can be split in different sub-matrices
for D-form:
(;CUbU KUs >
K= 5 ° (47)
Ko Koy
The entries of this stiffness matrix are:
KYY = —/ el et e, d; a,b=5,6,...,10
Q
KYS = —/ el et 2N, A2, a=5,6,...,10;b=11,12,13,14
; (48)
Ky :7/ NT et 1, d; a=11,12,13,14 ;b =5,6,...,10
0
Ky = —/ INT e 2N, AR a,b=11,12,13,14
Q
And the components of the force vector f are defined as:
fra= / INT (n x B) dI
" (49)

f2,a=—/ 2./\f;[n‘_/dl“
I

4.1.4 Gauging a vector potential and boundary conditions for complemen-
tary energy formulation The previous formulation makes use of a vector
potential U. The rotational part of the electric displacement is obtained
from such potential. To provide a specific value of electric displacement D),
there is not a unique possibility of U, since any irrotational potential to be
added to this potential would not affect the electric displacement value, but
only act as an integration constant. This non-uniqueness can be removed if
the vector potential U is gauged. A previous work in [41] has a complete
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relation of different references on the existing methods to gauge such poten-
tial. The method chosen in this paper is the identification of a tree set. This
method is based on the topological aspect of the discretization employed to
define a set of linearly dependent differential forms, which have to be elim-
inated in order to return a unique vector potential. In the finite element
method, the removal of those variables implies prescribing the degrees of
freedom on the tree set corresponding to the edges of the tetrahedral mesh.

The details for identifying one of the tree sets are given in [18], including
a method to determine all possible tree combinations through the incidence
matrix. A tree set must contain n, —1 edges, and they cannot close a surface.
For simplicity, the value imposed in those edges is zero.

In this paper, an algorithm to select a tree set has been designed based
on a matrix that contains as many rows as edges. In each row, there are the
initial and final global numbers of the vertex nodes of the corresponding
edge. The method begins evaluating the two global node numbers of the
first row. If they are different, the edge is accepted in the tree set. Then,
the first node number is replaced by the second one every time it appears in
another matrix entry. The method is repeated for every row until the tree
has n,, — 1 branches.

Fig. 5 Tree set (continuous lines) for regular mesh. Every hexahedron represents
six tetrahedra in cubic disposition. Every point is a vertex node.

If the mesh is regular, like the one drawn in Fig. 5, a more specific and
systematic algorithm to select the tree can be used, as stated in [24]. This
algorithm starts selecting all the edges in the line defined by the intersection
of the planes y = z = 0. Then, in the plane z = 0, all the edges in y direction
that start in every vertex node of the previous line are picked. Finally, every
vertical line starting from all vertex nodes in plane z = 0 are selected as
well.
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The complementary energy usually provides superior accuracy of the
electric displacement, but presents a difficulty with respect to the standard
V-formulation in not readily providing all other fields of interest, such as
voltage potential. Moreover, an additional difficulty concerns any problem
where both Dirichlet and Neumann boundary conditions have to be im-
posed. Namely, with the chosen differential forms as unknowns, a particular
edge, the topological entity that contains the variable to solve, leads to an
ambiguous situation that it can belong to both kinds of boundary surfaces,
Dirichlet and Neumann. The difficulty pertains to deciding for every bound-
ary face which edge should take care of the Dirichlet boundary condition.
Moreover, for the remaining edge that handles the Neumann boundary, the
residual term ought to be distributed over the edges of the triangle that are
not considered in the Dirichlet boundary.

4.1.5 Implementation of dual formulation of magnetostatics with single vec-
tor potential A similar approach to the last formulation for magnetostatics
can be taken by introducing the chosen approximations for magnetic vector
potential A:

Ax Z INi(x)a; (50)
=1

where a; are the degrees of freedom or unknowns that the code is going
to calculate. Introducing the last definition into (18), the corresponding
residuals can be written as:

ne
RA = / ey w1 a;) AR —/ INT J A
« i=1 «? (51)
+/ WIJ,dr; a=5,6,...,10
I'y
By consistent linearization of this residual, we obtain the system similar

to the one in (37). The corresponding tangent matrix can be written in
matrix notation:

Icg‘b:—/ el wt e, d; a,b=5,6,...,10 (52)
¢
and the force vector f component is defined as:
f— / INT A0+ / INT J,dr (53)
0 I'n

5 Numerical simulations and validation tests

In this section, we present the results of several numerical simulations that
can illustrate performance of different formulations. First, we choose sev-
eral validation test examples, which are compared against known analytic
solution. A more complex test case where analytic solution is not available
is presented afterwards, including the results of some practical applications
solved with different formulations.
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5.1 Validation tests

The following numerical examples are called validation tests due to the fact
that an analytic solution exists for each one of them. This is a necessary
condition to satisfy in order to prove that the different formulations can all
solve the problems where both analytical and numerical results fully agree.
However, this is not always fully sufficient, if the problem does not allow to
test each and every aspect of the proposed formulation.

In order to find an analytic solution, we assume that FE is the negative
gradient of V' and the constitutive relation for D in (6) are written for
isotropy and that the permittivity tensor € can be simplified to € I. With
these hypotheses, the electrostatic problem can be fully defined in terms of
the scalar potential: ;

V2V (2,y,2) = qu (54)

This equation is the well known Poisson equation, which reduces to the
Laplace equation when p{ = 0. The latter is much easier to solve and
represents a sort of patch test.

5.1.1 Laplace equation, imposed scalar potential The geometry of this first
example is a cube that has the following boundary conditions turning into
a one-dimensional problem:
v _ov|  _ov| _ov
oz |,_, Oz oel, Oy y=0 Oy
V(z,y,00=0; V(z,yl:)=V.

y=ly (55>

The lateral faces do not allow electric displacement flowing out of the
cube, whereas top and bottom faces have imposed and constant scalar po-
tentials. The solution for the scalar potential:

| £

A

V(2) z (56)
V' is a linear distribution in z. Hence, from this expression it is possible to
calculate the electric displacement as:

0
D= —eVV = 0 (57)
—eV, /1,

The only non-zero component is the third one taking a constant value. The
selected dimensions for this example are I, = [, = [, = 2 x 1073 m, the
imposed V, =20 V and € = 15 x 1072 F/m.

As can be seen in Fig. 6, the computed distribution of voltage potential
is indeed linear with bottom and top values 0 and 20 V, respectively. The
computed value for D, = —1.5 x 10~7 C/m? is homogeneous as expected
from (57).
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ELEC. DISP.
VOLTAGE (V) D: (C/m?)

-1.16E-15 -1.65E-07
3.33E+00 -1.60E-07
6.67E+00 -1.54E-07
1.00E+01 -1.49E-07
1.33E+01 -1.44E-07
1.67E+01 -1.39E-07
2.00E+01 -1.33E-07
ELEC. DISP.

VOLTAGE (V) D- (C/m2)
-1.16E-15 -1.65E-07
3.33E+00 -1.60E-07
6.67E+00 -1.54E-07
1.00E+01 -1.49E-07
1.33E+01 -1.44E-07
1.67E+01 -1.39E-07
2.00E+01 -1.33E-07

Fig. 6 Voltage and electric displacement distributions calculated for the first
validation example. First row, V-formulation; second row, Hellinger-Reissner.

5.1.2 Laplace equation, imposed scalar potential and electric displacement
In this example, imposing the Neumann boundary condition is the main

difference from the previous example. Thus, there is only a slight variation

in the chosen boundary conditions with respect to the previous example:

v _ov| _ov| _ov| _,.

Ox|,_q O, oy =0 Oy =1, ’ (58)
oV —-D,

V(.’E,y,O)—O, g_ €

This computed solution can still be simplified to unidimensional and
linear in V:

Viwy,2) === (59)

The material properties and measures are the same as in the last exam-
ple, with D, = 1.5 x 10~7 C/m?. This gives V(z,y,1.) = —20 V on top and
a constant electric displacement of value D, = 1.5 x 10~7 C/m? as shown
in Fig. 7.

5.1.83 Poisson equation, itmposed scalar potential In this validation case, a
source term is activated to induce non-homogeneous field values. The bound-
ary conditions considered in this section are the same as those considered
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ELEC. DISP.

VOLTAGE (V) D:(CIm?)
-2.00E+01 1.35E-07
-1.67E+01 1.40E-07
-1.33E+01 1.45E-07
-1.00E+01 1.50E-07
-6.67E+00 1.55E-07
-3.33E+00 1.60E-07
2.95E-15 1.65E-07

ELEC. DISP.

VOLTAGE (V) D: (C/m?)
-2.00E+01 1.35E-07
-1.67E+01 1.40E-07
-1.33E+01 1.45E-07
-1.00E+01 1.50E-07
-6.67E+00 1.55E-07
-3.33E+00 1.60E-07
2.98E-15 1.65E-07

Fig. 7 Voltage and electric displacement distributions calculated for the second
validation example. First row, V-formulation; second row, Hellinger-Reissner.

in the first numerical example with:

8_V
ox

_ov) o _ov| _ov
=0 Ox z=l, ay y=0 ay
V(z,y,0)=0; V(v,y,l.) =V,

; (60)

y=ly

For a problem of this kind, the solution can be obtained as a superposi-
tion of a Poisson equation solution with homogeneous boundary conditions
and a Laplace problem taking into account those conditions. The final so-
lution can be expressed as:

< 4 pf 2
V(z,y,z) = % z+ Z P32 in <p7rz> (61)

3 3
NS Ak l,

where 50 terms in the summation have been taken into account, p) = 0.01
and the other coefficients are the same as in Section 5.1.1 except V, = 80
V, taken higher to see clearly the asymmetry of the problem.

In Fig. 8 left, it can be appreciated in the voltage distribution that the
maximum is concentrated a little bit above the middle vertical section with
a theoretical maximum value of approximately 374 V, obtained from the
maximization of (61). The closer to this theoretical value, for the mesh
plotted with 1000 elements, is V-formulation. The distribution of D, can
be obtained by deriving (61), and the summation gives an almost linear
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ELEC. DISP.
D- (Clm?)

-9.60E-06
-6.60E-06
-3.60E-06
-6.00E-07
2.40E-06
5.40E-06
8.40E-06

VOLTAGE (V)
7.73E-14
6.22E+01
1.24E+02
1.87E+02
2.49E+02
3.11E+02
3.73E+02

ELEC. DISP.
D- (Clm?)

-1.01E-05
-6.91E-06
-3.76E-06
-6.00E-07
2.56E-06
5.71E-06
8.87E-06

VOLTAGE (V)
-8.41E-14
6.33E+01 |
1.27E+02
1.90E+02
2.53E+02
3.16E+02
3.80E+02

Fig. 8 Voltage and electric displacement distributions calculated for the third
validation example. First row, V-formulation; second row, Hellinger-Reissner.

response with values at the bottom of D, = —1.06 x 1075 C/m? and at the
top of D, = 9.37 x 107¢ C/m?.

One can also notice the existence of slight oscillations near the edges
of the mesh in Fig. 8 right. In the case of V-formulation, the electric dis-
placement can only be constant for every element. Taking into account that
the analytical solution is linear, the exact solution can never be reached, al-
though the more refined the mesh is, the closer to the analytical solution will
be. The number of elements surrounding a particular point in the mesh is
essential to the plot since the stresses plotted in the figure are smoothened.
The edges are influenced by half of the elements within the same row. Re-
garding H-R, even though D field can be indeed linear, it is limited by (13)
as it has to be compatible with the gradient subspace of voltage. Therefore,
the oscillations now appear along all iso-stress lines since tetrahedra within
the same row now have different values.

In Fig. 9, a convergence study on the energy by mesh refinement has been
performed. Even though V-formulation is closer to the maximum expected
value of V|, H-R is closer than V-formulation to the analytical solution for
energy (1/2 E-D = 8.98x 1079 J) at an equal number of elements, as could
be expected from a mixed method, improving the accuracy of the electric
displacement calculation.

5.1.4 Tubular geometry This example is also among validation examples,
but somewhat more demanding with respect to element distortion, resulting
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9.2

9.1 b >
9 - i - - N - ——

8.9 |, .

8.8

8.7

8.6 |

8.5 i HR —-—- |
: Analytical

8.4 : : :

Energy (nJ)

0 10 20 30 40 50 60 70 80 90

Number of elements x103

Fig. 9 Energy convergence for both V-formulation and Hellinger-Reissner, and
the exact solution.

from a change in geometry turning the parallelepiped shape into a hollowed
cylinder or a tube. This modification allows to determine if there is any
mesh dependence of the solution with respect to element distortion. Also,
it allows to fully verify proposed formulation for distorted mesh.

N
L1
Y

1 2 T

Fig. 10 Schematic geometry representation of a quarter of the hollowed cylinder.
Symmetry planes in x = 0 and y = 0. Dimensions in cm.

The geometry of the problem is defined in Fig. 10 along with the bound-
ary conditions and dimensions. Only a quarter of the geometry is repre-
sented since it is an axisymmetric problem. On the interior lateral face, a
voltage Vi = 0 V is imposed; on the exterior lateral face, either voltage
Vo =20 Vor D-n = D is imposed depending on the kind of problem.
An electric charge density p{; is imposed in the material as well for the
Poisson case. The properties for the material of this example remains the
same as the previous ones except for the permittivity, in agreement with
the dielectric material of the next case € = 4eg1.

The analytical solution for the proposed problem can be obtained by
taking into account the axisymmetry and cylindrical coordinates. Thus,
both Laplace and Poisson equations will now be affected by the change
of coordinates. Since the solution V(r) only depends on the radius, the
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NORM ELEC.
VOLTAGE (V) DISP. |D|(C/m2)
-1.09E-15 2.16E-08
3.33E+00 2.84E-08
6.67E+00 3.52E-08
1.00E+01 4.20E-08
1.33E+01 4.88E-08
1.67E+01 | 5.57E-08
2.00E+01 ‘ 6.25E-08
NORM ELEC.
VOLTAGE (V) DISP.|D|(C/m?)
-9.85E-16 2.13E-08
3.33E+00 2.84E-08
6.67E+00 3.55E-08
1.00E+01 4.26E-08
1.33E+01 4.97E-08
1.67E+01 ! 5.68E-08
2.00E+01 6.40E-08
NORM ELEC.
DISP. D (C/m?)
2.14E-08
2.86E-08
3.58E-08
4.30E-08
5.02E-08
5.73E-08
6.45E-08

Fig. 11 Voltage and norm of electric displacement distributions calculated for
the fourth validation example, with both lateral faces with V' boundary condition.
First row, V-formulation; second row, Hellinger-Reissner; third row, complemen-
tary energy formulation.

equation to solve reduces to an Euler-Cauchy ordinary differential equation
with a particular term in the case of the Poisson equation:

ﬁd%/+TM/_T2
dr? dr

oy (62)
The solution to the previous equation is of the form:
2
szqmm+@+@z (63)

The boundary conditions for the equivalent previous numerical examples
are:

Virg)=0; V(r)="V; Laplace, imposed V/
dv D _
Vi(re) =0; 3 ==L Laplace, imposed D (64)
r=ry €

Virg)=0; V(r)="V; Poisson, imposed V
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Thus, the voltage expressions for each of the three cases are:

B Vi In(r/ro)
V(T‘) a 11’1 (’I“l/’l“o(; ’
_ D; riln (ro/T)

Vir)y=———"—=; Laplace, imposed D
€

Laplace, imposed V'

Tanr/r) 1 )
11n(r/Tro r
vir) = In (ry/ro) ‘J;Z
pg (rdIn(r/ry) —r¥1n (r/ro)) .

41n (r1 /7o) ’

Poisson, imposed V'

All these cases show good agreement with the analytical solution. As can
be seen in Fig. 11 left, where the case for Laplace equation and imposed
V at the external face is plotted, voltage distribution is no longer linear,
but rather follows a logarithmic distribution starting from zero at the in-
ternal lateral face to 20 at the external lateral face. The problem being
axisymmetric results with the only variation in the radial direction.

In the Fig. right, the norm of electric displacement is plotted. This vari-
able follows an inverse distribution with the radius. In the figure, different
plot bounds can be observed for both formulations as the exact solution
cannot be reached with linear tetrahedral elements. The exact values for
|D(r)| are | D(r)| = 6.448 x 1078 C/m? and |D(ry)| = 2.149 x 1078 C/m?.

The complementary energy formulation has also been used to solve the
same problem as a comparison with the two formulations used through this
section. As previously discussed, the voltage cannot be obtained directly
from the calculated variables. On the other hand, the norm of electric dis-
placement is plotted, obtaining similar or even more accurate results as with
the previous formulations.

410 . . . . 60
: V-form. -------- V-form. --------
| HR —-—- — £ L HR —-—-
408 Comp. E. -—--- [ = 50 Comp. E. -—--- A
- | Analytical g 10 ‘
e e b 7
Eﬁ oo — 2 30 =
g 404 oo g ’
= 14 2 20
! g P
/ .
402 S 1 . -
400 l 0 - /-f._:..'.i.‘_.».--’ -------------------
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of elements x10% Number of elements x103

Fig. 12 Left, energy convergence for V-formulation, Hellinger-Reissner and Com-
plementary energy formulation compared with the exact solution. Right, compu-
tation time for all the formulations tested.
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In Fig. 12 left, a small mesh convergence study for the case run above
is shown. In this study, all formulations converge to the analytical solution
using a few thousands of elements, being the complementary energy formu-
lation the more accurate for every mesh configuration and V-formulation
the more inaccurate.

However, as can be seen in the Fig right, the latter is unquestionably the
fastest of them all. The slowest, in any case, is Hellinger-Reissner due to the
higher amount of variables, which also make it the one that spends the most
memory. Complementary energy shoots up as well due to the necessity to
solve the Dirichlet boundary conditions, which makes it inefficient for being
a single field formulation.

5.2 Parallel plate capacitor simulation

This numerical example simulates a parallel plate capacitor that consists
of two electrodes, represented by conductor plates charged, and a dielectric
cylinder with € = 4¢pI. Fig. 13 shows the dimensions for a quarter of the
geometry since symmetry conditions on planes x = 0 and y = 0 allow to
reduce the problem.

Despite the fact that in the graphical illustration in this figure only two
different solid materials are presented, for the actual computation we have
to introduce vacuum or air as a third material connecting the two solid ma-
terials. Hence, the permittivity of this added material is that of the vacuum
€. We note in passing that such a solution is typical of electromagnetic
spectrum, which does not need matter to propagate, and yet the finite ele-
ment method does need the mesh with a connection between nodes to solve
such problem.

Tz V = 3000 V

T

Fig. 13 Schematic geometry representation of a quarter of the parallel plate ca-
pacitor; two charged conductor plates and a dielectric cylinder. Symmetry planes
in x = 0 and y = 0. Dimensions in cm.

Boundary conditions can be imposed numerically by setting all nodes of
the two conductor plates to the corresponding potential: top to V' = 3000
V and bottom to ground potential or V =0 V.
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One can observe that the presence of the dielectric with a higher per-
mittivity than that of the air and the fact that the conductor plates are
finite breaks the unidimensional nature of this problem. If the plates as well
as the cylinder were infinite, the electric field and displacement would be
completely regular and vertical.

This problem has been extracted from [37] to demonstrate that poten-
tial and complementary energy formulations, after refinement of the mesh,
tend to the same solution. The purpose of this problem is to compare our
formulations with an electrostatic example already solved, although in the
cited reference there are not explicit results for electric field or displacement,
but rather a qualitative representation of both fields. This representation is
replicated in Fig. 14 indicating the flow orientation of electric field.

V-Formulation

Hellinger-Reissner

Electric field E Electric displacement D

Fig. 14 Electric field and displacement vector representation calculated for the
parallel plate capacitor example. First row, V-formulation; second row, Hellinger-
Reissner.
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As expected, the main difference between E (first column) and D (sec-
ond column) in that figure is that the presence of the dielectric cylinder with
different permittivity creates a discontinuity in electric field as opposed to
the continuity of electric displacement. This fact can be appreciated in the
magnitude difference of the arrows inside the cylinder and outside. This
presence of the dielectric creates also a distortion of both fields, bending
them.

The arrows in the air material surrounding the capacitor bend around
the two electrodes as it is expected from an electrostatic problem, from
higher to lower potentials and the intensity of the fields lower as they come
out from symmetry planes rather than external sides.

4.5

Energy (11J)
S

3.5

e
0 10 20 30 40 50 60

Number of elements x103

Fig. 15 Total electrostatic energy by number of elements of the mesh with two
formulations: V-formulation (V-form) and Hellinger-Reissner (H-R).

The total energy of the system is represented in Fig. 15 for both V-
formulation and Hellinger-Reissner formulations. It is important to note
that both formulations approach the same system energy value when suffi-
cient mesh refinement is carried out, although for this particular case, a finer
mesh was impossible to generate due to our low computational resources.
As the number of elements increase, energy values for V-formulation come
from higher to lower as opposed to Hellinger-Reissner. This is a consequence
of using the potential or the complementary energy for the calculations.

For the same number of elements, Hellinger-Reissner formulation takes
more computation time due to the presence of an additional degree of free-
dom. However, the accuracy is higher energy-wise since no big improvement
is obtained with higher number of elements. Therefore, for a low number of
elements, one can conclude that Hellinger-Reissner formulation is preferable.
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6 Conclusions

This work provides the first step in establishing the firm link between elec-
tromagnetic and mechanical point of view, introducing several novelties
on the way for solving numerically electrostatic and magnetostatic prob-
lems. In particular, energy-based variational formulations for several single-
field and mixed multi-field formulation have been developed instead of the
constitutive-based global equations currently used cell method, the preferred
tool of physics and electrical engineering community. This energy formula-
tion allows to study induced heterogeneities typical of inelastic material
behavior and not only linear constitutive laws typical of classical works on
electromagnetics. Although a detailed development in this paper is mostly
provided for electrostatics, we briefly showed that an equivalent magneto-
static formulation can easily be recovered with an adequate change of the
corresponding field variables.

Numerical implementation of discrete approximation is based upon Whit-
ney’s elements. In this paper, we have developed in detail the approach
granting the partition-of-unity to chosen discrete approximation in tetrahe-
dron element, which applies to the corresponding shape functions. Moreover,
the proposed discrete approximation improves the accuracy of the electro-
magnetic fields, since it preserves either tangential or normal continuity of
primal and dual variables, respectively. This method can also be extended
to higher-order interpolation, it remains to be seen if it should result in opti-
mal solution when dealing with induced heterogeneities of materials coming
from inelastic non-linear behavior, which remains our main motivation for
the work presented in this paper.

The numerical examples in this paper provide full validation of the pro-
posed discrete approximations based upon tetrahedra elements. They also
illustrate the full scope of the problems and possible applications that can
be solved with this kind of elements, first for the case of electrostatics and
second by analogy for magnetostatics. Of particular interest is the superior
result we are able to achieve in the parallel plate capacitor simulations es-
tablishing accuracy even with small number of elements for here proposed
Hellinger-Reissner formulation in comparison with any other approach.
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