Abir Boujleben 
email: abir.boujeleben@utc.fr
  
Adnan Ibrahimbegovic 
  
Emmanuel Lefrançois 
  
An efficient computational model for fluid-structure interaction in application to large overall motion of wind turbine with flexible blades

Keywords: fluid-structure interaction, 3D vortex panel method, large overall motion, follower pressure, wind turbine blades

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The current push for renewable energy resources is the main motivation for constructing large wind turbines. The development of such wind turbines with very large blades requires to take into account the blade flexibility in order to provide a good understanding of the coupling effects between the blades large motion and the corresponding aerodynamics. Hence, FSI (fluid-structure interaction) simulations are essential for accurate modeling of these wind turbines. FSI simulations can be classified according to the direction of coupling. The one-way coupling is to transfer only the loads calculated with fluid solver into structural domain with no influence of the structure motion. This coupling approach is studied in our previous work [START_REF] Ibrahimbegovic | Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design[END_REF]. It can not capture an accurate interaction in the sense that the motion and deformation of the wind turbine blades depend on the wind speed and airflow, as much as the aerodynamic loads depend on the motion and deformation of the blades. Thus, the two-ways coupling is developed in this paper taking account of the interaction between the blade motion and deformations and the aerodynamic pressure, with the main goal of achieving both efficiency and sufficient accuracy.

In the two-ways coupling case, two approaches can be distinguished: monolithic and partitioned. In the monolithic approach, the fluid equations and the structural equations are incorporated with a common system, formulated and solved as one single entity (e.g. see [START_REF] Shakib | A new finite element formulation for computational fluid dynamics: X. the compressible euler and navier-stokes equations[END_REF][START_REF] Wang | Displacement pressure based mixed finite element formulations for acoustic fluidstructure interaction problems[END_REF]). On the other hand, the partitioned approach is to solve the fluid equations and the structural equations separately and to achieve the interaction by exchanging the common data through the fluid-structure interface (e.g. [START_REF] Olson | Analysis of fluid-structure interactions. a direct symmetric coupled formulation based on the fluid velocity potential[END_REF][START_REF] Degroote | Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction[END_REF]). This approach is capable of using different, possibly more efficient, solution techniques for both fluid and structural computations. Therefore, due to the size and the complexity of the problem, we adopt partitioned coupling in this work. The main challenge remains to extend the partitioned coupling of FSI problems in the presence of large overall motion of flexible blades, especially that the proposed structural model enforces the path dependency with large rotations and thus imposes the Lagrangian approach. The latter will be combined with the Eulerian approach for the proposed fluid model.

There are essentially three approaches to model the aerodynamic behavior of wind turbines. The blade element momentum (BEM) theory, initially proposed by Glauert [START_REF] Glauret | Airplane propellers[END_REF], is a fast and easily implemented method, but it is restricted to 2D flow and assumes that each blade section is independent of every other blade section. The computational fluid dynamics (CFD), governed by the Navier-Stokes equations, is considered to be the most accurate, but also by far the most costly [START_REF] Shakib | A new finite element formulation for computational fluid dynamics: X. the compressible euler and navier-stokes equations[END_REF][START_REF] Bathe | A mesh adaptivity procedure for cfd and fluidstructure interactions[END_REF]. Moreover, a special attention should be given to problems related to the data transfer in the fluid-structure interface [START_REF] Nitikitpaiboon | An arbitrary lagrangianeulerian velocity potential formulation for fluidstructure interaction[END_REF], the volume mesh updating of the fluid domain and the choice of numerical integration parameters in Navier-Stokes resolution. The vortex panel method (VPM) [START_REF] Katz | Low Speed Aerodynamics[END_REF] combines the advantages of the BEM and CFD. It is faster than CFD, as it doesn't need to solve the full Navier-Stokes equations and is able to handle more complicated cases than BEM for 3D problems. It provides the aerodynamic pressure distribution over entire blade surface which is suitable for structural model. The standard VPM is restricted for non-lifting potential flow. In this paper, It is modified to account for flexible lifting body in large overall motion by introducing vorticity at fluidstructure interface and by considering the relative flow velocity.

The novelty also concerns the structure model computations with respect to the standard finite element method (FEM). Namely, the wind turbine blades are the most frequently described by beam [START_REF] Wang | Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory[END_REF] or shell models (e.g. [START_REF] Bazilevs | 3d simulation of wind turbine rotors at full scale. part ii: Fluid-structure interaction modeling with composite blades[END_REF]), since the models of this kind allow to save the computational time. Here, we choose the 3D solid model which allows more rigorous stress distribution that is of special interest for fatigue failure, as the most common problem for wind turbines. An enhanced 8-node solid element for the blade dynamics model is used with a special choice of the deformation measure for more accurate approximation of bending and torsional deflections. The formulation developements and the finite element implementation of the proposed solid element are presented in details in our previous work [START_REF] Boujelben | Finite-strain three-dimensional solids with rotational degrees of freedom: non-linear statics and dynamics[END_REF] . An additional advantage of such choice is that the structure discretization is identical to panel method discretization, eliminating all inaccuracy related to the data transfer at the fluid-structure interface. The coupling between panel method and enhanced 3D solid element offers a good compromise between the process rapidity and the approximation quality. It is very suitable to the parametric studies in preliminary design phase.

The final concern is the robustness of the partitioned fluid-structure interaction solution procedures. Several algorithms of partitioned computational procedure are currently used, such as conventional serial staggered procedure (CSS) [START_REF] Felippa | Staggered transient analysis procedures for coupled mechanical systems: Fotmulation[END_REF]. A basic implementation of CSS reduces the time of coupling computation. However, it does not ensure the displacement continuity and the quality of the coupling. Several improved procedures have been proposed by introducing a structure displacement predictor in updating phase of the fluid mesh and a aerodynamic load corrector in advancing the structural solution to the next step. The choice of the prediction remains unsettled issue. In this paper, an iterative coupling algorithm is carried out until convergence to exchange in each time step the aerodynamic loads (panel method code) and the structure displacements and velocities (FEM approximation) at the fluid-structure interface. Some considerations are taken into account to ensure reliable interaction between structural and fluid codes in large displacements and deformations theory.

The paper outline is as follows. Section 2 describes the FSI problem. We first present the procedure to compute the un oitile fluid flow loads based on the 3D vortex panel method. Then we detail the blade structural model based on a variational formulation of the 3D solid element with independent rotational degrees of freedom. Finally, we present the implementation of the strong coupling between fluid and solid models. Several illustrative numerical simulations and their results discussions are given in Section 3.The model is also used to test new configurations, in terms of blade geometry and flow direction. Some closing remarks are given in Section 4.

Problem statement

Fluid flow computations by 3D vortex panel method

In this section we discuss the 3D panel method which is used to predict the aerodynamic pressure applied on the blade surface [START_REF] Hess | Panel methods in computational fluid dynamics[END_REF][START_REF] Hess | Calculation of potential flow about arbitraty bodies[END_REF][START_REF] Katz | Low Speed Aerodynamics[END_REF]. We start by first considering the steady-state potential flow, imposing the requirements of incompressibility and irrotational motion by enforcing the following fluid velocity field constraints:

∇ • v f = 0 (incompressible); ∇ × v f = 0 (irrotational) (1) 
where superscript f indicates fluid.

By using the Helmholtz decomposition [START_REF] Arfken | Helmholtz's Theorem[END_REF], the velocity field can be written as the sum of the gradient of a scalar potential φ and the curl of a vector potential ψ:

v f = ∇φ + ∇ × ψ (2) 
By substituting such velocity definition in (2) into the incompressibility condition (1) 1 leads to the Laplace equation of the scalar potential:

∇ • v f = ∇ • (∇φ + ∇ × ψ) = ∇ 2 φ = 0 (3) 
The vector potential ψ is introduced in order to generate vorticity ξ and thus to calculate the circulation Γ defined by:

Γ = S ∇ × v f • n dS = S ξ • n dS; ξ = ∇ × v f ( 4 
)
where n is the exterior normal unit vector. The flow rotational character is confined only to layer in contact with the blade by introducing vorticity ξ in order to model the lift in the center of each panel element.

The vector potential ψ is considered as solenoidal potential, enforcing that ∇.ψ = 0. Thus, by exploiting the results in (2) and (4), we obtain the governing equation for vector potential: The fundamental solution of equation ( 5) is obtained by using Green's function:

ξ = -∇ 2 ψ (5)
ψ = 1 4π V ξ |r ξ -r P | dV (6) 
Here ψ is evaluated at point P defined by its position r P and is result of integrating vorticity ξ at point r ξ within the volume V (see Figure 1-a). We will consider an infinitesimal vorticity filament dl with a constant circulation Γ and the cross section area dS in (4) that it is normal to ξ. The equation ( 6) can be recast as:

ψ = 1 4π l Γ |r ξ -r p | • dl (7) 
Thus, the velocity induced at a point P by vorticity filament with a constant circulation Γ can be defined by Biot-Savart law as:

∇ × ψ = Γ 4π l (r ξ -r P ) |r ξ -r P | 3 × dl (8) 
The panel method is a boundary method which only concerns the fluidstructure interface. It solves the Laplace equation (3) by superposition of singularity elements, which are also fundamental solutions to the Laplace equation.

The choice of these singularity elements depends obviously on the problem to be modeled. For aerodynamic problem, the combination of free stream and vortex rings singularities is most widely used [START_REF] Katz | Low Speed Aerodynamics[END_REF]. For the case where we consider a wind turbine blade in a steady free stream, we can choose: ∇φ = v ∞ . Thus, the result in (2) can be redefined by:

v f = v ∞ + v f d ( 9 
)
where v f d is the velocity induced by vortex rings singularities. By definition, the vortex ring is a closed contour C composed of four straight filaments with a constant strength (see Figure 1-b). The velocity induced by a vortex ring at a control point r c is derived from (8):

v f d = Γ 4Π C (r -r c ) |r -r c | 3 × dl = v f d,1-2 + v f d,2-3 + v f d,3-4 + v f d,4-1 (10) 
where v s d,1-2 is obtained by integrating over a straight vortex filament between points '1' and '2' (see Figure 1-b):

v f d,1-2 = Γ 4Π geo(r c , r 1 , r 2 ) = Γ 4Π (r 1 -r c ) × (r 2 -r c ) |(r 1 -r c ) × (r 2 -r c )| 2 (r 2 -r 1 ) • ( (r 1 -r c ) |(r 1 -r c )| - (r 2 -r c ) |(r 2 -r c )| ) (11) 
The position vectors r c , r 1 and r 2 are expressed in the fixed coordinate systems.

Others components of v f d are computed in the same manner as v f d,1-2 . We seek to compute the fluid velocity v f in order to deduce the aerodynamic loads by imposing the impermeability boundary condition which concerns only the normal component of the flow:

(v f -v s ) . n = 0 ( 12 
)
where v s is the structure velocity with superscript s , indicating structure. For the rigid blades (see [START_REF] Ibrahimbegovic | Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design[END_REF]), v s can be expressed only by the angular velocity defined as Ω s × r, where Ω s is the angular rotor velocity. However, in the present case where the blades are flexible, v s is also affected by the structure deformations.

In discrete approximation, the blade surface is divided into a number of panels with a control point c. A vortex ring of constant strength Γ is placed in the center of each panel (see Figure 2). The zero normal flow condition as 

v f (r (i) c ) -v s (r (i) c ) . n (i) c = 0 v ∞ + nb j=1 a i,j Γ (j) -v s (r (i) c ) . n (i) c = 0 ( 13 
)
where nb is the total number of blade panel elements. The vectors a i,j are the influence coefficients (see Figure 2), computed from ( 10) and ( 11):

a i,j = 1 4Π × geo(r (i) c , r (j) nw , r (j) sw ) + geo(r c , r (j) sw , r (j) se ) + geo(r (i) c , r (j) se , r (j) ne ) + geo(r (i) c , r (j) ne , r (j) nw ) (14) 
The system is closed by enforcing the Kutta condition, which allows to pick the physically sound circulation at the sharp edge. The latter implies that the flow should leave the sharp trailing edge of an airfoil smoothly with the velocity that should remain finite. Practically, for each circulation over a row of blade panels, at the trailing edge, we add a single wake panel that allows to enforce the following condition (see Figure 3):

Γ T.E = 0 ⇒ Γ wake = Γ upper -Γ lower (15) 
Ideally the wake panels extend to infinity, but in practice we choose the length of wake panel that should be large enough to satisfy this condition. The addition of wake panels involves adding new unknowns to the system for each row of blade panels. By imposing Kutta condition and zero normal flow condition, we obtain a set of linear algebraic equations including both blade and wake circulations as unknowns:

                 a 1,1 a 1,2 ... a 1,np a 2,1 a 2,2 ... a 2,np . . . . . . . . . . . . a nb,1 a nb,2 ... a nb,np ... ← Kutta condition → ...                                   Γ (1)
Γ (2) . . .

Γ (nb) Γ (nb+1) 
.

Γ (np)                  =                  (v ∞ -v s (r (1) c )). n (1) c (v ∞ -v s (r (2) c )). n (2) c . . . (v ∞ -v s (r (nb) c )). n (nb) c 0 . 0                  (16) 
where np is the total number of panel elements. Once we solve for Γ values, we can recover from (9) the fluid velocity field in the control point of each panel (i):

v f (r (i) c ) = v ∞ + nb j=1 a i,j Γ (j) - 1 2 ∇Γ (i) (17) 
where

∇Γ (i)   (r we -r no )(Γ we + Γ no ) + (r so -r we )(Γ so + Γ we )+ (r ea -r so )(Γ ea + Γ so ) + (r no -r ea )(Γ no + Γ ea )   × n (i) c |(r no -r so ) × (r we -r ea )| (18) 
The extra term ∇Γ in (17) represents the tangential velocity contribution of the panel (i) itself, obtained by using the gradient theorem and the values of Γ at neighboring control points (see Figure ( 2)).

The computed fluid velocity is written in the current deformed configuration, by using the Eulerian formulation. When computing the corresponding fluid pressure exerted on solid blades, this velocity should be transferred from the Eulerian to the Lagrangian formulations, for which we use: 

vf = v f -v s (19) 
p (i) = 1 2 ρ ( |v ∞ | 2 -|v f (r (i) c )| 2 ) (20) 
The computed pressure is normal to the panel and constant over a particular panel element. All panel values of pressure are grouped in a vector denoted by P f , and transferred to the structural solver. We ensure that the fluid and structure variables are recast in the same coordinates system. Given that fluid and structure models have the same discretization at interface, no special procedure is needed for such data transfer operation.

Structure model based upon 3D enhanced solid element

In this section, we present structural dynamic formulation for the wind turbine blades. The latter are modeled by the 3D solid element undergoing large displacements and large rotations. Such large overall motion is described by specifying the motion of each particle from the initial configuration x to the deformed configuration x ϕ as:

x ϕ = ϕ(x) (21) 
where ϕ is a point transformation [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]. The corresponding deformation gradient can be written as:

F = ∇ϕ; J(x) = det[F] (22) 
For a large overall motion of turbine blades, the current (deformed) and the initial (fixed) configurations are quite different. One can no longer simplify computing the derivatives and integrals in the deformed configuration with respect to the coordinates chosen in the initial configuration [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF].

The weak form of the equilibrium equations is written by using the coordinates in the current configuration:

G(ϕ, u ϕ ) = V ϕ ε ϕ (u ϕ ) • σ ϕ dV ϕ - V ϕ u ϕ • f ϕ dV ϕ - ϕ(Sp) u ϕ • tf,ϕ dS ϕ (23)
where ε ϕ , σ ϕ and u ϕ are respectively the strain tensor, the Cauchy stress tensor and the virtual displacement vector. f ϕ and tf,ϕ are the volume forces and surface forces applied to the structure. The surface force follows the normal to the surface ϕ(S p ) in the current configuration, thus the name follower load.

It is written as:

tf,ϕ = p f n ϕ (24)
where n ϕ is the unit normal vector applied in the deformed configuration and p f is the aerodynamic pressure computed by panel method code.

The equilibrium equation in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF] is expressed in the Eulerian description that doesn't provide any information about the deformation trajectory leading to the deformed configuration. However, the Biot strain, chosen thereafter to define the strain measures [START_REF] Ibrahimbegovic | Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design[END_REF][START_REF] Boujelben | Finite-strain three-dimensional solids with rotational degrees of freedom: non-linear statics and dynamics[END_REF], involves finite rotation tensor through the polar decomposition [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]. Since the finite rotations are path dependent [START_REF] Ibrahimbegovic | Computational aspects of vector-like parametrization of three-dimensional finite rotations[END_REF][START_REF] Ibrahimbegovic | On the choice of finite rotation parameters[END_REF][START_REF] Ibrahimbegovic | Finite rotations in dynamics of beams and implicit time-stepping schemes[END_REF], the Eulerian formulation must further be replaced by the Lagrangian formulation. By using the change of coordinates between the deformed and the initial configurations, we can rewrite the weak form of equilibrium equations as:

G(ϕ, u) = V H(u) • T(x) dV - V u • f dV - Sp u • p f J(x)F -T ndS (25)
where H and T are, respectively, the Biot strain and the Biot stress (see [START_REF] Boujelben | Finite-strain three-dimensional solids with rotational degrees of freedom: non-linear statics and dynamics[END_REF] for details). The Nanson formula [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF] is used to pull-back the follower pressure boundary condition from the current configuration n ϕ dS ϕ to the initial configuration n dS. In order to preserve computation stability, the finite element implementation of the follower pressure is based upon the parametrization of the current surface ϕ(S p ) with respect to the isoparametric domain [START_REF] Simo | A note on finite-element implementation of pressure boundary loading[END_REF]. We denote by x the position vector of a given point of S p and by xϕ its image in ϕ(S p ). By defining a suitable 2D domain of isoparametric parameters (ξ, η), the mapping from the isoparametric domain S κ to the initial configuration S p is constructed by κ:

(ξ, η) ∈ S κ → x = κ(ξ, η) ∈ S p (26) 
By exploiting results in ( 21) and ( 26), the isoparametric parametrization of the moving surface ϕ(S p ) is obtained by setting φ as:

(ξ, η) ∈ S κ → xϕ = φ(ξ, η) = ϕ • κ(ξ, η) ∈ ϕ(S p ) (27) 
Thus, the unit normal field is expressed by using the chain rule and the isoparametric mapping:

n ϕ dS ϕ = ( ∂φ ∂ξ × ∂φ ∂η ) dξdη = ∇ϕ(κ(ξ, η)) ∂κ ∂ξ × ∇ϕ(κ(ξ, η)) ∂κ ∂η dξdη (28) 
With this result on hand, the weak form of the follower pressure boundary conditions defined in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF] can be written in natural coordinate system:

ϕ(Sp) u s,ϕ • P ϕ,f n ϕ dS ϕ = Sκ φ(u s ) • P ϕ,f ∇ϕ(κ(ξ, η)) ∂κ ∂ξ × ∇ϕ(κ(ξ, η)) ∂κ ∂η dξdη = Sκ φ(u s ) • P ϕ,f φ ,ξ (ξ, η) × φ ,η (ξ, η) dξdη (29) 
This kind of parametrization based on isoparametric elements is the best suited for our subsequent finite element implementation, since discretization and linearization commute [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]. By introducing the perturbed configuration of ϕ given as:

ϕ = ϕ + µ(x ϕ ) = ϕ + µ • ϕ ( 30 
)
where µ is an admissible variation of ϕ, the linearization of result in (29) can be written as: In the finite element implementation, we assume that each panel surface is a single facet of the 3D solid element used for blade modeling. The discrete approximation of the position vector in ϕ(S p ) is thus constructed from the standard isoparametric interpolation of 8-nodes brick element, which results with a quadrilateral element discretization of each particular facet (see Figure 4):

Lin ϕ(Sp) u s,ϕ • P ϕ,f n ϕ dS ϕ = d d ϕ(Sp) u s,ϕ • P ϕ,f n ϕ dS ϕ =0 = Sκ φ(u s ) • P ϕ,f [(∇µ • φ)φ ,ξ ] × φ ,η + φ ,ξ × [(∇µ • φ)φ ,η ] dξdη (31) 
xϕ = 4 a=1 Na (ξ, η)x a = 4 a=1 N a (ξ, η, -1)x a ( 32 
)
where N a are the standard shape functions of 8-nodes brick element, while xa are the corresponding nodal values.

By choosing the Biot strain, H = R T (I + ∇u) -I, we introduce the finite rotation tensor R, which further imposes the path-dependency. We briefly recall the corresponding variational formulation and the discrete approximation in dynamics:

i) V δu s • ρ s üs dV + V symm[R s,T (∇δu s + (I + ∇u s + d s ) × δw s )] • symm[T] + skew[R s,T (∇δu s + (I + ∇u s + d s ) × δw s )] • skew[T] dV - V δu s . f dV - ϕ(Sp) δu s • P ϕ,f n ϕ dS ϕ = 0 ii) V {symm[R s,T δd s ] • symm[T] + skew[R s,T δP • d s ] • skew[T] -δd s • P}dV = 0 (33)
Here ρ s is the structure density, δw is the axial vector associated to the infinitesimal skew-symmetric tensor δW such that δW = δRR and δWb = δw × b, ∀ b ∈ R 3 . The addition of an incompatible displacement gradient d s is needed to avoid locking problems. By using the finite element discretization, the variational equations in (33) is reduced to set of algebaric equations. The formulation developement and the numerical implementation are presented in details in our previous work [START_REF] Boujelben | Finite-strain three-dimensional solids with rotational degrees of freedom: non-linear statics and dynamics[END_REF].

FSI coupling

The structural and fluid computations are performed separately and later coupled through data exchange at the fluid-structure interface. The fluid part provides the aerodynamic pressure distribution P f and the structural part provides the kinematic variables u and v.

The conditions to be fulfilled on the fluid-structure interface are the continuity of displacements and the surface stresses. Enforcing these conditions with the partitioned approach requires an iterative solution procedure. For a typical time step t n+1 , we are given the known variables xn , v s n , and P f n . We look for xn+1 , v s n+1 , and P f n+1 which satisfy equations of motion for fluid, structure and interface conditions. For simplicity, we assume that the fluid and structure time steps are equal, ∆t = ∆t s = ∆t f . Non-iterative procedure: conventional serial staggered procedure (CSS)

We first consider the CSS procedure characterized by the following steps illustrated in Figure 5 : 1/-Transfer the kinematic variables from the structure part to fluid part and update the interface position in panel method.

2/-Solve the linear system [START_REF] Arfken | Helmholtz's Theorem[END_REF] to compute fluid velocities v f n+1 . Then, compute the normal pressures vector P f n+1 as defined in [START_REF] Ibrahimbegovic | Finite rotations in dynamics of beams and implicit time-stepping schemes[END_REF]. 3/-Transfer the pressure distribution P f n+1 to the structure solver where it is considered as Neumann boundary condition. It should be noted here that the benefit of choosing panel method and follower pressure boundary conditions is to allow a direct data transfer at the fluid-structure interface.

4/ -Apply the aerodynamic pressure P f n+1 on the blade surface and advance the structure system to t n+1 by solving the system in (33). The latter requires an iterative procedure with an implicit time integration. The CSS scheme introduces a one time-step lag between the fluid and structure computed solutions. This can lead to an accumulation of errors and thus to a poor estimate of the computed blade response, in particular when the timestep size is not small enough. In order to compensate this time shift between the fluid and structure solvers, the predictor-corrector procedure has been proposed (e.g. [START_REF] Piperno | Partitioned procedures for the transient solution of coupled aeroelastic problems[END_REF]). The procedure involves introducing the structure displacement predictor and the pressure corrector respectively in Steps 1 and 4. It requires also a single iteration in order to provide a faster convergence. However, the choice of the prediction and correction remains unsettled issue, namely for the case of strong non-linearity. For that reason, we turn towards an iterative procedure that can converge towards the results of monolithic approach.

Iterative procedure: generalized serial staggered procedure

The iterative coupling algorithm is based on CSS algorithm, extended by a sub-cycling between the structure and fluid solvers until reaching convergence with the current structure motion and the corresponding aerodynamic loads.

One of the convergence criterion is the aerodynamic load variation between 

The virtual work of fluid pressure applied on the deformed surface ϕ(S p ) can be expressed as:

δu ϕ • f ext = ϕ(Sp) δu ϕ • p f n ϕ dS ϕ (35) 
By reparametrizing the variation of displacement vector in the initial configuration,

δu s,ϕ = δu(ϕ(x s )) = δu(x s ) → δu s,ϕ := δu s (36)
and by using the Nanson formula, (35) can be rewritten as:

δu • f ext = Sp δu • p f cof [F] n dS; cof [F] = J(x)F -T (37) 
Then, the virtual work of the fluid pressure can be directly transported in the initial configuration as follows:

ϕ(Sp) δu s,ϕ • p f n ϕ dS ϕ = Sp δu s • pf n dS (38) 
By using the transformation in (37), we obtain:

Sp δu s • p f cof [F]ndS = Sp δu s • pf n dS (39) 
The pull-backed pressure for a single panel is therefore defined by:

pf = p f × ||cof [I + ∇u] n|| (40) 
Knowing the kinetic variables and pressure distribution at time t n , the corresponding values at time t n+1 are computed by solving structure motion, fluid flow and enforcing interface conditions by using the following iterative algorithm (see Figure 5): I/-Initialize the pressure distribution for the first iteration (k = 0)

P f,(k=0) n+1 = P f n ( 41 
)
II/-Repeat the iterative procedure until the convergence, advancing at each iteration (from (k -1) to (k)) from ( 1) to ( 5).

(1) -The displacement vector u (3)-The pull-back operation is performed as shown in equation (40) at the control points in order to compute Pf,(k) n+1 and the convergence pressure criterion can be checked by means of

|| Pf,(k) n+1 - Pf,(k-1) n+1 || ≤ tol 1 (42) (4)-The pressure distribution P f,(k)
n+1 is transferred to the FEM code. An iterative resolution of the following nonlinear system is executed in order to update kinematic variables

M   ∆ü s,(k) n+1 ∆ ẅs,(k) n+1   + ( Kn+1 + K(P ϕ,f,(k) n+1
))

  ∆u s,(k) n+1 ∆w s,(k) n+1   = r n+1 + r(P f,(k) n+1 ) ( 43 
)
where M is the mass matrix, K is the condensed stiffness matrix and K is the stiffness matrix associated to the pressures elements.

(5)-The second convergence criterion can then be checked pertinent to the structure displacement

||u (k+1) n+1 -u (k) n+1 || ≤ tol 2 (44)
If the convergence criterions ( 42) and ( 44 

Numerical simulations of wind turbine model

In order to validate the proposed fluid-structure coupling algorithm, we consider the numerical simulation of the nonlinear dynamic response of a wind turbine model. The latter is chosen as NREL (National Renewable Energy Laboratory) offshore 5-MW wind turbine with tests reported in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF]. It has three blade rotor with 126 m diameter. As shown in Figure 7, the blade is composed of several airfoil types described in detail in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF]. The finite element model is based on the proposed 3D solid elements. The mechanical proprieties are: Young's modulus E = 39 GP a, poisson's ratio ν = 0 and mass density ρ = 2100 kg/m 3 [START_REF] Bazilevs | 3d simulation of wind turbine rotors at full scale. part ii: Fluid-structure interaction modeling with composite blades[END_REF]. The finite element computations are performed with a research version of the computer program FEAP, written by Prof. R.L. Taylor at UC Berkeley [START_REF] Zienkiewicz | The Finite Element Method: Basic Formulation and Linear Problems[END_REF]. The panel method code is implemented with MATLAB. The data transfer is performed with MATFEAP interface.

Validation of the panel method

The first example concerns the validation of the aerodynamic model based on panel method. Results obtained by panel method are compared with results obtained by others aeroelastic codes such as FAST [START_REF] Jonkman | fast user's guide[END_REF] and MIRAS [START_REF] Sessarego | Aerodynamic windturbine rotor design using surrogate modeling and three-dimensional viscous-inviscid interaction technique[END_REF]. The wind speed is ranging from 5m/s to 14m/s. The rotor speed is assumed to be constant for each case.

The aerodynamics loads normal (F n ) and tangential (F t ) to the rotor plane are presented in Figure 15, for different values of rotation speed and wind speed.

All results are computed for only one blade. The cylindrical sections of the blade doesn't provide any lift, so they are not presented in Figure 15. In general, results show that the proposed panel method code is in good agreement with the standard aeroelastic codes FAST and MIRAS. More specifically, our results are much closer to these obtained by MIRAS because both are based on an approximation of the solution of Laplace's equations using different singularities.

However, the code FAST implements the BEM technique.

One can notice that the normal force is still higher that the tangential force.

It increases linearly until it hits the maximum at approximately 90% of the total blade length. That can be explained with higher rotational speed at the tip of the blade (V r = Ω × r). However, the tangential force, providing the aerodynamic moment, is nearly equally distributed by means of the variation of the blade twist from 13.3 degrees at the root to the zero degrees at the tip. All results presented here allow to validate the fluid part.

Time histories of the aerodynamic torque are presented in Figure 8 in a case where the wind speed is uniform at 9 m/s and the rotor speed is 10.9 rpm.

Simulations are carried for both flexible and rigid blades with a constant time step ∆t = 0.01s. For rigid blades case, results obtained by Panel method are compared to data reported in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF], obtained by using FAST as well as the results performed by a CFD analysis in [START_REF] Bazilevs | 3d simulation of wind turbine rotors at full scale. part i: Geometry modeling and aerodynamics[END_REF]. The exact match can not be expected since our computational modeling is based on different assumptions that those used in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF] and [START_REF] Bazilevs | 3d simulation of wind turbine rotors at full scale. part i: Geometry modeling and aerodynamics[END_REF]. Nevertheless, the results remain rather close. The torque computed by panel method is slightly larger, which is explained by the fact that panel method doesn't take into account the drag effects.

Time histories of the aerodynamic torque are also plotted for both rigid and flexible blades in Figure 8. For rigid blade, the aerodynamic torque remains constant over time as the air flow is stationary and the rotor velocity is a constant.

However, the aerodynamic torque for flexible blade, computed in the same con- ditions, has a tendency to oscillate due to the contribution of the deformation velocities. Therefore, the blade flexibility affects the aerodynamic loads even by imposing a constant rotor speed.

Coupling computations at fluid-structure interface

Next, we consider the performance of the proposed approach in handling the coupling aspects. The aerodynamic profiles and the structure proprieties remain the same as for the first example. The rotor speed is no longer constant over time. The wind turbine rotor is subject to a steady wind velocity 11.4m/s and an initial rotation velocity 12rpm. The simulations are carried out with a constant time step ∆t = 0.05s by using one-iteration and iterative coupling algorithms.

The time histories of the tip blade displacements in-plane and out-plane are plotted in Figure 9. The blade mostly deforms in the flap-wise direction, which is already expected from the values of the normal loads in Figure 15. Some edge-wise deflections are also present but of much lower amplitude than the out-plane deflections. They are characterized by the presence of high frequency oscillations. We note that the in-plane and out-of-plane deflections obtained by the one-iteration algorithm are considerately larger than those obtained by the iterative algorithm coupling. For exemple, the maximum of the flap-wise deflection reached by the iterative algorithm computation is nearly 6m, which is consistent with the results reported in [START_REF] Jonkman | Definition of a 5-MW reference wind turbine for offshore system development[END_REF][START_REF] Bazilevs | 3d simulation of wind turbine rotors at full scale. part ii: Fluid-structure interaction modeling with composite blades[END_REF]. However, it exceeds 8m for the one-iteration coupling algorithm. We can thus deduce that the sub-cycling between structure and fluid part improves the approximation quality and avoids overestimate computed response. displacement and the twist displacement show the presence of high frequency modes, superposed on top of low frequencies modes. The latter leads to the well known stiff system of equations, which is difficult to solve by using the standard Newmark scheme. For that, we propose to the energy-conserving time-stepping scheme, which is appropriate for such problems. The details of constructing such time stepping scheme are presented in our previous work [START_REF] Boujelben | Conserving and decaying energy for finite-strain three-dimensional solids with rotational degrees of freedom in nonlinear dynamics[END_REF]. For a time step equal to ∆t = 0.01s, the computation using the Newmark scheme can no longer converge for time exceeding T = 12s. However, the energy conserving scheme ensures the convergence over long time interval (see Figure 12). It can avoid the instability issues of high frequencies and carry out long term simulation, which is needed for the studies of fatigue failure. As shown above, the blade bends mainly in wind direction, even risking to strike the tower and damage the system. In order to avoid such a situation, the blade can be pre-bent at an angle θ equal to 10 deg while keeping the wind in up direction. Alternatively, we can change the blade orientation with respect to the wind direction so that the blade receives the wind in the back side of the turbine (see Figure 14). The von Mises stress distribution for the pre-bent downwind blade and the conventional upwind blade are plotted in Figure 16 at different calculation times (see Figure 13). As expected, the conventional blade stresses are concentrated at the bottom of the blade, which explains the succession of cylindrical profiles at the bottom of the blade in order to to reinforce the structure. The stresses are also increasing in time. In fact, the wind turbine starts accelerating in time and the rotation velocity increases in time, leading to higher aerodynamic pressure and as a consequence to higher stress distribution. However, for the downwind blade, stresses are distributed uniformly indicating the benefit of such configuration. Besides, the maximum value of stress for the pre-bent downwind blade does not exceed 4 × 10 8 P a. However, the maximum value of stress for conventional blade is equal to 1 × 10 11 P a. We can deduce that the downwind configuration reduces significantly the stress values.

Time histories of the flap-wise deflection and the x-displacement of the blade tip are plotted in Figure 17 for the three configurations treated here. For the upwind configuration, the conventional and the pre-bent upwind blades behave almost in the same way. The flap-wise deflection curves show the presence of a constant amplitude shift between the conventional and the pre-bent upwind blades while keeping the same oscillation modes. This shift reduces the risk of collision between the flexible blade and the tower in the upwind pre-bent configuration.

The downwind pre-bent blade presents a different flap-wise deflection response. In fact, the blade bends in the wind direction then remains in the same position with low amplitude vibrations. However, the blade rotation becomes slower because of the decrease of the tangential force in this configuration. Thus, the downwind conception is beneficial in the flexible blades case since it allows to get more homogeneous stress distribution and to avoid the risk of collision between the blade and the tower. But it implies a decrease in the aerodynamic torque which affects the wind turbine productivity. procedure ensures a simple data exchange between fluid and structure, mostly thanks to using 3D solid finite elements that enforce the mesh conformity. The aerodynamic and structural domains interact with each other via a partitioned coupling scheme with iterative procedure, where special provisions are taken in order to account for large overall motion.
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 1 Figure 1: a) Velocity at point P induced by a vortex segment b) Velocity at the center induced by a vortex ring with constant intensity
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 2 Figure 2: Blade surface discretization and vortex rings distribution
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 3 Figure 3: Kutta condition at the trailing edge
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 4 Figure 4: Choice of the finite element discretization for pressure surface
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 5 Figure 5: one-teration (right) and iterative (left) Coupling algorithms

  from the structure solver in the previous iteration, are transferred to the panel method code. The fluid mesh is updated to compute the corresponding pressure distribution tensor P f,(k) n+1 . (2)-Compute the normal pressure vector P f,(k) n+1 by means of panel method code.

  ) are not reached, the kinetic variables are transferred again to the fluid code to continue with the next iteration (k+1). III/-Otherwise, we advance to the next time step. The structure formulation involves finite rotations that are highly nonlinear and require special update procedure. For that reason, the iteration (k + 1) the computation should be carried out from the configuration at t n which has already reached the convergence state and not from the intermediate iterative configuration [t n+1 , (k)]. This avoids the error introduced by the intermediate configuration which can seriously impair the quality of the computed results.
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 6 Figure 6: Robust iterative computation based on converged states
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 7 Figure 7: NREL 5-MW wind turbine model: a) positions along the span b) airfoil crosssections in standardized code
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 8 Figure 8: Time histories of the total aerodynamic torque: comparison with references for rigid blades (left) and results obtained by Panel method for both rigid and flexible blades (right)
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 9 Figure 9: Time histories of the tip flap-wise (left) and edge-wise (right)
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 1011 Figure 10: Time histories of the twist angle at five different cross-sections in the radial direction of the rotor
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 12 Figure12: Time history of tip displacement in x-direction (see Figure13): long term simulation by using energy conserving scheme
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 1314 Figure 13: Blade position at several time instants during the simulation
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 15 Figure 15: Comparison of the aerodynamic loads (for a single blade) normal (left) and tangential (right) to the rotor blade computed by our panel method code, FAST and MIRAS
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 1617 Figure 16: Comparison of Von Mises stresses distribution for conventional upwind blade (right) and downwind placement with the wind in the back (left)

The perspective of this work is in studying fatigue failure under variable wind loads, where the proposed panle model should be extended to non-stationary flows and unsteady Bernoulli relation. This will enable us to model wind turbine blades behavior under challenging wind conditions, such as sudden wind gust.
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