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Abstract

This paper proposes a very efficient computational model for fluid-structure in-

teraction problems corresponding to steady-state flow representing a large over-

all motion of wind turbines with flexible blades. The model of turbine blades is

based upon the 3D solids finite elements with drilling rotations. The proposed

3D solids model is fully able to describe the flexibility blades large overall mo-

tion and easily capture both bending and torsional motion thanks to using an

enhanced strain field. The model efficiency is further reinforced by using the

3D panel method that fits naturally with proposed 3D solid finite elements for

blades. The proposed panel method is the corresponding modification of the po-

tential fluid flow by introducing a vorticity layer at the fluid-structure interface

and Bernoulli’s conservation momentum equation in order to provide quantifi-

cation for the blade thrust. The fluid-structure interaction is enforced through

an efficient iterative procedure providing on one hand a very fast computation

of aerodynamic loads, which is sufficiently accurate for computing the overall

thrust on the blade, and on the other hand a sufficiently accurate representa-

tion of the stress states suitable for fatigue studies. The proposed computational

model performance is illustrated with several numerical simulations, including

the practical case of a full-scale NREL 5MW wind turbine.
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1. Introduction

The current push for renewable energy resources is the main motivation for

constructing large wind turbines. The development of such wind turbines with

very large blades requires to take into account the blade flexibility in order to

provide a good understanding of the coupling effects between the blades large

motion and the corresponding aerodynamics. Hence, FSI (fluid-structure inter-

action) simulations are essential for accurate modeling of these wind turbines.

FSI simulations can be classified according to the direction of coupling. The

one-way coupling is to transfer only the loads calculated with fluid solver into

structural domain with no influence of the structure motion. This coupling

approach is studied in our previous work [1]. It can not capture an accurate

interaction in the sense that the motion and deformation of the wind turbine

blades depend on the wind speed and airflow, as much as the aerodynamic loads

depend on the motion and deformation of the blades. Thus, the two-ways cou-

pling is developed in this paper taking account of the interaction between the

blade motion and deformations and the aerodynamic pressure, with the main

goal of achieving both efficiency and sufficient accuracy.

In the two-ways coupling case, two approaches can be distinguished: mono-

lithic and partitioned. In the monolithic approach, the fluid equations and the

structural equations are incorporated with a common system, formulated and

solved as one single entity (e.g. see [2, 3]). On the other hand, the partitioned

approach is to solve the fluid equations and the structural equations separately

and to achieve the interaction by exchanging the common data through the

fluid-structure interface (e.g. [4, 5]). This approach is capable of using different,

possibly more efficient, solution techniques for both fluid and structural compu-

tations. Therefore, due to the size and the complexity of the problem, we adopt

partitioned coupling in this work. The main challenge remains to extend the
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partitioned coupling of FSI problems in the presence of large overall motion of

flexible blades, especially that the proposed structural model enforces the path

dependency with large rotations and thus imposes the Lagrangian approach.

The latter will be combined with the Eulerian approach for the proposed fluid

model.

There are essentially three approaches to model the aerodynamic behavior of

wind turbines. The blade element momentum (BEM) theory, initially proposed

by Glauert [6], is a fast and easily implemented method, but it is restricted to 2D

flow and assumes that each blade section is independent of every other blade

section. The computational fluid dynamics (CFD), governed by the Navier-

Stokes equations, is considered to be the most accurate, but also by far the most

costly [2, 7]. Moreover, a special attention should be given to problems related to

the data transfer in the fluid-structure interface [8], the volume mesh updating

of the fluid domain and the choice of numerical integration parameters in Navier-

Stokes resolution. The vortex panel method (VPM) [9] combines the advantages

of the BEM and CFD. It is faster than CFD, as it doesn’t need to solve the

full Navier-Stokes equations and is able to handle more complicated cases than

BEM for 3D problems. It provides the aerodynamic pressure distribution over

entire blade surface which is suitable for structural model. The standard VPM

is restricted for non-lifting potential flow. In this paper, It is modified to account

for flexible lifting body in large overall motion by introducing vorticity at fluid-

structure interface and by considering the relative flow velocity.

The novelty also concerns the structure model computations with respect to

the standard finite element method (FEM). Namely, the wind turbine blades are

the most frequently described by beam [10] or shell models (e.g. [11]), since the

models of this kind allow to save the computational time. Here, we choose the

3D solid model which allows more rigorous stress distribution that is of special

interest for fatigue failure, as the most common problem for wind turbines. An

enhanced 8-node solid element for the blade dynamics model is used with a

special choice of the deformation measure for more accurate approximation of

bending and torsional deflections. The formulation developements and the finite
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element implementation of the proposed solid element are presented in details

in our previous work [12] . An additional advantage of such choice is that the

structure discretization is identical to panel method discretization, eliminating

all inaccuracy related to the data transfer at the fluid-structure interface. The

coupling between panel method and enhanced 3D solid element offers a good

compromise between the process rapidity and the approximation quality. It is

very suitable to the parametric studies in preliminary design phase.

The final concern is the robustness of the partitioned fluid-structure inter-

action solution procedures. Several algorithms of partitioned computational

procedure are currently used, such as conventional serial staggered procedure

(CSS) [13]. A basic implementation of CSS reduces the time of coupling com-

putation. However, it does not ensure the displacement continuity and the

quality of the coupling. Several improved procedures have been proposed by

introducing a structure displacement predictor in updating phase of the fluid

mesh and a aerodynamic load corrector in advancing the structural solution to

the next step. The choice of the prediction remains unsettled issue. In this pa-

per, an iterative coupling algorithm is carried out until convergence to exchange

in each time step the aerodynamic loads (panel method code) and the struc-

ture displacements and velocities (FEM approximation) at the fluid-structure

interface. Some considerations are taken into account to ensure reliable interac-

tion between structural and fluid codes in large displacements and deformations

theory.

The paper outline is as follows. Section 2 describes the FSI problem. We

first present the procedure to compute the un oitile fluid flow loads based on the

3D vortex panel method. Then we detail the blade structural model based on

a variational formulation of the 3D solid element with independent rotational

degrees of freedom. Finally, we present the implementation of the strong cou-

pling between fluid and solid models. Several illustrative numerical simulations

and their results discussions are given in Section 3.The model is also used to

test new configurations, in terms of blade geometry and flow direction. Some

closing remarks are given in Section 4.
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2. Problem statement

2.1. Fluid flow computations by 3D vortex panel method

In this section we discuss the 3D panel method which is used to predict

the aerodynamic pressure applied on the blade surface [14, 15, 9]. We start

by first considering the steady-state potential flow, imposing the requirements

of incompressibility and irrotational motion by enforcing the following fluid

velocity field constraints:

∇ · vf = 0 (incompressible); ∇× vf = 0 (irrotational) (1)

where superscript ′f ′ indicates fluid.

By using the Helmholtz decomposition [16], the velocity field can be written

as the sum of the gradient of a scalar potential φ and the curl of a vector

potential ψ:

vf = ∇φ+∇×ψ (2)

By substituting such velocity definition in (2) into the incompressibility con-

dition (1)1 leads to the Laplace equation of the scalar potential:

∇ · vf = ∇ · (∇φ+∇×ψ) = ∇2φ = 0 (3)

The vector potential ψ is introduced in order to generate vorticity ξ and

thus to calculate the circulation Γ defined by:

Γ =

∫∫
S

∇× vf · n dS =

∫∫
S

ξ · n dS; ξ = ∇× vf (4)

where n is the exterior normal unit vector. The flow rotational character is

confined only to layer in contact with the blade by introducing vorticity ξ in

order to model the lift in the center of each panel element.

The vector potential ψ is considered as solenoidal potential, enforcing that

∇.ψ = 0. Thus, by exploiting the results in (2) and (4), we obtain the governing

equation for vector potential:

ξ = −∇2ψ (5)
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Figure 1: a) Velocity at point P induced by a vortex segment b) Velocity at the center

induced by a vortex ring with constant intensity

The fundamental solution of equation (5) is obtained by using Green’s func-

tion:

ψ =
1

4π

∫
V

ξ

|rξ − rP |
dV (6)

Here ψ is evaluated at point P defined by its position rP and is result of inte-

grating vorticity ξ at point rξ within the volume V (see Figure 1-a). We will

consider an infinitesimal vorticity filament dl with a constant circulation Γ and

the cross section area dS in (4) that it is normal to ξ. The equation (6) can be

recast as:

ψ =
1

4π

∫
l

Γ

|rξ − rp|
· dl (7)

Thus, the velocity induced at a point P by vorticity filament with a constant

circulation Γ can be defined by Biot-Savart law as:

∇×ψ =
Γ

4π

∫
l

(rξ − rP )

|rξ − rP |3
× dl (8)

The panel method is a boundary method which only concerns the fluid-

structure interface. It solves the Laplace equation (3) by superposition of sin-

gularity elements, which are also fundamental solutions to the Laplace equation.

The choice of these singularity elements depends obviously on the problem to be

modeled. For aerodynamic problem, the combination of free stream and vortex
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rings singularities is most widely used [9]. For the case where we consider a

wind turbine blade in a steady free stream, we can choose: ∇φ = v∞. Thus,

the result in (2) can be redefined by:

vf = v∞ + vfd (9)

where vfd is the velocity induced by vortex rings singularities. By definition,

the vortex ring is a closed contour C composed of four straight filaments with

a constant strength (see Figure 1-b). The velocity induced by a vortex ring at

a control point rc is derived from (8):

vfd =
Γ

4Π

∫
C

(r− rc)

|r− rc|3
× dl = vfd,1−2 + vfd,2−3 + vfd,3−4 + vfd,4−1 (10)

where vsd,1−2 is obtained by integrating over a straight vortex filament between

points ’1’ and ’2’ (see Figure 1-b):

vfd,1−2 =
Γ

4Π
geo(rc, r1, r2)

=
Γ

4Π

(r1 − rc)× (r2 − rc)

|(r1 − rc)× (r2 − rc)|2
(r2 − r1) · ( (r1 − rc)

|(r1 − rc)|
− (r2 − rc)

|(r2 − rc)|
)

(11)

The position vectors rc, r1 and r2 are expressed in the fixed coordinate systems.

Others components of vfd are computed in the same manner as vfd,1−2.

We seek to compute the fluid velocity vf in order to deduce the aerodynamic

loads by imposing the impermeability boundary condition which concerns only

the normal component of the flow:

(vf − vs) . n = 0 (12)

where vs is the structure velocity with superscript ′s′, indicating structure. For

the rigid blades (see [1]), vs can be expressed only by the angular velocity defined

as Ωs × r, where Ωs is the angular rotor velocity. However, in the present case

where the blades are flexible, vs is also affected by the structure deformations.

In discrete approximation, the blade surface is divided into a number of

panels with a control point c. A vortex ring of constant strength Γ is placed

in the center of each panel (see Figure 2). The zero normal flow condition as
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Figure 2: Blade surface discretization and vortex rings distribution

written in (12) should be satisfied at the control point r
(i)
c of each panel (i),

considering the influence of every other panel (j):(
vf (r(i)c )− vs(r(i)c )

)
. n(i)

c = 0(
v∞ +

nb∑
j=1

ai,jΓ
(j) − vs(r(i)c )

)
. n(i)

c = 0
(13)

where nb is the total number of blade panel elements. The vectors ai,j are the

influence coefficients (see Figure 2), computed from (10) and (11):

ai,j =
1

4Π
×
(
geo(r(i)c , r(j)nw, r

(j)
sw) + geo(rc, r

(j)
sw, r

(j)
se )

+ geo(r(i)c , r(j)se , r
(j)
ne ) + geo(r(i)c , r(j)ne , r

(j)
nw)
) (14)

The system is closed by enforcing the Kutta condition, which allows to pick

the physically sound circulation at the sharp edge. The latter implies that the

flow should leave the sharp trailing edge of an airfoil smoothly with the velocity

that should remain finite. Practically, for each circulation over a row of blade

panels, at the trailing edge, we add a single wake panel that allows to enforce

the following condition (see Figure 3):

ΓT.E = 0⇒ Γwake = Γupper − Γlower (15)

8



Ideally the wake panels extend to infinity, but in practice we choose the length of

wake panel that should be large enough to satisfy this condition. The addition of

wake panels involves adding new unknowns to the system for each row of blade

panels. By imposing Kutta condition and zero normal flow condition, we obtain

a set of linear algebraic equations including both blade and wake circulations

as unknowns:

a1,1 a1,2 ... a1,np

a2,1 a2,2 ... a2,np
...

...
. . .

...

anb,1 anb,2 ... anb,np

...

← Kutta condition →

...





Γ(1)

Γ(2)

...

Γ(nb)

Γ(nb+1)

.

Γ(np)


=



(v∞ − vs(r
(1)
c )). n

(1)
c

(v∞ − vs(r
(2)
c )). n

(2)
c

...

(v∞ − vs(r
(nb)
c )). n

(nb)
c

0

.

0


(16)

where np is the total number of panel elements. Once we solve for Γ values, we

can recover from (9) the fluid velocity field in the control point of each panel

(i):

vf (r(i)c ) = v∞ +

nb∑
j=1

ai,jΓ
(j) − 1

2
∇Γ(i) (17)

where

∇Γ(i) '

(rwe − rno)(Γwe + Γno) + (rso − rwe)(Γso + Γwe)+

(rea − rso)(Γea + Γso) + (rno − rea)(Γno + Γea)

× n
(i)
c

|(rno − rso)× (rwe − rea)|
(18)

The extra term ∇Γ in (17) represents the tangential velocity contribution of the

panel (i) itself, obtained by using the gradient theorem and the values of Γ at

neighboring control points (see Figure (2)).

The computed fluid velocity is written in the current deformed configuration,

by using the Eulerian formulation. When computing the corresponding fluid

pressure exerted on solid blades, this velocity should be transferred from the

Eulerian to the Lagrangian formulations, for which we use:

v̄f = vf − vs (19)
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Figure 3: Kutta condition at the trailing edge

The transformation of this kind represents the fluid velocity seen by an observer

located at a coordinate system attached to the blade. With this result on hand,

we can further use the Bernoulli equation enforcing the energy conservation

along a streamline, in order to obtain the corresponding value of pressure at the

panel element (i) which is computed at the control point in the center according

to:

p(i) =
1

2
ρ ( |v∞|2 − |v̄f (r(i)c )|2) (20)

The computed pressure is normal to the panel and constant over a particular

panel element. All panel values of pressure are grouped in a vector denoted by

Pf , and transferred to the structural solver. We ensure that the fluid and struc-

ture variables are recast in the same coordinates system. Given that fluid and

structure models have the same discretization at interface, no special procedure

is needed for such data transfer operation.

2.2. Structure model based upon 3D enhanced solid element

In this section, we present structural dynamic formulation for the wind tur-

bine blades. The latter are modeled by the 3D solid element undergoing large

displacements and large rotations. Such large overall motion is described by

specifying the motion of each particle from the initial configuration x to the

deformed configuration xϕ as:

xϕ = ϕ(x) (21)
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where ϕ is a point transformation [17]. The corresponding deformation gradient

can be written as:

F = ∇ϕ; J(x) = det[F] (22)

For a large overall motion of turbine blades, the current (deformed) and the

initial (fixed) configurations are quite different. One can no longer simplify com-

puting the derivatives and integrals in the deformed configuration with respect

to the coordinates chosen in the initial configuration [17].

The weak form of the equilibrium equations is written by using the coordi-

nates in the current configuration:

G(ϕ,uϕ) =

∫
Vϕ

εϕ(uϕ) ·σϕ dVϕ−
∫
Vϕ

uϕ · fϕ dVϕ−
∫
ϕ(Sp)

uϕ · t̄f,ϕdSϕ (23)

where εϕ, σϕ and uϕ are respectively the strain tensor, the Cauchy stress

tensor and the virtual displacement vector. fϕ and t̄
f,ϕ

are the volume forces

and surface forces applied to the structure. The surface force follows the normal

to the surface ϕ(Sp) in the current configuration, thus the name follower load.

It is written as:

t̄
f,ϕ

= pfnϕ (24)

where nϕ is the unit normal vector applied in the deformed configuration and

pf is the aerodynamic pressure computed by panel method code.

The equilibrium equation in (23) is expressed in the Eulerian description

that doesn’t provide any information about the deformation trajectory leading

to the deformed configuration. However, the Biot strain, chosen thereafter to

define the strain measures [1, 12], involves finite rotation tensor through the

polar decomposition [17]. Since the finite rotations are path dependent [18,

19, 20], the Eulerian formulation must further be replaced by the Lagrangian

formulation. By using the change of coordinates between the deformed and the

initial configurations, we can rewrite the weak form of equilibrium equations as:

G(ϕ,u) =

∫
V

H(u) ·T(x) dV−
∫
V

u · f dV−
∫
Sp

u · pfJ(x)F−TndS (25)
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where H and T are, respectively, the Biot strain and the Biot stress (see [12]

for details). The Nanson formula [17] is used to pull-back the follower pressure

boundary condition from the current configuration nϕ dSϕ to the initial con-

figuration n dS. In order to preserve computation stability, the finite element

implementation of the follower pressure is based upon the parametrization of

the current surface ϕ(Sp) with respect to the isoparametric domain [21]. We

denote by x̄ the position vector of a given point of Sp and by x̄ϕ its image in

ϕ(Sp). By defining a suitable 2D domain of isoparametric parameters (ξ, η),

the mapping from the isoparametric domain Sκ to the initial configuration Sp

is constructed by κ:

(ξ, η) ∈ Sκ → x̄ = κ(ξ, η) ∈ Sp (26)

By exploiting results in (21) and (26), the isoparametric parametrization of the

moving surface ϕ(Sp) is obtained by setting φ as:

(ξ, η) ∈ Sκ → x̄ϕ = φ(ξ, η) = ϕ ◦ κ(ξ, η) ∈ ϕ(Sp) (27)

Thus, the unit normal field is expressed by using the chain rule and the isopara-

metric mapping:

nϕdSϕ = (
∂φ

∂ξ
× ∂φ

∂η
) dξdη

= ∇ϕ(κ(ξ, η))
∂κ

∂ξ
×∇ϕ(κ(ξ, η))

∂κ

∂η
dξdη

(28)

With this result on hand, the weak form of the follower pressure boundary

conditions defined in (23) can be written in natural coordinate system:∫
ϕ(Sp)

us,ϕ · Pϕ,fnϕdSϕ =

∫
Sκ

φ(us) · Pϕ,f ∇ϕ(κ(ξ, η))
∂κ

∂ξ︸ ︷︷ ︸×∇ϕ(κ(ξ, η))
∂κ

∂η︸ ︷︷ ︸ dξdη
=

∫
Sκ

φ(us) · Pϕ,f φ,ξ(ξ, η) × φ,η(ξ, η) dξdη

(29)

This kind of parametrization based on isoparametric elements is the best

suited for our subsequent finite element implementation, since discretization
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and linearization commute [17]. By introducing the perturbed configuration of

ϕ given as:

ϕε = ϕ+ εµ(xϕ) = ϕ+ εµ ◦ϕ (30)

where µ is an admissible variation of ϕ, the linearization of result in (29) can

be written as:

Lin

[ ∫
ϕ(Sp)

us,ϕ · Pϕ,fnϕdSϕ
]

=
d

dε

[ ∫
ϕ(Sp)

us,ϕ · Pϕ,fnϕdSϕ
]
ε=0

=

∫
Sκ

φ(us) · Pϕ,f
[
[(∇µ ◦ φ)φ,ξ]× φ,η + φ,ξ × [(∇µ ◦ φ)φ,η]

]
dξdη

(31)

η

ζ

ξ

1

2 3

4

8
6

5
7

ϕ(Sp)

1

4

3

2

φ = ϕ ◦ κ

isoparametric configuration current configuration

Figure 4: Choice of the finite element discretization for pressure surface

In the finite element implementation, we assume that each panel surface is

a single facet of the 3D solid element used for blade modeling. The discrete

approximation of the position vector in ϕ(Sp) is thus constructed from the

standard isoparametric interpolation of 8-nodes brick element, which results

with a quadrilateral element discretization of each particular facet (see Figure

4):

x̄ϕ =

4∑
a=1

N̄a(ξ, η)x̄a =

4∑
a=1

Na(ξ, η,−1)x̄a (32)

where Na are the standard shape functions of 8-nodes brick element, while x̄a

are the corresponding nodal values.

By choosing the Biot strain, H = RT (I +∇u) − I, we introduce the finite

rotation tensor R, which further imposes the path-dependency. We briefly recall
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the corresponding variational formulation and the discrete approximation in

dynamics:

i)

∫
V

δus · ρsüs dV +

∫
V

symm[Rs,T (∇δus + (I +∇us + ds)× δws)] · symm[T]

+ skew[Rs,T (∇δus + (I +∇us + ds)× δws)] · skew[T] dV

−
∫
V

δus. f dV−
∫
ϕ(Sp)

δus · Pϕ,fnϕdSϕ = 0

ii)

∫
V

{symm[Rs,T δds] · symm[T] + skew[Rs,T δP · ds] · skew[T]− δds ·P}dV = 0

(33)

Here ρs is the structure density, δw is the axial vector associated to the in-

finitesimal skew-symmetric tensor δW such that δW = δRR and δWb =

δw × b, ∀ b ∈ R3. The addition of an incompatible displacement gradient ds

is needed to avoid locking problems. By using the finite element discretization,

the variational equations in (33) is reduced to set of algebaric equations. The

formulation developement and the numerical implementation are presented in

details in our previous work [12].

2.3. FSI coupling

The structural and fluid computations are performed separately and later

coupled through data exchange at the fluid-structure interface. The fluid part

provides the aerodynamic pressure distribution Pf and the structural part pro-

vides the kinematic variables u and v.

The conditions to be fulfilled on the fluid-structure interface are the conti-

nuity of displacements and the surface stresses. Enforcing these conditions with

the partitioned approach requires an iterative solution procedure. For a typical

time step tn+1, we are given the known variables x̄n, vsn, and Pf
n. We look for

x̄n+1, vsn+1, and Pf
n+1 which satisfy equations of motion for fluid, structure and

interface conditions. For simplicity, we assume that the fluid and structure time

steps are equal, ∆t = ∆ts = ∆tf .
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Non-iterative procedure: conventional serial staggered procedure (CSS)

We first consider the CSS procedure characterized by the following steps

illustrated in Figure 5 :

1/- Transfer the kinematic variables from the structure part to fluid part and

update the interface position in panel method.

2/- Solve the linear system (16) to compute fluid velocities vfn+1. Then, compute

the normal pressures vector Pf
n+1 as defined in (20).

3/- Transfer the pressure distribution Pf
n+1 to the structure solver where it is

considered as Neumann boundary condition. It should be noted here that the

benefit of choosing panel method and follower pressure boundary conditions is

to allow a direct data transfer at the fluid-structure interface.

4/ - Apply the aerodynamic pressure Pf
n+1 on the blade surface and advance

the structure system to tn+1 by solving the system in (33). The latter requires

an iterative procedure with an implicit time integration.

The CSS scheme introduces a one time-step lag between the fluid and struc-

ture computed solutions. This can lead to an accumulation of errors and thus

to a poor estimate of the computed blade response, in particular when the time-

step size is not small enough. In order to compensate this time shift between the

fluid and structure solvers, the predictor-corrector procedure has been proposed

(e.g.[22]). The procedure involves introducing the structure displacement pre-

dictor and the pressure corrector respectively in Steps 1 and 4. It requires also

a single iteration in order to provide a faster convergence. However, the choice

of the prediction and correction remains unsettled issue, namely for the case of

strong non-linearity. For that reason, we turn towards an iterative procedure

that can converge towards the results of monolithic approach.

Iterative procedure: generalized serial staggered procedure

The iterative coupling algorithm is based on CSS algorithm, extended by a

sub-cycling between the structure and fluid solvers until reaching convergence

with the current structure motion and the corresponding aerodynamic loads.

One of the convergence criterion is the aerodynamic load variation between
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Figure 5: one-teration (right) and iterative (left) Coupling algorithms

two iterations. Because of the large displacements and large rotations, the

aerodynamic loads obtained in two different iterations are necessarily associated

to two different deformed configurations. For the purpose of a fair comparison,

it is convenient to transfer the pressure intensity to the initial configuration by

applying an appropriate pull-back operator:

P̃
f,(k)

n+1 = φ∗(P
f,(k)
n+1 ) (34)

The virtual work of fluid pressure applied on the deformed surface ϕ(Sp) can

be expressed as:

δuϕ · fext =

∫
ϕ(Sp)

δuϕ · pfnϕdSϕ (35)

By reparametrizing the variation of displacement vector in the initial configu-

ration,

δus,ϕ = δu(ϕ(xs)) = δu(xs)→ δus,ϕ := δus (36)

and by using the Nanson formula, (35) can be rewritten as:

δu · fext =

∫
Sp

δu · pf cof [F] n dS; cof [F] = J(x)F−T (37)

Then, the virtual work of the fluid pressure can be directly transported in the

initial configuration as follows:∫
ϕ(Sp)

δus,ϕ · pfnϕdSϕ =

∫
Sp

δus · p̃f n dS (38)
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By using the transformation in (37), we obtain:∫
Sp

δus · pf cof [F]ndS =

∫
Sp

δus · p̃f n dS (39)

The pull-backed pressure for a single panel is therefore defined by:

p̃f = pf × ||cof [I +∇u] n|| (40)

Knowing the kinetic variables and pressure distribution at time tn, the corre-

sponding values at time tn+1 are computed by solving structure motion, fluid

flow and enforcing interface conditions by using the following iterative algorithm

(see Figure 5):

I/- Initialize the pressure distribution for the first iteration (k = 0)

P
f,(k=0)
n+1 = Pf

n (41)

II/- Repeat the iterative procedure until the convergence, advancing at each

iteration (from (k − 1) to (k)) from (1) to (5).

(1) - The displacement vector u
(k)
n+1 and the velocity vector v

(k)
n+1, obtained

from the structure solver in the previous iteration, are transferred to the panel

method code. The fluid mesh is updated to compute the corresponding pressure

distribution tensor P
f,(k)
n+1 .

(2)- Compute the normal pressure vector P
f,(k)
n+1 by means of panel method

code.

(3)- The pull-back operation is performed as shown in equation (40) at the

control points in order to compute P̃
f,(k)

n+1 and the convergence pressure criterion

can be checked by means of

||P̃f,(k)

n+1 − P̃
f,(k−1)
n+1 || ≤ tol1 (42)

(4)- The pressure distribution P
f,(k)
n+1 is transferred to the FEM code. An

iterative resolution of the following nonlinear system is executed in order to

update kinematic variables

M

∆ü
s,(k)
n+1

∆ẅ
s,(k)
n+1

+ (K̃n+1 + K̄(P
ϕ,f,(k)
n+1 ))

∆u
s,(k)
n+1

∆w
s,(k)
n+1

 = rn+1 + r̄(P
f,(k)
n+1 ) (43)
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where M is the mass matrix, K̃ is the condensed stiffness matrix and K̄ is the

stiffness matrix associated to the pressures elements.

(5)- The second convergence criterion can then be checked pertinent to the

structure displacement

||u(k+1)
n+1 − u

(k)
n+1|| ≤ tol2 (44)

If the convergence criterions (42) and (44) are not reached, the kinetic variables

are transferred again to the fluid code to continue with the next iteration (k+1).

III/- Otherwise, we advance to the next time step.

The structure formulation involves finite rotations that are highly nonlinear

and require special update procedure. For that reason, the iteration (k + 1)

the computation should be carried out from the configuration at tn which has

already reached the convergence state and not from the intermediate iterative

configuration [tn+1, (k)]. This avoids the error introduced by the intermediate

configuration which can seriously impair the quality of the computed results.

Figure 6: Robust iterative computation based on converged states

3. Numerical simulations of wind turbine model

In order to validate the proposed fluid-structure coupling algorithm, we con-

sider the numerical simulation of the nonlinear dynamic response of a wind
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turbine model. The latter is chosen as NREL (National Renewable Energy

Laboratory) offshore 5-MW wind turbine with tests reported in [23]. It has

three blade rotor with 126 m diameter. As shown in Figure 7, the blade is

composed of several airfoil types described in detail in [23]. The finite element

model is based on the proposed 3D solid elements. The mechanical proprieties

are: Young’s modulus E = 39 GPa, poisson’s ratio ν = 0 and mass density

ρ = 2100 kg/m3 [11].

Figure 7: NREL 5-MW wind turbine model: a) positions along the span b) airfoil cross-

sections in standardized code

The finite element computations are performed with a research version of

the computer program FEAP, written by Prof. R.L. Taylor at UC Berkeley

[24]. The panel method code is implemented with MATLAB. The data transfer

is performed with MATFEAP interface.

3.1. Validation of the panel method

The first example concerns the validation of the aerodynamic model based

on panel method. Results obtained by panel method are compared with results

obtained by others aeroelastic codes such as FAST [25] and MIRAS [26]. The

wind speed is ranging from 5m/s to 14m/s. The rotor speed is assumed to be
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constant for each case.

The aerodynamics loads normal (Fn) and tangential (Ft) to the rotor plane

are presented in Figure 15, for different values of rotation speed and wind speed.

All results are computed for only one blade. The cylindrical sections of the blade

doesn’t provide any lift, so they are not presented in Figure 15. In general,

results show that the proposed panel method code is in good agreement with

the standard aeroelastic codes FAST and MIRAS. More specifically, our results

are much closer to these obtained by MIRAS because both are based on an

approximation of the solution of Laplace’s equations using different singularities.

However, the code FAST implements the BEM technique.

One can notice that the normal force is still higher that the tangential force.

It increases linearly until it hits the maximum at approximately 90% of the

total blade length. That can be explained with higher rotational speed at the

tip of the blade (Vr = Ω × r). However, the tangential force, providing the

aerodynamic moment, is nearly equally distributed by means of the variation of

the blade twist from 13.3 degrees at the root to the zero degrees at the tip. All

results presented here allow to validate the fluid part.

Time histories of the aerodynamic torque are presented in Figure 8 in a case

where the wind speed is uniform at 9 m/s and the rotor speed is 10.9 rpm.

Simulations are carried for both flexible and rigid blades with a constant time

step ∆t = 0.01s. For rigid blades case, results obtained by Panel method are

compared to data reported in [23], obtained by using FAST as well as the results

performed by a CFD analysis in [27]. The exact match can not be expected since

our computational modeling is based on different assumptions that those used

in [23] and [27]. Nevertheless, the results remain rather close. The torque

computed by panel method is slightly larger, which is explained by the fact that

panel method doesn’t take into account the drag effects.

Time histories of the aerodynamic torque are also plotted for both rigid and

flexible blades in Figure 8. For rigid blade, the aerodynamic torque remains con-

stant over time as the air flow is stationary and the rotor velocity is a constant.

However, the aerodynamic torque for flexible blade, computed in the same con-
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Figure 8: Time histories of the total aerodynamic torque: comparison with references for rigid

blades (left) and results obtained by Panel method for both rigid and flexible blades (right)

ditions, has a tendency to oscillate due to the contribution of the deformation

velocities. Therefore, the blade flexibility affects the aerodynamic loads even by

imposing a constant rotor speed.

3.2. Coupling computations at fluid-structure interface

Next, we consider the performance of the proposed approach in handling

the coupling aspects. The aerodynamic profiles and the structure proprieties

remain the same as for the first example. The rotor speed is no longer constant

over time. The wind turbine rotor is subject to a steady wind velocity 11.4m/s

and an initial rotation velocity 12rpm. The simulations are carried out with

a constant time step ∆t = 0.05s by using one-iteration and iterative coupling

algorithms.

The time histories of the tip blade displacements in-plane and out-plane are

plotted in Figure 9. The blade mostly deforms in the flap-wise direction, which

is already expected from the values of the normal loads in Figure 15. Some

edge-wise deflections are also present but of much lower amplitude than the

out-plane deflections. They are characterized by the presence of high frequency

oscillations. We note that the in-plane and out-of-plane deflections obtained

by the one-iteration algorithm are considerately larger than those obtained by
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the iterative algorithm coupling. For exemple, the maximum of the flap-wise

deflection reached by the iterative algorithm computation is nearly 6m, which

is consistent with the results reported in [23, 11]. However, it exceeds 8m for

the one-iteration coupling algorithm. We can thus deduce that the sub-cycling

between structure and fluid part improves the approximation quality and avoids

overestimate computed response.
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0
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Figure 9: Time histories of the tip flap-wise (left) and edge-wise (right)

Besides, time histories of the twist angle at five different cross-sections along

the blade are presented in Figure 10. They show the presence of high frequency

vibrations. The twist angle characterizes the torsional deformation of airfoil sec-

tions. It increases with distance from the root because the aerodynamic forces

is higher near the blade tip (see Figure 15). Between the time points t = 2s and

t = 3.5s, the twist angle is negative for different cross-sections. By summing

torsional deformations and aero twist angles imposed initially by the blade ge-

ometry, the total twist angle tends towards zero at different cross-sections. This

will reduce the aerodynamic performance of the blade and correspondingly de-

crease the rotation speed of the rotor.

The major advantage of the proposed aeroelastic model is in very rapid con-

vergence as shown in Figure 11. For a time step equal to 0.05s, the number

of coupling iterations remains under 10. The convergence is checked in both

structure and fluid codes. The convergence displacement criterion is reached
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Figure 10: Time histories of the twist angle at five different cross-sections in the radial direction

of the rotor

faster than the convergence pressure criterion (see Figure 11). For a given

coupling iteration, the structure solver ensures quadratic convergence. The it-

eration number doesn’t exceed 12 iterations with a satisfying rate of convergence

(≈ 10−20). For the panel method code, a single iteration is sufficient to recover

the aerodynamic pressure since the system to solve is linear. For a time step

with six coupling iteration, the computation time is equal to 47s with Intel

Core 7-8550U CPU 1.80 GHz. In Figures 9 and 10, the computed in-plane
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Figure 11: Coupling convergence information
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displacement and the twist displacement show the presence of high frequency

modes, superposed on top of low frequencies modes. The latter leads to the well

known stiff system of equations, which is difficult to solve by using the standard

Newmark scheme. For that, we propose to the energy-conserving time-stepping

scheme, which is appropriate for such problems. The details of constructing such

time stepping scheme are presented in our previous work [28]. For a time step

equal to ∆t = 0.01s, the computation using the Newmark scheme can no longer

converge for time exceeding T = 12s. However, the energy conserving scheme

ensures the convergence over long time interval (see Figure 12). It can avoid the

instability issues of high frequencies and carry out long term simulation, which

is needed for the studies of fatigue failure.

Figure 12: Time history of tip displacement in x-direction (see Figure 13): long term simula-

tion by using energy conserving scheme

3.3. Computed response for pre-bent blades

Increasing blade size makes it necessary to review blade design in order to

avoid peak material stresses and fatigue failures. Preliminary simulations for

testing new configurations is therefore crucial and it can be established by the
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proposed aeroelastic model. In this context, new configurations in terms of

blade geometry and its exposure to the wind flow are tested.

As shown above, the blade bends mainly in wind direction, even risking to

strike the tower and damage the system. In order to avoid such a situation, the

blade can be pre-bent at an angle θ equal to 10 deg while keeping the wind in

up direction. Alternatively, we can change the blade orientation with respect

to the wind direction so that the blade receives the wind in the back side of the

turbine (see Figure 14).

Figure 13: Blade position at several time instants during the simulation

Figure 14: New configurations of blade shape and its emplacement with to wind
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The von Mises stress distribution for the pre-bent downwind blade and the

conventional upwind blade are plotted in Figure 16 at different calculation times

(see Figure 13). As expected, the conventional blade stresses are concentrated

at the bottom of the blade, which explains the succession of cylindrical profiles

at the bottom of the blade in order to to reinforce the structure. The stresses

are also increasing in time. In fact, the wind turbine starts accelerating in

time and the rotation velocity increases in time, leading to higher aerodynamic

pressure and as a consequence to higher stress distribution. However, for the

downwind blade, stresses are distributed uniformly indicating the benefit of such

configuration. Besides, the maximum value of stress for the pre-bent downwind

blade does not exceed 4 × 108Pa. However, the maximum value of stress for

conventional blade is equal to 1 × 1011Pa. We can deduce that the downwind

configuration reduces significantly the stress values.

Time histories of the flap-wise deflection and the x-displacement of the blade

tip are plotted in Figure 17 for the three configurations treated here. For the

upwind configuration, the conventional and the pre-bent upwind blades behave

almost in the same way. The flap-wise deflection curves show the presence of

a constant amplitude shift between the conventional and the pre-bent upwind

blades while keeping the same oscillation modes. This shift reduces the risk

of collision between the flexible blade and the tower in the upwind pre-bent

configuration.

The downwind pre-bent blade presents a different flap-wise deflection re-

sponse. In fact, the blade bends in the wind direction then remains in the same

position with low amplitude vibrations. However, the blade rotation becomes

slower because of the decrease of the tangential force in this configuration. Thus,

the downwind conception is beneficial in the flexible blades case since it allows

to get more homogeneous stress distribution and to avoid the risk of collision

between the blade and the tower. But it implies a decrease in the aerodynamic

torque which affects the wind turbine productivity.
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Figure 15: Comparison of the aerodynamic loads (for a single blade) normal (left) and tan-

gential (right) to the rotor blade computed by our panel method code, FAST and MIRAS
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Figure 16: Comparison of Von Mises stresses distribution for conventional upwind blade (right)

and downwind placement with the wind in the back (left)

4. Conclusions

In this paper we present a numerical model for fluid-structure interaction

capable of handling nonlinear dynamic analysis of very large wind turbines with

flexible blades that can deflect significantly under wind loading. The model is

based on an efficient partitioned approach to fluid-structure interaction (FSI)

considering incompressible and non-viscous flow interacting with a flexible 3D

blade structure undergoing overall large transformations. It seeks to provide a

good estimate to the aerodynamic loads and the associated dynamic response

of such structure with relatively little computation effort which is of interest for

preliminary design phase.

The choice of the 3D solid element to model the flexible wind turbine blades

provides a more detailed information on the stress distribution in the blades
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Figure 17: Comparison between conventional upwind blade, pre-bent upwind blade and pre-

bent downwind blade: time histories of the tip flap-wise direction (right) and tip displacement

in x-direction (left)

than what could be obtained from standard structural models, such as beam

and shells, in general used for this purpose. Such more detailed stress distri-

bution is of special interest for studies of risk of fatigue failure, which is the

principal cause of failure for wind turbine blades. In order to improve the bend-

ing approximation, the proposed solid element is enhanced by a special choice

of deformation incompatible modes. The solid element computations are per-

formed by a research version of computer code FEAP.

The fluid model is based on 3D vortex panel method. It consider the fluid

flow representation only on the solid boundary, resulting with relatively fast

method for calculating the pressure distribution compared to CFD solution to

full Navier-Stokes equations, yet it provides comparable results for the blades

torque. The latter is recovered by taking into account the vorticity and the

Bernoulli momentum conservation along the streamlines. An efficient iterative

procedure ensures a simple data exchange between fluid and structure, mostly

thanks to using 3D solid finite elements that enforce the mesh conformity. The

aerodynamic and structural domains interact with each other via a partitioned

coupling scheme with iterative procedure, where special provisions are taken in

order to account for large overall motion.
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The perspective of this work is in studying fatigue failure under variable wind

loads, where the proposed panle model should be extended to non-stationary

flows and unsteady Bernoulli relation. This will enable us to model wind turbine

blades behavior under challenging wind conditions, such as sudden wind gust.
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