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AB S T R AC T

With the increasing popularity of nanocomposites appears the necessity of the devel-
opment of efficient modelization procedures. In particular, numerical strategies have
to be developed to reproduce and predict the size effect observed on such materials.
Usually, the size effect is taken into account by introducing a surface elasticity at the
interface between the nano-inclusions and the matrix. Whereas a lot of works have been
developed from the analytical point of view, few contributions are related to numerical
description and implementation of such surface elasticity in Finite Element codes. In
this work, we present a comparative study between two different numerical approaches
of the literature namely XFEM [1] and interface element [2]. For a fair comparison,
these two approaches have been implemented in the same framework, considering the
same element topology. After validation of the implemented strategies, we investigate,
in particular, the influence of the homogenization hypothesis in terms of boundary con-
ditions on the computed effective mechanical properties. The comparison in the present
work gives an evaluation of the two studied approaches and it is expected to be a good
basis to elaborate an optimal numerical computation method.

1. Introduction

Due to their remarkable mechanical behavior for low
reinforcement mass fraction (less than 5%) [3], nano-
reinforced polymers are increasingly used as structural
materials. This interest has induced considerable world-
wide research on nanocomposites mechanical behavior.
Most of these studies focused mainly on experimental
processing and characterization or analytical modeling.
The challenge for the modeling of these materials lies in
taking into account the size effect induced by the nano-
fillers on the macroscopic behavior of the material. This
size effect, commonly attributed to local phenomena at
the atomic scale, can be interpreted through an increase
in the ratio (interface matrix-inclusions) / (volume frac-
tion of inclusions). The local material modifications
induced by the reinforcement can be modeled, in the
framework of continuum mechanics, by an interphase
[4, 5, 6]. However, from the numerical point of view,
the interphase model requires a very fine mesh in or-
der to capture the gradient of the fields in the direction
of thickness. Due to the very localized material mod-
ifications around the inclusions, interface models are
commonly considered to handle the behavior of the in-
terphase. Equivalent interface models can be built from
interphase models [7, 8, 9] through asymptotic analysis.
Depending on the properties of the interphase relatively
to the phases in presence, cohesive, coherent or mixed
general interface models can be derived. In the present
work, the contribution of the interaction between the
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matrix and the inclusions is modeled through the in-
troduction of a coherent interface defined by a two-
dimensional surfacic linear elasticity law [10] resulting
in the introduction of surface stress and surface strain
tensors. The coherent interface acts like a membrane
for which the surface stresses are related to the jump
of the traction vector across the surface. The equilib-
rium of the interface is then determined thanks to the
generalized Young-Laplace equation [11].

The coherent interface model has been implemented
in different works to estimate the behavior and effec-
tive elastic properties of nanocomposites. Most of these
studies extended the classical analytical approaches by
adding an imperfect interface between the matrix and
the inclusions. We can cite here the extended Eshelby’s
formalism by Sharma and Ganti [12, 13, 14, 15], the
extended generalized self-consistent method (GSCM)
by Le Quang and He [16], the extended Mori-Tanaka
scheme by Duan et al [17] and the extended Hashin-
Strikman bound by Brisard et al [8, 18]. The main lim-
itation of all these developments remains on the fact
that only spherical or cylindrical inclusions can be con-
sidered. A computational approach able to handle in-
clusions with complex geometries could breakthrough
this limitation.

Numerically, two main categories of approaches are
considered in the litterature to take into the size ef-
fect observed in nanoreinforced materials. Those two
types of techniques, namely molecular dynamics, and
finite element, are related to different scales of mod-
eling. Classical molecular dynamic (MD) simulations
[19, 20, 21] are conducted at the scale of the atomistic
interactions between the chains of the polymer material
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of the matrix and the nano-fillers whereas continuum
finite element formulations (FEM) [22, 23, 1, 24, 25] lie
in the framework of continuum mechanics and are based
on the introduction of a surface elasticity as suggested
by Gurtin and Murdoch [10]. Molecular dynamics sim-
ulations have the ability to investigate the phenomena
occurring at very small length scales where the stan-
dard framework of continuum mechanics is no longer
valid. Meanwhile, FEM approaches allow to circum-
vent the high computational cost inherent to molecu-
lar dynamics computations while efficiently reproduc-
ing surface effects, at least at a phenomenological point
of view.

From these motivations, size-dependent mechani-
cal behavior in nanostructured materials has been first
treated numerically by introducing a surface element in
a standard FEM framework by Gao et al [23]. A stan-
dard finite element implementation with interface ele-
ment accounting for surface elasticity have been lately
employed for predicting the degradation of a nonco-
herent interface in the framework of finite strains in
[2, 26]. More recently, we have to mention the contri-
bution of Javili et al in [27, 28] in which, a general im-
perfect interface has been treated by using an interface
element approach. In the context of surface/interface
element, Cenanovic et al [29] suggested a formulation
allowing to integrate elastic membranes in a finite el-
ement formulation, though such an approach has not
been applied to the case of nano-reinforced material.
Besides, Yvonnet et al [1] proposed to embed surface
effects in an eXtended Finite Element Method (XFEM)
allowing therefore handle the arbitrary shapes of inho-
mogeneities by the level set method. XFEM approach
was then extended to account simultaneously for sur-
face elastic energy and surface debonding in [30, 31].
To the best of the author’s knowledge, standard FEM
with surface/interface element and XFEM/level set are
two of the most considered approaches in the literature
to capture the size effect in nanocomposites. We pro-
pose in this paper to compare the efficiency of these
two approaches: XFEM/level set and Interface element
based approach. In order to make the comparison as
fair as possible, the numerical implementation of each
approach has been performed with the same data: size
of finite element mesh, material properties, Represen-
tative Volume Element (RVE). After being validated
thanks to several analytical results, the approaches are
exploited to investigate the influence of different types
of boundary conditions on the effective elastic proper-
ties of the nanocomposite.

The paper is organized as follows: in Section 2, we
describe the equations governing the problem of a two-
phases medium with a coherent interface. In Section
3 the fundamentals and the discretization techniques
for XFEM approach and Interface element approach
are presented. The numerical results obtained for both
formulations are compared and analyzed in Sections 4

Figure 1: Problem of two phases with an imperfect interface.

and 5. Finally, in Section 6, the original conclusions of
this comparative study are presented.

2. Problem definition

2.1. Equilibrium equations and boundary conditions

We consider here a continuum body described by a
bounded domain Ω ⊂ Rd (d = 2 or 3) , with boundary
∂Ω. This domain consists of two-phases Ω(1) and Ω(2) (
in the following Ω(1) and Ω(2) denote inclusion and ma-
trix, respectively). These two phases are partitioned by
an interface Γ (see figure 1) with unit normal denoted
as n pointing, conventionally, from Ω(1) toward Ω(2).
The outward unit normal to ∂Ω is denoted ñ. The
boundary ∂Ω is partitioned into ∂Ωu where Dirichlet
boundary conditions are prescribed and ∂ΩF where
Neumann boundary conditions hold (∂ΩF ∪ ∂Ωu =
∂Ω and ∂ΩF ∩ ∂Ωu = ∅). In the rest of the paper,
the jump of a quantity {•} over the interface is defined
by [[{•}]] = {•}(2) − {•}(1).

The equilibrium equations in Ω(i) (i = 1, 2) are
given by:

divσ(i) + b = 0 ∀x ∈ Ω(i), i = 1, 2 . (1)

The Neumann and Dirichlet boundary conditions on
∂Ω are defined by:

σ · ñ = F on ∂ΩF and u = ū on ∂Ωu , (2)

where σ denotes the bulk Cauchy stress tensor and b

denotes a volume force.
As mentioned above, a coherent surface Γ is intro-

duced at the interface between the matrix Ω(2) and the
inclusion Ω(1). According to the generalized Young-
Laplace equation [10] the equilibrium of the interface Γ
is given by:

divsσs + [[σ]] · n = 0 ∀x ∈ Γ , (3)

where σs is the surface stress tensor and divs is the
surface divergence operator defined by:

divs{•} = ∇s{•} : P with P = I− n⊗ n , (4)
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where I is the second order unit tensor, P the second
order projection operator on the interface Γ and ∇s the
surface gradient.

Moreover, we can mention that contrary to classi-
cal continuum mechanics hypothesis, the generalized
Young-Laplace equation allows a jump of the traction
across the interface Γ. We consider in this paper that
there is no decohesion at the interface Γ so that we
have the following kinematic conditions (derived from
Hadamard’s compatibility conditions):
{

[[u]] = 0 ,

[[ǫ]] = (a ⊗ n+ n⊗ a)s a ∈ R
d .

(5)

The weak form associated with equations (1) and
(3) is given by testing with vector value test functions
δu ∈ H1(Ω) and δus ∈ H1(Γ) where H1 denotes the
Sobolev space of order 1:
∫

Ω

δu · (divσ + b) dΩ

+

∫

Γ

δus · (divsσs + [[σ]] · n) dΓ = 0 ∀(δu, δus). (6)

Using the divergence theorems and taking into account
the symmetry of both the bulk and surface stress ten-
sors σ and σs, equation (6) can be alternatively written
as:
∫

Ω\Γ

(∇sδu) : σdΩ−

∫

Ω\Γ

δu · bdΩ

−

∫

∂Ω

δu · (σ · ñ)dS +

∫

Γ

δu · [[σ]] · ndΓ

+

∫

Γ

(∇s
sδus) : σsdΓ−

∫

Γ

δus · [[σ]] · ndΓ

−

∫

∂Γ

δus · (σs ·m)dl = 0 , (7)

where we explicitly took into account the jump of the
stress tensor σ over the interface Γ.

In equation (7), we denoted as ∇s
s the surfacic sym-

metric gradient operator (defined as ∇s
s{•} = ∇s{•}P),

∂Γ is the boundary of Γ and m is outward unit normal
vector to ∂Γ. In the following, we will assume that the
interface Γ is closed so that the term

∫

∂Γ disappears.
Moreover, as already started previously we assume no
decohesion at the interface so that we have δus = δu|Γ.
Thus, equation (7) can be written as:
∫

Ω\Γ

∇sδu : σdΩ+

∫

Γ

∇s
sδu|Γ : σsdΓ

−

∫

Ω\Γ

δu · bdΩ−

∫

∂Ω

δu · σ · ñdS = 0 . (8)

2.2. Constitutive equations for the bulk and the

interface

The bulk constitutive law in the context of linear elastic
model is given by:

σ = C
(i) : (ǫ− ǫ∗) , (9)

where C(i) is the fourth-order elastic stiffness tensor as-
sociated with domain Ω(i) and ǫ∗ is a potential/optional
eigenstrain prescribed on Ω∗ ⊂ Ω(i). On the interface,
the surface tangent stress σs is related to the surface
elastic strain tensor ǫs by the following equation which
has been presented by Bottomley et al in [32] like a
constitutive equation:

σs = C
s : ǫs , (10)

where Cs is the surface stiffness tensor. The interface
strain tensor ǫs can be derived from the bulk strain ten-
sor ǫ by projection on the tangent plane of the interface
through the projection operator P defined in (4):

ǫs = PǫP . (11)

For an elastically isotropic surface/interface, the con-
stitutive equation (10) can be rewritten

σs = 2µsǫs + λs(trǫs)I , (12)

where λs and µs are Lame’s constant for the surface
(interface). Taking into account the constitutive rela-
tions (9) and (10) and the fact that usually test func-
tions are chosen equal to zero on the Dirichlet boundary
∂Ωu, the weak form (8) can be expressed as:

∫

Ω\Γ

ǫ(δu) : C : ǫ(u)dΩ +

∫

Γ

ǫs(δus) : C
s : ǫs(us)dΓ

=

∫

Ω\Γ

δu · bdΩ +

∫

∂ΩF

δu · FdΓ

+

∫

Ω\Γ

ǫ(δu) : C : ǫ∗dΩ ,

(13)

where ǫ{•} = ∇s{•} and ǫs{•} = ∇s
s{•}. Finally, if

the relation (11) is taken into account, we obtain:
∫

Ω\Γ

ǫ(δu) : C : ǫ(u)dΩ

+

∫

Γ

Pǫ(δu)P : Cs : Pǫ(u)PdΓ

=

∫

Ω\Γ

δu · bdΩ +

∫

∂ΩF

δu · FdΓ

+

∫

Ω\Γ

ǫ(δu) : C : ǫ∗dΩ . (14)

The next sections of this paper aim at comparing two
different implementations of an elastic interface namely
XFEM [1] and an approach based on interface element
[23]. The two previous equivalent versions of the weak
form of the equilibrium equations (13) and (14) serve,
respectively, as basis for interface element discretiza-
tion and XFEM discretization. Indeed, as presented in
the next section, the major difference between the two
approaches is the explicit (interface element approach)
or implicit (XFEM approach) discretization of the dis-
placement along the interface Γ.
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Figure 2: An example of XFEM mesh and Interface element mesh.

3. Finite element implementation

In this work, we limit our investigation to three
nodes triangular elements. In the following, we discuss
the choices in terms of interpolations and numerical im-
plementation for two different numerical descriptions
of the kinematics of the interface, namely XFEM/level
set and standard FEM with interface elements. For
XFEM/level set approach, the interface is implicitly
described by the introduction of a level-set function.
Thus, regular meshes can be adopted even if the in-
terface has a complex geometry. On the contrary, for
the interface element approach, the interface is explic-
itly described through a conforming mesh (see figure
2). In both cases, the strain and stress tensor can be
expressed in the vector forms:

ǫ =
[
ǫ11 ǫ22 ηǫ33 2ǫ12

]T
,

σ =
[
σ11 σ22 ησ33 σ12

]T
,

(15)

where, for plane strain problems η = 0 and the indices
1,2,3 are associated with respectively directions ex, ey,
and ez while for axisymmetric problems η = 1 and the
indices 1,2,3 are associated with directions er, ez and
eθ .

3.1. XFEM/levelset approach

For XFEM approach, the specific shape of the interface
is defined by means of the introduction of a level set
function φ(x). By denoting x

c and rc the center and
radius of the inclusion (in the case we consider a circular
inclusion), the interface Γ is geometrically defined by:

φ(x) = ‖x− x
c‖ − rc = 0 , (16)

Usually, function φ(x) is chosen as the signed distance
to the interface Γ. With such a choice, the sign of

function φ(x) also defines the partition of the domain
into two different phases : φ(x) > 0 in the matrix and
φ(x) < 0 in the inclusion. The implicit interface is not
discretized and we can not derive directly the surface
strain tensor ǫs. In this case, equation (11) is used to
extract the surface strain tensor which implies to form
the projection operator P = I − n ⊗ n by numerically
evaluating n. This is achieved by considering the dis-
cretized form φh of the level set function φ(x):

φh(x) =

n∑

i=1

Niφi . (17)

where Ni is the finite element shape function associated
with node i and φi = φ(xi) where xi corresponds to
node i. Therefore, the numerical evaluation of n gives
:

n(x) =
∇φ(x)

||∇φ(x)||
, (18)

To satisfy the discontinuous conditions (5) across the
interface within the framework of XFEM, the enriched
approximation proposed in [33] is used. This approxi-
mation is defined at a given point x ∈ Ωe by:

u
h(x) =

n∑

i=1

Ni(x)ui +

m∑

j=1

Nj(x)ψ(x)aj , (19)

where the index j corresponds to the set of nodes per-
taining to the elements whose support are cut by the
interface and ψ(x) is the enrichment function which is
defined as [33] :

ψ(x) =

n∑

i=1

|φi|Ni(x) −

∣
∣
∣
∣
∣

n∑

i=1

φiNi(x)

∣
∣
∣
∣
∣
. (20)

It has to be noticed that this enrichment function has
zero values on the nodes of the enriched elements, sug-
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gesting that a local enrichment could be proposed in-
stead of a global one.

Enriched node

Intersection between the interface and the mesh 

Interface integration points

Bulk integration points

Figure 3: Element cut by the interface Γ, approximated inter-
face and integration points.

In order to compute the surface integral in the weak
form (14), a two Gauss points integration is performed
along the interface. Note that the geometry of the in-
terface is discretized according to the discretization of
the level set function φ(x) resulting in a piecewise linear
approximation of the interface when considering linear
finite element interpolation. For the bulk, the elements
crossed by the interface are divided into sub-triangles
where the numerical integration is carried out consid-
ering three integration points (see figure 3). It has
to be noticed that, due to the enrichment (see (19)),
the interpolation of strains and stresses in the element
crossed by the interface is one order higher than for
standard elements. Finally, by using the approximation
(19), the following discrete system of linear equations
is obtained:

(K+K
s)d = f , (21)

where

K =

∫

Ω(1)

B
T
C

(1)
BγdΩ+

∫

Ω(2)

B
T
C

(2)
BγdΩ ,

f =

∫

Ω

N
T
bγdΩ+

∫

∂ΩF

N
T
FγdΓ

+

∫

Ω(1)

B
T
C

(1)ǫ∗(1)γdΩ

+

∫

Ω(2)

B
T
C

(2)ǫ∗(2)γdΩ ,

K
s =

∫

Γ

B
T
M

T
C

(s)
MBγdΓ.

(22)

and d gathers all the degrees of freedom:

d = [u1...un a1...am]T . (23)

γ = 1 for plane strain problems and γ = 2πr for ax-
isymmetric problems. C

(1), C
(2),C(s) correspond re-

spectively to the matrix form of the elastic tensor for
phase (1), phase (2) and the interface Γ.

C
(i) =







(λ(i) + 2µ(i)) λ(i) ηλ(i) 0

λ(i) (λ(i) + 2µ(i)) ηλ(i) 0
ηλ(i) ηλ(i) η(λ(i) + 2µ(i)) 0

0 0 0 µ(i)







(24)

The matrix B is defined by B = [B1 · · ·BnB̂1 · · · B̂m]
with Bi = L(Ni) (L is the standard matrix form of the

symmetric gradient operator) and B̂j = L(Njψ).
The matrix M is defined according to:

M =







P 2
11 P 2

12 0 P11P12

P 2
12 P 2

22 0 P12P22

0 0 η 0
2P11P12 2P12P22 0 (P 2

12 + P11P22)






. (25)

We can note that the introduction of the surface
elasticity on the interface Γ results in the introduction
of an added stiffness K

s in the tangential direction of
the interface in the resulting linear system of equations.

3.2. Interface element approach

The other strategy explored in that paper to account for
a coherent interface is based on an explicit discretiza-
tion of the interface (see figure 2) through the use of
interface elements with surface elasticity. This strat-
egy had been detailed by [2, 27, 34] in the framework
of finite strains and in the general case of the imperfect
interface where both tractions and displacements can
be discontinuous across the interface. We develop here
a similar strategy in the framework of small strains and
focus only on the treatment of the surface elasticity so
that no decohesion is, at that stage, taken into account.
In that case, we consider the classical interpolation of
the displacement in the bulk given as:

u
h(x) =

n∑

i=1

Ni(x)ui , (26)

along with a specific interpolation for the displacement
on the interface:

u
h
s (x) =

m∑

i=1

N̄i(x)us,i , (27)

where N̄i is the shape function of 1D interface ele-
ments associated to node i and us,i corresponds to the
displacements of node i along the interface direction
obtained by projection the components of the displace-
ment in the global frame onto the local frame (see figure
4):
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Figure 4: Interface element and bulk neighbor elements.

[
us,1
us,2

]

=

[
cosϕ sinϕ 0 0
0 0 cosϕ sinϕ

]

︸ ︷︷ ︸

T







u1
v1
u2
v2






,

(28)

The surface strain tensor in element e is then built such
that:

ǫ(e)s = B̄
(e)

Tu , (29)

where B̄
(e) is the matrix of shape function derivatives

of a classic 1D element. By using the weak form (13)
and the approximations (26) and (27), we obtain the
following discrete system of linear equations:

(K+K
s)d = f , (30)

where

K =

∫

Ω(1)

B
T
C

(1)
BγdΩ+

∫

Ω(2)

B
T
C

(2)
BγdΩ ,

f =

∫

Ω

N
T
bγdΩ+

∫

∂ΩF

N
T
FγdΓ

+

∫

Ω(1)

B
T
C

(1)ǫ∗(1)γdΩ

+

∫

Ω(2)

B
T
C

(2)ǫ∗(2)γdΩ ,

K
s =

∫

Γ

T
T
B̄

T
C

s
B̄TγdΓ ,

(31)

where the surface stiffness matrix is, in this case with
the interface element, defined as:

C
s =

[
λs + 2µs ηλs
ηλs η(λs + 2µs)

]

. (32)

4. Numerical results: comparison and

analysis

In this section, we compare the performance and results
obtained from the two previously presented approaches

for different problems. It’s worth pointing out that with
current technologies, there is no possibility of direct
measurement of the mechanical properties of the inter-
face. This limitation has been circumvented in recent
works by appealing to molecular dynamics computa-
tions for inverse identification of mechanical properties
of the interface [35]. The purpose of this article is to
compare the performance of two numerical approaches.
Therefore the mechanical parameters of the interface,
the matrix and the inclusions are not chosen from real
materials but to assess the sensibility and robustness
of the considered numerical strategies to the problem
parameters.

In order to compare the two considered numeri-
cal approaches, we handle the problem of a cell with
a cylindrical inclusion by considering plane strain hy-
pothesis. A representation of the geometry of the con-
sidered problem is given on Figure 5. To evaluate the
performance of the two numerical approaches as re-
gards the problem parameters, we vary the mechanical
properties of the interface, the matrix, and the inclu-
sion. To that purpose, we define the two "contrast"
coefficients α and β:

α =
κ̂s
κ̂m

and β =
Ei

Em

, (33)

where κ̂s = λs + 2µs is the plane strain surface mod-
ulus of the interface and κ̂m denotes plane strain bulk
modulus of the matrix. Ei and Em denote the Young
modulus of the inclusions and the matrix, respectively.

(a) Eshelby problem (b) Two-phases material

(c) XFEM mesh (d) Interface element mesh

Figure 5: Problems with coherent interface are treated in the
plane strain model.
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4.1. Validation of the numerical approaches

We first consider the problem of an inclusion immersed
in an infinite elastic domain and submitted to a di-
latational eigenstrain (see figure 5a). Such a prob-
lem corresponds to the so-called Eshelby problem for
which analytical solutions including the effect of a co-
herent interface between the inclusion and the matrix
have been derived [12, 13, 14, 15]. For the numer-
ical computation, only a bounded domain is consid-
ered around the inclusion and the analytical solution
in terms of displacements is prescribed on the bound-
ary of the finite domain. In the results presented in
this section, the loading conditions correspond to a di-
lational eigenstrain ǫ∗ prescribed to the inclusion and
such that ǫ∗ = ǫ∗11 = ǫ∗22 = 0.5, ǫ∗33 = 0.

The performance of the numerical approaches con-
sidered in this paper will be evaluated through the eval-
uation of the error and rate of convergence, which is
performed on the basis of the relative energy norm er-
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Figure 6: Convergence analysis for the extended Eshelby prob-
lem (β = 1) with a coherent interface.

ror defined by:

e =

√∫

Ω (ǫh(x) − ǫ(x)) : C : (ǫh(x)− ǫ(x)) dΩ
∫

Ω
ǫ : C : ǫdΩ

(34)

where ǫh is the computed strain with the considered
numerical strategy and ǫ is the analytical solution. All
the computations are performed considering three-node
triangular elements and the error is computed for vari-
ous element sizes h. The results are presented on figure
6. As seen on figure 6a, the introduction of a surface
elasticity (α 6= 0) degrades the rate of convergence of
XFEM. For α = 0 (no surface elasticity), the expected
rate of convergence r ≈ 1 is recovered. On the con-
trary, when considering interface elements, the rate of
convergence is not affected by the introduction of sur-
face elasticity and we observe, as expected, a rate of
convergence close to 1 for all values of α.

Next, in order to validate the efficiency of the two
implemented strategies in reproducing the size effect
observed when considering surface elasticity, we com-
pute a size effect indicator defined as follows [1]:

ξ =
|Es|

|Es|+ |Eb|
=

|
∫

Γ
σs : ǫsdΓ|

|
∫

Γ σs : ǫsdΓ|+ |
∫

Ω σ : ǫdΩ|
(35)

where Es and Eb denote the surface and bulk energy
respectively. We consider 40× 40 nodes mesh for both
numerical approaches and compute the size effect indi-
cator ξ for the same volume fraction of inclusion f = 0.2
but with various radii of the inclusions and various val-
ues of the contrast parameter α. The results are given
on figure 7.
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Figure 7: Size effect indicator versus inclusion radius for the
extended Eshelby problem (β = 1).

We can see that the results are quite similar, both nu-
merical approaches are capable of reproducing the ex-
pected size effect, though, as mentioned above, the con-
vergence of XFEM is slower than interface element for
high values of α.
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4.2. Size dependence of effective properties of

two-phases nanocomposites

The two implemented numerical strategies can be used
to derive, numerically, the effective or homogenized prop-
erties of materials presenting nano-inclusions (see fig-
ure 5b). The effective bulk modulus and effective shear
modulus (κseff , µ

s
eff ) of the nanocomposites differ from

those predicted classically with no effect of the interface
(κeff , µeff ). These differences (κseff − κeff )/κeff and
(µs

eff −µeff )/µeff depend, for a given volume fraction
of inclusion f , on the size of the inclusions. In this
subsection, we vary the value of the contrast parame-
ter β from 0 (porous material) to 10 to assess how the
stiffness contrast ratio of the two materials (matrix and
inclusion) affects the size effect, the elastic properties
of the interface remaining unchanged. The results are
reported on figure 8 for the bulk modulus and on figure
9 for the shear modulus.

For instance, for inclusions 10 times stiffer than the
matrix, the effective modulus is not much affected by
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Figure 8: Size dependence of effective plane strain bulk mod-
ulus of two-phases materials for α = 0.2 and α = −0.2 for
different values of the stiffness contrast β.

the size of the inclusions while for nanoporous mate-
rials (β = 0) the size effect is more pronounced. It is
worth mentioning that for the purpose of this sensitiv-
ity analysis we assumed that the elastic properties of
the interface are independent of the elastic properties
of the surrounding materials (matrix and inclusion).
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Figure 9: Size dependent of effective plane strain shear mod-
ulus of two-phases materials for α = 0.2.

4.3. Effective properties of a nanoporous material and

influence of the boundary condition

In this subsection, we use the interface parameters ob-
tained through molecular dynamics simulations [35] to
compute the effective properties of an aluminum based
nanoporous material.

• Aluminum matrix : Young modulus E = 70 GPa,
Poisson ratio ν = 0.32

• Elastic coherent interface: (given in Miller and
Shenoy [35])

- set A: λs = 6.842 N/m, µs = −0.375 N/m.

- set B: λs = 3.48912 N/m, µs = −6.2178 N/m.

- set C: λs = 0 N/m, µs = 0 N/m (no interface
elasticity).

We report in the following the results obtained con-
sidering different types of boundary conditions on the
unit cell represented on the figure 5b namely: Peri-
odic Boundary Conditions (PBC), Kinematic Uniform
Boundary Conditions (KUBC), Stress Uniform Bound-
ary Conditions (SUBC). The results obtained with both
numerical strategies are compared to the ones obtained
from the analytical homogenization strategy denoted
as GSCM [16]. The results, for the homogenized bulk
moduli, are presented on figure 10 for different values
of the radius of void R and different volume fraction f .

We can observe on this figure that, for high volume
fractions of nano-voids SUBC and KUBC hypothesis
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Figure 10: Size effect in effective plane-strain bulk modulus for different type of boundary condition.

lead to results quite different from the analytical pre-
dictions given in [16]. But, in that comparison of the
homogenized bulk modulus, for periodic boundary con-
ditions, the predictions of both numerical strategies are
very close to the analytical ones for which cylindrical
inclusions in a shell of matrix with a coherent interface,
are surrounded by the effective medium. This result for
periodic boundary conditions could be explained be-
cause the GSCM model takes into account interactions
between inclusions and the Periodic Boundary Con-
ditions are better than Kinematic or Stress Uniform
Boundary Conditions to account for the interactions
between the considered phases, indeed Kinematic and
Stress Uniform Boundary Conditions do not take any
phase interactions into account. For low volume frac-
tion of nano-voids, numerical and analytical results are
very close whatever the boundary conditions.

The same type of comparisons has been carried out
considering the effective shear modulus. The results
are presented on figure 11. For the Periodic Bound-
ary Condition, a good agreement between the results
of the two numerical approaches can be observed on

figure 11a, the size dependence of effective shear mod-
ulus being clearly shown up. However, unlike the case
of bulk modulus, we found a difference between the
results of GSCM and the results of numerical homoge-
nization though the periodic boundary conditions still
give the closest results (see figures 11b, 11c and 11d).

4.4. Spherical void (axisymmetric model)

The axisymmetric problem is used here to consider
spherical nano-inclusions. This model allows us to work
on a 2D mesh but handle a symmetric 3D problem.
However, the Periodic boundary condition can’t be ap-
plied to the axisymmetric model. Therefore, only the
KUBC and SUBC results are presented (see figure 12).
The reference solution is the analytical solution given
in [17]. As shown on figure 12, for the bulk modu-
lus, a good agreement between the two presented ap-
proaches and between theory and numerical solution
is observed. The results for the effective shear modu-
lus are presented on figure 13. Once again, like in the
previous subsection, we obtain a difference between nu-
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Figure 11: Size-dependent effective plane-strain shear modulus for different type of boundary condition.

merical and analytical results. However, the size effect
is clearly observed and very good agreement between
the two considered numerical approaches is obtained.
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4.5. Nanoporous material with random distribution

In order to complete the comparison between the two
considered approaches and to describe more realistic
material configurations, we consider a material with
randomly distributed nano-voids. Thus a larger RVE
composed of 30 circular nanovoids randomly distributed
is now considered. Since many voids have to be taken
into account in the discretization, the level-set function
defined in equation (16) is now computed to the nearest
void. The volume fraction is set to 0.3 while we vary
the radius of voids. For each radius, a statistical con-
vergence on the mean value of the effective properties
is carried out. As shown on figure 15 the convergence
needs 15 to 20 samples to be reached. Two different
discretizations resulting from two different samples are
represented on figure 14.

(a) XFEM non-conform mesh

(b) Interface element conform mesh

Figure 14: Two different samples for a 30 randomly distributed
nano-voids RVE.
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We used 80x80 nodes meshes for both approaches.
The results in term of effective bulk modulus with re-
spect to the size of the nano-voids are presented on fig-
ure 16. The influence of the size of nano-voids is clearly
observed, although the two approaches don’t give ex-
actly the same result. This is probably due to the fact
that, as shown in section 4.1, the convergence of XFEM
is in presence of surface elasticity slower than the con-
vergence of interface element based method (see figure
6a).
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Figure 16: Size effect for effective plane-strain bulk modulus
for nanoporous material with randomly distributed nano-voids
(f = 0.3, E = 70 GPa, ν = 0.32, Interface set A).

5. Nonlinear behavior

After the here above presented validation and exploita-
tion for linear behavior, the numerical model is here
used in the context of non-linear material behavior. We
focus in this section on the very first results given by
the two presented approaches. A von Mises type elasto-
plastic law with linear isotropic hardening is considered
for the bulk with classical yield criterion:

f(σ,q) =‖ dev(σ) ‖ −

√

2

3
(σy − q) , (36)

where σy is the elastic limit stress and q is the stress-
like variable associated to the hardening variable. The
interface is considered as linear elastic. Since we have a
non-linear problem, a standard Newton-Raphson pro-
cedure and a return mapping integration [36] of elasto-
plasticity model have been used. After linearization, at
time step n+ 1, Eq. (21) and Eq. (30) now becomes

(Kn+1 +K
s)∆dn+1 = ∆fn+1 , (37)

with

Kn+1 =

∫

Ω

B
T
C

ep
n+1BdΩ , (38)

where C
ep
n+1 is the coherent tangent matrix [36]. For

each iteration of the iterative procedure, we need, at

each integration point, to update all the internal vari-
ables (for the considered model, we count 5 internal
variables: the plastic strain tensor components and the
cumulated plastic strain). Hence, for Interface element
approach, only 5 variables need to be updated per ele-
ment, while for XFEM, the iterative procedure for en-
riched elements requires to compute and update 45 vari-
ables per enriched element (see figure 3). In that sense,
for complex nonlinear irreversible behaviors, XFEM re-
quires a huge amount of local updatings, each of them
resulting from the resolution of local nonlinear equa-
tions.

We study the homogeneous behavior of a nanoporous
material in terms of the evolution of the mean devia-
toric stress with respect to the mean deviatoric part of
the strain. Such analysis aims at obtaining the non-
linear homogeneized behavior of the composite includ-
ing surface effect. A simple traction test is performed
on the RVE presented on figure 5b with the same mate-
rial properties as in the previous subsection. The elastic
limit stress and hardening modulus of the bulk are set
to σy = 7 GPa and K = 20 GPa. The homogeneous
behavior of the deviatoric part is presented on figure
17. A very good agreement of the results from the two
compared numerical approaches is obtained whereas
the amount of local nonlinear updating is not of the
same order for each method. We can observe the ho-
mogeneized behavior of the composite is influenced by
the size of the inclusion both in the elastic part (as al-
ready shown previously) and in the plastic part of the
behavior leading to different elastic limit of the com-
posite. These results are very first results considering
nonlinear material behaviors, the non-linearities beeing
here limited to the behavior of the matrix. For future
works, we could also consider the nonlinear behavior of
the interface.
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Figure 17: Elastoplastic behavior for three different radius of
nano-voids R = 1 nm, R = 2 nm and R = 50 nm.
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6. Conclusion

In the context of the prediction of the mechanical be-
havior of nanocomposites, a comparison of two numer-
ical procedures namely XFEM approach and interface
element based strategy has been performed. Both ap-
proaches are based on the implementation of a coherent
interface with surface elasticity to account for size effect
in nanocomposites. The results show that, whatever
the contrasts of "rigidity" of the surface with respect
to the matrix (coefficient α in this paper) the rate of
convergence of XFEM is affected by the presence of
surface elasticity while for interface element approach
the rate of convergence is not affected. Even so, both of
the considered numerical methods are able to reproduce
the size effect of the Eshelby problem with coherent in-
terface [12, 13, 14, 15]. Moreover, the performances of
the two numerical approaches in reproducing the size
effect have also been evaluated for different fictitious
materials by varying the contrast of rigidity between
the matrix and the inclusions (coefficient β in this pa-
per). The results obtained by the two studied numer-
ical approaches were also compared to micromechani-
cal schemes proposed in [16] and [17] in the context of
the evaluation of the effective properties of nanoporous
materials. To that purpose, different sets of bound-
ary conditions were considered. As could be expected,
due to the underlying hypothesis of the micromechani-
cal model (interactions between inclusions), it emerges
that, for the effective bulk moduli, the two numerical
approaches estimations are very good agreement with
the micromechanical model when considering periodic
boundary conditions on the unit cell. However, this
is not the case for estimation of the effective shear
modulus. To approach more realistic configurations,
a material with randomly distributed nano-voids has
been considered. The two considered computational
approaches give slightly different results in terms of ef-
fective properties, which can be attributed to the slower
convergence of XFEM compared to the interface ele-
ment approach. Finally, in order to assess the influence
of the non linear behavior of the matrix, a nanoporous
unit cell composed of an elastoplastic matrix with lin-
ear isotropic hardening and coherent interface has been
studied. Those first results allows to envisage to con-
sider more complex non linear behaviors within the nu-
merical homogenization strategy to get closer to more
realistic behaviors than linear elastic behaviors for the
constituents.
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