Design and thermal assessment of a micro electromagnetic actuator
Muneeb Ullah Khan, Amaury Charvet, Jérémy Terrien, Frédéric Lamarque, Christine Prelle

▶ To cite this version:
Muneeb Ullah Khan, Amaury Charvet, Jérémy Terrien, Frédéric Lamarque, Christine Prelle. Design and thermal assessment of a micro electromagnetic actuator. 2016 11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS) /17th Internationall Conference on Research and Education in Mechatronics (REM), Jun 2016, Compiègne, France. pp.260-265. hal-02120851

HAL Id: hal-02120851
https://hal.utc.fr/hal-02120851
Submitted on 6 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Design and thermal assessment of a micro electromagnetic actuator

Muneeb Ullah Khan, Amaury Charvet, Jérémy Terrien, Frédéric Lamarque and Christine Prelle
Sorbonne universités, Université de technologie de Compiègne (UTC)
CNRS, UMR 7337 Roberval, Centre de recherche Royallieu
CS 60319 - 60203 Compiègne cedex, France
muneeb.ullah.khan@utc.fr,amaury.charvet@etu.utc.fr,jeremy.terrien@utc.fr,frederic.lamarque@utc.fr,christine.prelle@utc.fr

Abstract—In this paper, an experimental study to investigate maximum drive current handling capability of a compact electromagnetic actuator is presented. The actuator design consists of a mobile part and a fixed part. The mobile part assembles two pairs of six permanent magnets into a small cross structure. The fixed part integrates two planar electric drive coils. These coils are isolated from each other and are fabricated into top and second layer of a four layer printed circuit board. In addition, to reduce the overall temperature of the fixed part, a thermal pad has been integrated. During experimentation, the actuator was injected with different amplitude of sinusoidal currents, to drive the mobile micro pallet onto the fixed part. A thermal sensor is used to measure the surface temperature rise due to joule heating. From experimental results, it has been concluded that the proposed actuator design can handle up to 0.8 A of sinusoidal current with a maximum rise in surface temperature of 48°C in 100 cycles test of 8 mm along both x- and y-axis. The maximum cooling time was found to be 450 seconds.

Keywords—electromagnetic actuator, permanent magnets, temperature measurement, joule heating, finite element analysis.

I. INTRODUCTION

In recent years, electromagnetic actuation technology has been widely adapted in micro applications. High speed and dynamics, fast response time are some of the promising features of this technology [1], [2]. Their magnetic levitation characteristics are often adapted to eliminate friction and adherence effects that appears due to the contact between the mobile part and fixed part of these actuators [3], [4]. These characteristics makes electromagnetic actuators suitable for high precision and positioning tasks in micro applications such as chip manufacturing, biomedicine, surface characterisation, etc, [5]–[7].

Although, electromagnetic actuators are being successfully applied into numerous domains as described above, the growing trend of miniaturization have made modern electromagnetic actuator designs more challenging. For example, to accomplish smaller dimensions for these actuators, the overall dimensions of their main components such as Permanent Magnets (PMs), drive coils, and mechanical holding structure, need to be minimized [8]. Thanks to advancements in the microfabrication technology, nowadays, coils and mechanical structure with micrometer level dimensions and shapes can easily be achieved. Furthermore, the advancement in material science technology have encouraged researcher to develop small PMs with modern magnetic material such as Samarium cobalt, Neodymium Iron Boron, etc., to be easily adapted to modern electromagnetic actuator designs [9], [10].

In micro electromagnetic actuator designs, two approaches are often utilized. First, a moving coils and fixed PMs approach [11] and second, fixed coils and moving PMs technique [12]. In the first approach, the current carrying conductors are placed on the rotor side and a concentrated magnetic field is formed using multiple PMs. This approach often leads to a complex design demanding continuous power connections at the rotor end of the actuator. On the contrary, the second design approach is often preferred to achieve wire free design of the mobile part that integrates PMs [13]. Although, both design approaches have their merits but one of the common problem associated with electromagnetic actuators is joule heating. In down scaled versions of these actuators, the need of injecting high currents to generate large electromagnetic forces often results in deterioration of PMs or drive coils. One of the solution apart from the lowering the magnitude of the injected current, is to introduce cooling structures (e.g., thermal fins, etc.). In addition to these structures, a forced cooling can also be performed to remove the generated heat from the coils using micro fans. However, the introduction of these components can increase complexity in the overall design as well as increase power consumption of the micro electromagnetic actuators. Moreover, these elements can increase overall cost and dimensions of the actuators.

In planar electromagnetic micro actuators based on fixed coils and moving magnets approach, the overall design of the device can be optimized to evacuate the generated joule heat by means cooling structures such as thermal pads in the fixed part. This approach disperses the generated heat due to the large surface area of thermal pads. As a result, higher currents can be injected while significantly reducing the temperature rise without need of forced cooling techniques. Moreover, a compact and more economical actuator design can be assured.

In this paper, a novel planar electromagnetic actuator design is proposed. The drive coils of the actuator have been designed and fabricated in a four layer Printed Circuit Board (PCB) to achieve compact dimensions. In addition, to improve the current handling capability of the drive coils, a thermal pad layer has been developed to disperse the generated joule heat. Analysis and experiments have been conducted to study the maximum surface temperature rise on the fixed part of the actuator (see section III). At the end, the maximum current handling capability of the actuator design without increasing the temperature that helps in deteriorating the magnetization.
of the PMs is presented in section V. At the end conclusion is
given and perspectives are discussed in section VI.

II. DESIGN LAYOUT AND ACTUATION PRINCIPLE OF THE
ELECTROMAGNETIC ACTUATOR

The design of the electromagnetic actuator consists of a mobile part (called micro pallet) and a fixed part as shown in
the Fig.1. The mobile part integrates a pair of six permanent
magnets along x- and y-axis. The PMs have been arranged in
North-South (NS) configuration to facilitate self-assembly and
achieve symmetrical magnetic field [13]. The mechanical cross
structure to assemble the PMs of the micro pallet has been
laser cut in a 0.5 mm thick Plexiglas acrylic sheet. In addition,
to provide a smooth insulation medium between the micro
pallet and current carrying conductors, a thick glass layer has
been also cut using laser cutting technology. The geometrical
parameters are provided in Table I. The specific shape of the
cross structure has been adapted to minimize overall weight
of the micro pallet.

The fixed part consists of two Planar Electric Drive Coils
(PEDCs). These PEDCs have been commercially fabricated
using a four layer PCB technology as depicted in Fig.1. The
top layer includes a PEDC to drive the micro pallet along y-
axis. The second layer consists of a PEDC that is orthogonally
oriented in xy-plane with respect to top layer PEDC. The
second layer PEDC are used to drive the micro pallet along
x-axis. If PEDCs of both layers are injected with sinusoidal
currents, a motion in xy-plane can be achieved. In addition, to
the above mentioned layer, the fixed part integrates a thermal
pad in the third layer to evacuate the joule heat. This thermal
pad is connected to the bottom layer through thermal vias.
Furthermore, the bottom side of the fixed part is used to
inject the currents using power source wires through a PCB
connector that is connected to the PEDCs in top and second
layer of the fixed part of the actuator.

The working principle of the actuator is based on genera-
tion of the Lorentz forces. When sinusoidal currents are
injected in the respective PEDC to achieve translation motion,
a Lorentz force appears due to the interaction between the
current in the PEDC and magnetic field generated by the PMs.
As a result, the free micro pallet experiences the generated
electromagnetic force and moves along the desired direction.

Table I. The physical characteristics of the actuator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent magnet dimensions</td>
<td>1 mm × 6 mm × 0.5 mm</td>
</tr>
<tr>
<td>Remanent magnetization of a PM</td>
<td>1.43 T</td>
</tr>
<tr>
<td>Micro pallet dimensions</td>
<td>17 mm × 17 mm × 0.5 mm</td>
</tr>
<tr>
<td>Glass layer dimensions</td>
<td>17 mm × 17 mm × 0.13 mm</td>
</tr>
<tr>
<td>Weight of the micro pallet</td>
<td>0.35 grams</td>
</tr>
<tr>
<td>Fixed part dimensions</td>
<td>28 mm × 28 mm × 1.4 mm</td>
</tr>
<tr>
<td>PEDC thickness (top layer)</td>
<td>58 μm</td>
</tr>
<tr>
<td>PEDC thickness (second layer)</td>
<td>33 μm</td>
</tr>
<tr>
<td>Thermal pad</td>
<td>25 mm × 25 mm × 0.033 mm</td>
</tr>
<tr>
<td>Bottom layer copper thickness</td>
<td>60 μm</td>
</tr>
</tbody>
</table>

In comparison to the previous design proposed by our research
team in [14], this new design has been improved in two ways.
Firstly, the conductor thickness of the second layer PEDC was
increased from 18 μm (old design) to 33 μm in order to reduce
the resistance. As a result, magnitude of the generated joule
heat (i.e., I²R) can be minimized. Secondly, a thermal pad in
third layer of the fixed part was integrated [see Fig.1] to
disperse generated joule heat. In comparison with the previous
design [14], which allows only 0.6 A current value due to the
mentioned design limitations, this new design should solve
these issues. Besides, the thermal pad layer together with the
thermal vias should improve the temperature evacuation.

Figure 2, represents the microscopic view of the PCB cross
section that has been commercially fabricated. All four layers
can be easily be identified. From the analysis, the copper
thickness of the PEDCs in the top layer and second layer
was found to be 58 μm and 33 μm, respectively. Similarly, the
thermal pad layer that consists of a 33 μm copper layer can be
seen. In the bottom layer a 60 μm, copper layer can be seen
which represents the connection traces to deliver the sinusoidal
currents in the PEDCs at top and second layer of the fixed part.
III. MODELING AND ANALYSIS

In this section, modeling and analysis has been performed to evaluate the actuator design, especially its thermal behaviour.

A. Electromagnetic force computation model

The total electromagnetic force (or Lorentz force) applied on the micro pallet has been computed using (1) [13]. This equation takes into account the magnetic flux density due to the PMs and currents in the PEDCs of top and second layer of the fixed part, respectively.

\[
F_L = N \sum_{k=1}^{2} I_k \int_{wire} dl \times B_{ext}^{(k)} + N \sum_{q=1}^{2} I_q \int_{wire} dl \times B_{ext}^{(q)} \quad (1)
\]

where, \(F_L\) is the total electromagnetic force, \(N\) denotes the number of conductors in each PEDC, superscripts \((k)\) and \((q)\) denote the relative position index for magnetic flux density computation with respect to the coils in the PEDCs of top and second layer, respectively. \(B_{ext}\) is the external magnetic flux density components \((B_x\) and \(B_z)\) computed using (2) which is based on reduction of \(R\) numbers of PMs to equivalent current distribution for computing \(B_x\) and \(B_z\) at any point in space due to multiple PMs [15].

\[
B_x = \frac{\mu_0 M_s}{2\pi} \left[\sum_{i=1}^{R} \ln \left(\frac{(x-2iw)^2 + (z-h)^2}{(x-2iw)^2 + (z+h)^2} \right) - \ln \left(\frac{(x-2Rw)^2 + (z-h)^2}{(x-2Rw)^2 + (z+h)^2} \right) \right]
\]

\[
B_z = \frac{\mu_0 M_s}{2\pi} \left[\sum_{i=1}^{R} atan \left(\frac{2h(x-2iw)(-1)^i}{(x-2iw)^2 + z^2 - h^2} \right) - atan \left(\frac{2h(x-2Rw)}{(x-2Rw)^2 + z^2 - h^2} \right) - atan \left(\frac{2hx}{(x-2w)^2 + z^2 - h^2} \right) \right] \quad (2)
\]

While taking into account the physical characteristics presented in table I, a static analysis in Radia® has been performed to study the generated translation and levitation forces for injected currents ranging from 0.1 A to 1 A. The objective behind this study was to determine the injected current's amplitude in the top layer PEDC and second layer PEDC, for which an identical translation force can be obtained. From the results presented in Fig. 3, it can be observed that, for a maximum current value of 0.8 A in second layer PEDC, an identical 9.3 mN translation force can be obtained with 0.6 A in top layer PEDC. The maximum value of the injected current (i.e., 0.8 A) was selected to minimize joule heating due to the small cross section of the conductors in the second layer PEDC. In addition, for the identified current values, i.e., 0.6 A and 0.8 A in top layer and second layer PEDCs, the levitation force was found to be 10.6 mN and 8.7 mN, respectively, as shown in Fig. 3. The difference between the two levitation forces is due to the difference in the air gap between PEDC at top and second layer with respect to PMs.

B. Steady-state thermal analysis of the PCB

In order to study the joule heating effect, a Finite Element Analysis (FEA), to evaluate the maximum temperature rise in the PCB has been performed. The geometrical parameters presented in table I have been incorporated to realize the model in COMSOL® Multiphysics software. However, some simplifications have been adapted to reduce simulation time. At first, the PEDC have been modeled as a linear array of conductors as shown in Fig. 4. Moreover, thermal pad and vias have been modeled as a copper plate (with no currents) in third layer. This choice is made due to the fact that during production of the PCB, the thermal pads have been fabricated as a 33 μm thick copper layer [see Fig. 2].

To realize steady state analysis, a 0.8 A peak current was selected to be injected into both of the PEDCs, i.e., top layer PEDC and second layer PEDC. This choice was made to evaluate the maximum temperature rise in the PCB when both drive coils are used to drive the micro pallet in x-y plane. Furthermore, a maximum current of 0.8 A current was selected by taking into account the geometrical limitation the conductors in the second layer PEDC as discussed in previous subsection. During modeling, general parameters in the COMSOL® software regarding the material and heat transfer coefficients have been used to simulate the generated joule heat. However, due to the free convection, a commonly used value of 5 W/m²·C was adopted as convection heat transfer coefficient for the convection in air. For initial condition, a 20°C (i.e., 293.15 K) was selected as ambient temperature.

From the FEA analysis, it can be observed that the maximum temperature rise at the surface was found to be 57°C at the center of the PCB as shown in Fig. 4(a). In the zoom view, the different temperature zones can easily be identified [see Fig. 4(b)]. In the proposed design, the maximum temperature at which PMs start to demagnetize is 150°C. So, it can be concluded that a 57.13°C maximum temperature rise gives a 2.6 times safety factor. In comparison with the earlier design (i.e., without thermal pad) proposed by our research team in [14], the steady state analysis of it revealed a 70°C rise in surface temperature for a 0.8 A current value. Thanks to
In order to measure the surface temperature of the PCB during functioning of the actuator, an experimental setup has been realized. In order to drive the actuator, the PEDCs at top and second layer has been injected with sinusoidal current generated using a VI convertor (linear conversion, sampling rate of 50kHz, input [-10 V, +10 V], and output [-10 A, +10 A]) that is controlled with an analog output via the National Instrument® (NI) data acquisition board PCI-6733 [see Fig.4(a)]. The generation of the sinusoidal output current for the actuator has been managed with the help of a Labview software.

In addition, an LM35 temperature sensor was fixed onto the PCB using thermal paste as shown in the Fig.5(b). This sensor was selected due to its direct calibration in centigrade, high temperature measurement range, low cost and small dimensions (see table II for detail characteristics). However, due to the TO-CAN metallic casing of the sensor, it was placed inside a non magnetic through cavity of a cuboid shaped plastic part to ensure a firm contact between the PCB and avoid magnetic interference due to the PMs in the mobile part [see Fig.5(b)]. Moreover, the sensor was installed at the corner of the fixed part in order to avoid disturbing the micro pallet motion during translation over the fixed part of the actuator. Indeed, there is a temperature difference between the center and corners of the fixed part. However, for initial studies, it was decided to neglect this temperature variation. The output voltage of the sensor was measured using National Instrument® (NI) data acquisition board PCI-6036E. During experimentation, a 5 ms time delay between each measurement was fixed to acquire stable measured temperature values.

V. RESULTS AND DISCUSSION

In this section, the results obtained through different experiments are discussed. The experiments have been initially carried out for a 100 cycles of 8 mm forward-backward displacement strokes along y-axis by injecting sinusoidal currents into the top layer PEDC. For each test, the amplitude of the injected sinusoidal currents was increased from 0.4 A to 0.8 A and a maximum surface temperature value was then measured using temperature sensor. In addition, for each current value,
the 100 cycles test was carried out for different motion speed of the mobile part. The total time durations for each test with respect to the motion speed of the micro pallet test are provided in Table III.

From Fig 6, it can be seen that the surface temperature of fixed part rises to 14°C above room temperature (i.e., 23°C) for a maximum current amplitude value of 0.8 A at 1 mm/s speed. Further, it can be observed that at higher speed such as 8 mm/s, the temperature rise is very low (i.e., 5°C). This is mainly due to the fact that at higher speed the mobile part tends to finish its desired 100 cycles in less time. Whereas, at lower speeds the mobile part takes more time to finish 100 cycles of 8 mm displacement stroke (see Table III).

After conducting test on top layer PEDC, a 100 cycles displacement test was performed by injecting the identical sinusoidal currents in to the PEDC at second layer to translate the micro pallet up till 8 mm distance along x-axis. The tests were conducted in similar fashion as described earlier. A maximum surface temperature of 30°C was measured at 1 mm/s speed [see Fig.7]. This rise in temperature is due to the small copper thickness (i.e., 33 μm) of the PEDC in the second layer which lead to higher resistance value. Another reason for the high temperature values is due to the absence of convective cooling of coils at inner layer (i.e., the second layer PEDC), which is sandwiched inside the PCB. Nevertheless, a similar behaviour concerning speed variation can be observed. At higher speed a 10°C rise in temperature was measured.

Afterwards, both PEDCs (i.e., top layer and second layer PEDCs) have been injected with 0.8 A sinusoidal current to measure the maximum surface temperature. This test was performed to evaluate the scenario where both axes of the actuator are active and the micro pallet moves in xy-plane. The injected current parameters were selected as described earlier. For a 100 cycles for 8y/2 mm (i.e., 8 mm along x- and 8 mm along y-axis) displacement stroke in xy direction, a maximum surface temperature of 48°C was measured. The high value of the surface temperature is due to the fact that both PEDCs undergoes Joule heating. As a result, the total temperature rise is nearly the sum of heat generated by both PEDCs. In comparison to the results obtained via FEA model [see Fig.4], the difference in temperature is due to the fact that the model has been simplified by replacing the thermal vias as copper layer in third layer of the PCB. Furthermore, the FEA results are based on steady state analysis, so at reduced motion speed of the micro pallet, a temperature value near to the one obtained via FEA model could be reached. Nevertheless, similar effect regarding the reduction in the surface temperature relative to motion speed of the micro pallet can be observed in Fig.8.

In another study, a comparative analysis for a 500 cycles test of 8 mm displacement stroke was conducted by injecting 0.8 A sinusoidal current into PEDC of top layer, then in second layer and finally in both layers at 2 mm/s. This test was realized to check the stability and evaluate the temperature rise time and cooling time of the fixed part in these three scenarios. The comparison was carried out for 500 cycles for which the total time of the micro pallet to realize 8 mm displacement strokes...
different heat evacuation techniques will be studied to further reduce the overall temperature in the fixed part of the actuator.

ACKNOWLEDGMENT

This work is realized under the MICROCOSM project and supported by the Picardie region and co-financed by Europe/FEDER with the European funds for regional developments at the Picardy region of France.

REFERENCES

