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Abstract: A high-precision planar digital electromagnetic actuator with two displacement 

directions and four discrete positions is presented in this paper. The four discrete positions 

are located at each corner of a square cavity where a mobile permanent magnet moves thanks 

to Lorentz forces generated when a driving current passes through two orthogonal wires 

placed below the cavity. Four fixed permanent magnets are placed around the cavity in order 

to ensure high-precision magnetic holding of the mobile magnet at each discrete position. 

An analytical model of the actuator is presented and used to characterize its properties 

(switching time, energy consumption, and displaceable mass). Based on this model, an 

experimental prototype has been developed and then characterized. Comparisons between 

experimental and simulated results are carried out and show good agreement. The 

positioning repeatability errors have also been characterized according to the input signal in 

order to qualify the digital behavior of this high-precision actuator. Finally, an application 

of this digital actuator as a linear conveyor is presented and experimentally tested. 

Keywords: electromagnetic actuator; digital mechanism; two-dimensional displacements; 

conveyance device 
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1. Introduction 

To realize high-resolution tasks, analog actuators are generally employed [1,2]. These actuators are 

able to realize continuous motions within their working stroke limits. In literature, many analog actuators 

have been developed to realize, as well as planar [1,3], rotary [4–6] or combined motions [7]. Sensory 

components need to be integrated for the control of these actuators in order to ensure high resolution 

positioning or precise trajectories [7,8]. The control laws are generally complex, according to the  

high-performance levels needed. Moreover in highly integrated or compact mechatronic systems, the 

integration of sensory components is sometimes difficult or even impossible. For these reasons, actuators 

based on a digital principle are one of the interesting alternatives.  

Digital (or binary) actuators consist of a mobile part able to switch between repeatable and well 

known discrete positions. The main advantage of digital actuators is that an internal energy holding of 

the mobile part in discrete position is provided so that external energy supply (pulses) is only needed to 

switch the mobile part between the discrete positions [9]. It provides several interests. Firstly, this pulse 

mode control ensures a low energy consumption because there is no need of energy to hold the mobile 

part in discrete position [10,11]. The control can also lead to a very simple open loop binary control [12,13] 

because the digital actuation ensures highly repeatable and accurate discrete positions which do not need 

external measurement systems [14]. The integration of these actuators in mechanical or mechatronic 

systems is then easy. In addition, digital outputs of a data acquisition board can be used to control digital 

actuators instead of analog outputs needed for analog actuators, which decreases the total cost of the 

system. Another advantage of this pulse mode is the reduction of the Joule effect due to the short duration 

of the control pulse [15].  

However due to their digital principle, digital actuators present some limitations and requirements. 

The main limitation is relative to their discrete stroke fixed at the manufacturing step. In standard 

functioning, the mobile part of digital actuators can indeed not stop in an intermediate position located 

between two discrete positions. This limitation can be overcome since variable strokes can been achieved 

using an assembly of several digital actuators [12]. Otherwise, a crucial requirement to ensure high-precision 

tasks is the high manufacturing quality required for digital actuators (surface, tolerance, etc.) because 

the influence of manufacturing errors cannot be compensated by a closed loop control.  

Two functions are needed to perform digital actuation: the driving function, to switch the mobile part 

between the discrete positions, and the holding function, to hold the mobile part in discrete position. In 

literature, the driving function is generally obtained via electrostatic [16], thermal [17,18] 

electromagnetic [19,20] or piezoelectric [21] physical effects. For the holding function, three commonly 

used methods are employed, such as magnetic effect [19,20], compliant mechanisms [18,22], and 

position locking actuators [23].  

Due to their simplicity, digital actuators are used in various types of applications which can be 

classified into two categories. The first one regroups devices composed of a single digital actuator as 

electrical [11,16], optical [24,25], and fluidic [26,27] switches. The second category includes devices 

where several actuators are integrated so that complex tasks can be realized by combination of 

elementary actions. Switches arrays [27], tactile display devices [28], digital-to-analog converters [29], 

digital robots [12,30], and distributed conveyance devices [31,32] are some examples of these applications. 
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In this work, a high-precision electromagnetic digital actuator is presented. The electromagnetic 

principle has been chosen because it is well adapted for digital actuation. As a matter of fact, it can 

manage both holding and switching functions: a magnetic holding force can be easily obtained using the 

magnetic property of the mobile permanent magnet while the driving force is obtained 

electromagnetically (Lorentz force). Compared to the literature, the main originality of the presented 

digital actuator is that the mobile part can perform displacements along two orthogonal directions 

without an assembly of two 1D actuators [33]. This configuration reduces the assembly errors, thus 

enhancing the precision of the actuator and improving its compactness.  

A first version of this actuator was previously developed and tested along one axis only [20]. In the 

presented paper, an optimized and more compact version of the actuator is presented. In a first part, the 

principle and the architecture of this new version is described. An analytical model of the actuator is 

used to characterize the energy consumption and the maximal displaceable mass. Then an experimental 

prototype is presented and tested. Comparisons between experimental and simulated results are carried 

out. The positioning repeatability errors have been measured to characterize the digital behavior of the 

actuator and its high-precision property. Finally, an example of application which takes advantage of the 

two orthogonal displacement directions and the high-precision positioning is described and 

experimentally tested. 

2. Principle 

The presented actuator is composed of a mobile part, which is a parallelepiped mobile permanent 

magnet (MPM), and a fixed part which regroups a square cavity, four fixed permanent magnets (FPMs) 

and two orthogonal wires (Figure 1). The MPM is placed in a square cavity and can reach its four corners 

which correspond to the four discrete positions of the actuator. The gap between the MPM and the square 

cavity characterizes the actuator stroke. Four FPMs, with a magnetization orientated in the opposite 

direction as compared to the MPM, are placed near each corner so that a magnetic attraction force is 

exerted on the MPM in discrete position. This magnetic force ensures the holding function which 

characterizes the positioning repeatability of the MPM in discrete position then the high precision 

property of the presented actuator. The switching function of the MPM between the discrete positions is 

obtained using two electrical wires placed below the cavity. When a current passes through a wire, a 

Lorentz force is generated between the MPM and the wire. Since the wire is fixed, the MPM moves 

thanks to this force. In order to get an electrical insulation between the two wires, one wire is printed on 

the top side of a double side printed circuit board (PCB) and second one on the bottom side. The wire 

placed closed to the MPM (distance d2 in Figure 1) is called top wire (TW) and is used to switch the 

MPM along x-axis. The second wire placed far away from the MPM (distance d3 in Figure 1) is called 

bottom wire (BW) and is used to switch the MPM along y-axis. In order to minimize the difference of 

the Lorentz force generated by the two wires on the MPM, the thickness of the PCB has been chosen as 

small as possible (200 µm). Moreover, a thin glass layer of 170 µm thickness is placed between MPM 

and the PCB to avoid electrical contact between the TW and the MPM and provide a flat surface. The 

geometrical, magnetic, and electromagnetic properties of the actuator are given in Table 1.  

In Figure 1, the MPM is located in the discrete position (–xMPM; –yMPM). If a switch along the +x 

direction is desired, a driving current should be injected through the “wire for x-axis switching” (TW) 
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in the –y direction. This current will generate a Lorentz force on the TW in the –x direction due to the 

orientation of MPM magnetic flux density in the +z direction (left hand rule). Since the TW is fixed, an 

opposite force in the +x direction is exerted on the MPM which switches to reach the discrete position 

(+xMPM ; –yMPM). During this switch, the holding force in the –y direction can be increased using a holding 

current through the “wire for y-axis switching” (BW) in the –x direction. This increase in the holding 

force can be interesting to reduce the influence of disruptions during the MPM switch and to increase 

the positioning precision of the MPM in discrete position. 

 

Figure 1. Principle of the four discrete positions actuator: (a) side view, and (b) top view. 

The high-precision property of the actuator is characterized by the magnetic holding force generated 

by the FPMs on the MPM. An increase of the magnetic holding force ensures a higher positioning 

precision of the MPM in discrete positions even in the presence of high disturbances; nevertheless, the 

energy consumption needed to switch from one position to another one will also increase. For the 

presented actuator, a compromise between the high-precision digital behavior and the minimal driving 

current value has been accomplished by choosing a holding force of 1 mN. This value is obtained with 

a distance d1 of 11 mm (Figure 1). This holding force value has been chosen so that the minimal driving 

current necessary to switch the MPM is lower than 2 A (without transported mass).  
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Table 1. Actuator properties. 

Distances 

d1 11 mm 

d2 223 µm 

d3 458 µm 

MPM stroke 1 mm 

Permanent magnet properties 

Material Gold-coated NdFeB 

Mass 435 ± 1 mg 

Dimensions 5 × 5 × 2 mm3 

Magnetization 1.345 T 

Magnetic and electromagnetic forces 

Magnetic holding force 1.0 mN 

Electromagnetic force 
TW: 1.5 mN for 1 A 

BW: 1.4 mN for 1 A 

3. Analytical Model of the Digital Actuator 

An analytical model of the actuator implemented with MATLAB software has been developed to 

compute the forces exerted on the MPM and its displacement along the two displacement axes. With 

this model, the PMs are considered as parallelepiped blocks (without geometrical and dimensional 

errors) placed in free space with uniform magnetizations. The calculation of the magnetic and 

electromagnetic forces is based on the magnetic flux density computed using the charge model [34]. 

Equation (1) gives the expression of the three components of the magnetic flux density generated by a 

parallelepiped shaped PM with dimensions (x2 – x1, y2 – y1, z2 – z1) and magnetization (M) oriented along 

the z-axis. The origin of the reference frame is located at the center of the PM and (x, y, z) are the 

coordinates of the point considered for magnet flux density computation. 

The expressions of the magnetic and electromagnetic forces exerted on the MPM are given by 

Equations (2) and (3), respectively [34]. In Equation (2), σm is the surface charge density, Bext FPM the 

magnetic flux density from the FPMs, and S is the surface of the MPM poles. In Equation (3), I is the 

current through a wire surrounded by the external flux density (Bext MPM) from the MPM. 

      

      

   

   

 

2 2

0

1 2

1 1

2 2

0

1 2

1 1

2 2 2

0

1 1 1

1

, , 1 ln , , , , , ,
4

, , 1 ln , , , , , ,
4

, , 1
4

                                      tan , , ; , ,

k m

x m k

k m

k m

y m k

k m

k n m

z

k n m

n m

n m

k

M
B x y z F x y z x y y z

M
B x y z H x y z x x y z

M
B x y z

x x y y
g x y z x y

z z















 



 

 

  



 

 

 

 










 
k

z
 
 
 

 
(1)  



Actuators 2015, 4 222 

 

 

 
       

       

 
       

       

 
     

1
2 2 2 2

1 1

1 2 1
2 2 2 2

2 2

1
2 2 2 2

1 1

1 2 1
2 2 2 2

2 2

1
2 2 2 2

, , , , , ,

, , , , , ,

1
, , ; , ,

m k

m k

m k

m k

m k

m k

n m k

n m k

y y x x y y z z
F x y z x y y z

y y x x y y z z

x x x x y y z z
H x y z x x y z

x x x x y y z z

g x y z x y z

x x y y z z

      


      

      


      



    

  

  

  

  

  

 

 Magnetic m ext FPM

S

ds F B  (2)  

 Electromagnetic ext MPM
wire

I d F l B  (3)  

In the model, the adhesion and friction phenomena (Coulomb friction) are considered for the 

computation of the MPM displacement. Two contact areas are considered: the first one between the 

MPM (gold coated) and the thin glass layer (horizontal contact), and the second one between the MPM 

and the lateral stop (aluminum) (vertical contact). The expression of the friction forces for the horizontal 

(FHF) and the vertical (FVF) contact areas are given by Equations (4) and (5) respectively, where W is the 

weight of the mobile part (MPM + potential added mass), Fz is the vertical electromagnetic force exerted 

on MPM when it is misaligned with the driving wire, FHolding is the magnetic holding force exerted by 

the FPMs on the MPM, and µHF dyn and µVF dyn are the dynamic friction coefficients for the horizontal 

and vertical contact areas, respectively. When the MPM is misaligned with the supplied wire, the 

magnetic flux density from the MPM is not totally oriented along the z-axis near the wire. There is a 

horizontal component (along x or y-axis) of the magnetic flux density which generates a vertical 

component (Fz) of the electromagnetic force. The adhesion and friction coefficients considered in the 

model have been experimentally measured using an inclined plane technique (horizontal contact:  

µHF static = 0.45, µHF dyn = 0.41; vertical contact: µVF static = 0.39, µVF dyn = 0.35). 

 
HF z HF

F W F μ    (4)  

VF Holding VF
F F μ   (5)  

The MPM displacement is computed using Newton’s second law (6), where FTotal is the sum of the 

magnetic and electromagnetic forces exerted on the MPM, M and d are the mass and the displacement 

of the mobile part (MPM + potential added mass), respectively.  

2

Total HF VF 2

d
M

dt
   

d
F F F F  (6)  

The Figure 2a represents the horizontal components (x and y) of the total force (FTotal) exerted on the 

MPM as function of its position between two discrete positions (located at ±0.5 mm) for different driving 

current values (0 A, 3 A, and 5 A). The forces obtained using the two wires (TW or BW) are represented. 

When there is no driving current (0 A), the total force exerted on the MPM is due to the magnetic holding 
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force only. The holding force value of ±1 mN is then visible when the MPM is in discrete positions  

(±0.5 mm). When the MPM is in the central position (0 mm), the total force exerted on it is null because 

the magnetic attractions of the FPMs are perfectly equilibrated. When a driving current is used, the initial 

curve is upward shifted. The shift corresponds to the added electromagnetic driving force. The value of 

the electromagnetic forces obtained with the TW and BW are given in Table 1. The electromagnetic 

force obtained with the BW is 7.1% lower than the one obtained with the TW due to the distance between 

the two wires (d3 – d2).  

An important property of a digital actuator is that, under standard conditions, the mobile part should 

not stop in an intermediate position located between the discrete positions [9]. For the presented actuator, 

if the provided energy is not enough (pulse duration too short and/or current magnitude too small), the 

MPM can stop between the two discrete positions due to the friction between the MPM and the fixed 

part. This effect is shown in Figure 2b, where the MPM position as function of time with a 3 A driving 

current is represented for different pulse durations and using the TW (straight lines) and BW (dashed 

lines) to switch. If the pulse duration is shorter than 15 ms, the MPM does not reach the +0.5 mm discrete 

position. For the pulse durations of 8 ms and 12 ms, the MPM displacement is more important using the 

TW (0.26 mm for 8 ms and 0.71 mm for 12 ms) than using the BW (0.19 mm for 8 ms and 0.51 mm for 

12 ms) because the driving force generated using the TW is higher than using the BW. With pulse 

duration of 22 ms, the switching time is lower than the pulse duration, the MPM velocity increases then 

throughout the switch. With this configuration, the energy consumption is obviously not minimal. A 

minimization of the energy consumption can be obtained if the pulse stops before the end of the switch 

and so that the MPM velocity is high enough to reach the target discrete position (see the switch obtained 

using the BW for a pulse duration of 15 ms). Considering this configuration, the minimal pulse duration 

values and the corresponding switching times have been determined and are given in Table 2. 

 

Figure 2. Simulation results: (a) force exerted on the MPM as function of its position and 

for different driving current values, and (b) displacement curves of the MPM for different 

pulse durations. 
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Table 2. Minimal pulse duration and corresponding switching time. 

Driving 

Current  

Minimal Pulse Duration Switching Time 

TW BW TW BW 

3 A 13.2 ms 15.0 ms 33.3 ms 34.6 ms 

4 A 8.5 ms 9.4 ms 30.6 ms 31.8 ms 

5 A 6.3 ms 6.9 ms 29.1 ms 30.0 ms 

6 A 5.0 ms 5.5 ms 28.2 ms 28.9 ms 

7 A 4.2 ms 4.5 ms 27.2 ms 27.9 ms 

Considering the values given in Table 2, the energy consumption of the presented digital actuator has 

been computed for different driving current values and for the two displacement axes (Figure 3a). The 

energy consumption (E) has been determined with Equation (7) where UDriving is the voltage applied to 

the considered wire, IDriving is the driving current through the driving wire and Δt is the minimal pulse 

duration (given in Table 2).  

 
Driving Driving

E U I Δt    (7)  

For a given driving current value, the energy consumption is always higher using the BW than the 

TW because the electromagnetic force generated is lower using the BW than the TW. The two curves 

present the same evolution and an optimal value is visible at 2.6 A and 3.0 A for the TW and BW, 

respectively. For driving current lower than these optimal values, the pulse durations increase sharply 

compared to the reduction of the driving current values. For driving currents higher than these optimal 

values, the increase of the driving current generates an increase of the energy consumption more 

important than the decrease due to the reduction of the pulse duration. For the optimal driving current 

values, the minimal energy consumption of the digital actuator is 19.1 mJ and 21.9 mJ for the x-axis 

(TW driving) and the y-axis (BW driving) respectively. 

 

Figure 3. Simulation results: (a) energy consumption as function of the driving current value 

and (b) energy consumption as function of the displaceable mass for different driving  

current values. 
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Using the model, the maximum displaceable mass has been determined for different driving current 

values and for the two displacement axes (Figure 3b). The maximal displaceable mass by the MPM is 

obtained with the highest experimentally-available current value (7 A) and is 1.83 g and 1.65 g using the 

TW and BW, respectively. For each driving current value, the energy consumption has also been 

computed considering these added masses. For a given current value (e.g., 7 A), the pulse duration is 

indeed higher for the TW (95.4 ms) than for the BW (89.9 ms) because of the higher added mass (1.83 g 

for TW and 1.65 g for BW).  

4. Experimentation 

4.1. Experimental Setup 

Using the presented model, an experimental prototype has been designed and then manufactured. The 

functional block diagram of the experimental setup is shown in Figure 4a. A Labview interface is used 

to control the actuator via a data acquisition board NI 6733 (National Instrument) and two voltage-to-current 

convertors (linear conversion, sampling rate of 50 kHz, input [–10 V; +10 V] and output [–7 A; +7 A]). 

With a finalized version of the actuator, a binary control with digital outputs of a data acquisition board 

can be used. However, in the objective to characterize the prototype, different controlling (driving and 

holding) current values have been used to observe their influences on the actuator behavior. Two analog 

voltage signals have then been generated using the data acquisition board and converted into current 

signals by the two voltage-to-current convertors. The actuator prototype is shown in Figure 5b. A 

miniature optical sensor has been used to characterize the actuator. This sensor has been chosen due to 

its contactless measurement technique in order to not disturb the MPM displacement, its compact size 

(diameter of the sensor probe = 2 mm) and its high resolution (several nanometers) [35]. During 

experimentation, an optical sensor probe has been placed in front of a mirror fixed on the top side of the 

MPM. The optical probe consists of a bundle of five fibers (one emission fiber located at center and four 

reception fibers situated around the emission one). The emission fiber emits light on the mirror which is 

collected by reception fibers and converted into a voltage which is a function of the distance between 

the fixed probe and the moving mirror. The working principle of this sensor is described in detail in [35]. 

During experimentation, the output voltage has been recorded using a second data acquisition board  

NI 6036E. 

4.2. Comparison between Experimental and Simulated Results 

The MPM displacement between two discrete positions has been measured and compared with the 

simulated results. This measurement has been independently realized along the two displacement axes 

taking into account different driving and holding currents values. The Figure 5 represents the comparison 

between the experimental and simulated results for different driving (Figure 5a,c) and holding (Figure 5b,d) 

current values. Displacements along the x-axis (Figure 5a,b) and y-axis (Figure 5c,d) are presented. In 

Figure 5a,c, the driving current varies and there is no holding current. In Figure 5b,d, the driving current 

is fixed at 5 A and the holding current varies from 0 A to 7 A. In Figure 5d, the result with a holding current 

of 7 A is not represented because with this value, the MPM can indeed not switch along the y-axis due 

to the high friction force. A measurement artifact is visible on experimental results when the MPM 
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reaches the discrete position. This artifact corresponds to an orientation of the MPM due to the impact 

with the stop. This orientation generates a variation of the light collected by the optical sensor which 

interprets this variation as a linear displacement. In the figure, a decrease of the switching time is visible 

when the driving current increases (Figure 5a,c). Moreover, an increase of the holding current generates 

an increase of the switching time because the lateral friction between the MPM and the stop is increased 

(Figure 5b,d). 

 

Figure 4. (a) Functional block diagram, (b) experimental setup. 

A comparison between the simulated and experimental times to reach 90% of the actuator stroke (t90) 

is presented in Figure 6a,b for the x- and y-axis, respectively. In this figure, t90 is represented as function 

of the driving current value for different holding current values. The influences of the driving and holding 

current observed previously are clearly visible. The presented comparisons between the simulated and 

theoretical results show that the model characterizes well the experimental behavior of the actuator for 

the two displacement axes. 

A frequency study has been done by computing the bandwidth of the actuator for displacements along 

the two axes. Based on the results presented in Figure 5, the experimental rise times (10%–90%) have 

been determined for different driving current values (between 3 A and 7 A without holding current). The 

corresponding bandwidth has been determined for each considered configuration and the results are 

presented in Table 3. With the highest driving current value (7 A), the rise time is minimal (6.7 ms for 

the x-axis and 8.6 ms for the y-axis) then the bandwidth is maximal (52.2 Hz for the x-axis and 40.7 Hz 

for the y-axis).  
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Figure 5. Comparisons between experimental (Exp) and modeled (Mod) MPM 

displacement: (a) influence of driving current without holding current for x-axis switching. 

(b) Influence of holding current with 5 A driving current for x-axis switching. (c) Influence 

of driving current without holding current for the y-axis switching. (d) Influence of holding 

current with 5 A driving current for y-axis switching. 

 

Figure 6. Comparisons between experimental (Exp) and modeled (Mod) rise times: (a) rise 

times for x-axis switching, and (b) rise times for y-axis switching. 
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Table 3. Bandwidth of the actuator. 

Driving Current  
Bandwidth 

x-axis y-axis 

3 A 25.4 Hz 22.3 Hz 

4 A 35.0 Hz 29.2 Hz 

5 A 41.2 Hz 34.6 Hz 

6 A 47.3 Hz 39.3 Hz 

7 A 52.2 Hz 40.7 Hz 

4.3. Displaceable Mass 

The displaceable mass by the MPM has been experimentally measured for different driving current 

values and compared with the theoretical values determined using the model (see Figure 3b). The 

comparison for displacement along the x- and y-axis is presented in Figure 7a,b, respectively. 

Experimentally, for a given mass, the driving current needed to switch the mobile part (MPM + added 

mass) has been determined for different initial position in the square cavity and for the two displacement 

directions. Four measurements have then been done for each experimental configuration (i.e., for x-axis:  

(–xMPM; –yMPM) → (+xMPM; –yMPM), (+xMPM; –yMPM) → (–xMPM; –yMPM), (–xMPM; +yMPM) → (+xMPM; +yMPM), 

(+xMPM; +yMPM) → (–xMPM; +yMPM)). The minimum and maximum current values obtained are represented 

by a horizontal error bar for each experimental point. This variation is due, on one hand, to 

inhomogeneous holding force between the discrete positions because of manufacturing errors and on the 

other hand, to inhomogeneous friction conditions between the MPM and the fixed part of the actuator. 

For the two displacement axes, the model characterizes well the experimental results. Considering the 

horizontal bars in the figure, three zones have been determined to characterize the actuator behavior. 

Zone I is the non-functioning zone where the MPM cannot switch properly because the driving current 

is not enough high. Zone III is the normal functioning zone where the switch of the MPM is certain to 

be obtained. Between these two zones, an uncertainty zone called Zone II, is defined in which the switch 

of the MPM is uncertain due to inhomogeneous holding and friction forces. 

 

Figure 7. Comparisons between experimental (Exp) and modeled (Mod) displaceable mass 

for different driving current values: (a) displacement along x-axis switching, and  

(b) displacement along y-axis switching. 
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4.4. Positioning Repeatability Error 

The positioning repeatability of the MPM in discrete positions has been measured in order to 

characterize the high-precision property and the digital behavior of the presented actuator. In that 

objective, four optical sensor probes have been used: two probes for the x-positioning repeatability errors 

(+x and –x) and two probes for the y-positioning repeatability errors (+y and –y). In this configuration, 

the limit of resolution of the optical sensors is 10 nm. Since the actuator has two displacement directions, 

two components of the positioning repeatability error have been measured: the positioning repeatability 

error along the displacement direction, called axial positioning repeatability error (APR error), and the 

positioning repeatability error orthogonal to the displacement direction, called lateral positioning 

repeatability error (LPR error) (Figure 8). Twenty-four switches between two discrete positions have 

been experimentally realized. For a considered error (for example APR), the standard deviations on the 

two discrete positions (along the displacement direction) have been computed and the positioning 

repeatability (APR) error has been defined as the maximum value of these two standard deviations. The 

APR and LPR positioning repeatability errors have then been measured along the two displacement axes 

for different holding current values and are presented in Figure 9a,b, respectively. The two repeatability 

errors are clearly reduced when the holding current increases. When the holding current changes from 0 A 

to 1 A, the APR and LPR errors are reduced by 40% and 76%, respectively. The influence of the holding 

current is more important on the LPR than on the APR. This phenomenon was expected because the 

holding force, generated by the holding current, ensures the contact between the MPM and the lateral 

stop then reduces directly the LPR error. An increase of the holding current from 1 A to 3 A reduces the 

APR and LPR errors by 53% and 65%, respectively. With the highest holding current value (7 A), the 

APR and LPR errors represent 111 nm and 74 nm, respectively. The presented high precision digital 

actuator is then able to realize discrete displacement with a positioning repeatability error lower than 

0.01% of its stroke. From the energy consumption point of view, a 3 A holding current seems to be an 

optimal value because compared to the configuration with 7 A, the holding current is increased by 233% 

but the APR and LPR errors are only reduced by 47% and 10%, respectively. 

 

Figure 8. Representation of the axial positioning repeatability error (APR error) and of the 

lateral positioning repeatability error (LPR error). 
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Figure 9. Repeatability errors as function of the holding current value: (a) APR error, and 

(b) LPR error. 

In order to highlight the holding function of the FPMs, the positioning repeatability errors have also 

been measured without them. In this case, the APR and LPR errors represent 2700 nm and 11,000 nm, 

respectively. The APR and LPR errors are then reduced by 71% and 91%, respectively when the FPMs 

are present (values of the APR and LPR errors given in Figure 8). This result proves that the presence 

of the FPMs has a very high influence on the high precision property of the actuator. 

4.5. Comparison with Existing Actuators 

A comparison of the properties and performances (i.e., dimensions, number of discrete positions, 

energy consumption, generated force, stroke, and the ratio between energy and stroke) between the 

presented actuator and existing digital actuators is provided in Table 4. Compared to existing actuators, 

the presented one is among those having the largest dimensions. However, these dimensions allow long 

stroke and bi-dimensional motions. This 2D architecture allowing planar motions represents the main 

interest of the presented actuator because a large majority of digital actuators are limited to only two 

discrete positions. In literature, some digital actuators having more than two discrete positions have, 

however, been developed. For example, the device developed by Han et al. has the same properties as 

the presented actuator (2D displacement with a 1 mm stroke) but with larger dimensions. The actuator 

developed by Oberhammer et al. has very small dimensions but with an architecture limited to only three 

positions. Due to these big dimensions, the energy consumption of the presented actuator is also among 

the most important. Taking into account the stroke, the presented actuator proposes, however, an 

interesting ratio between energy and stroke compared to other existing actuators. Finally, the square 

shape of the presented actuator is quite adapted to realize actuator arrays because it can easily cover a 

surface. The realization of a micro-fabricated actuator array based on the presented architecture is indeed 

a perspective of this work. 
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Table 4. Comparison of performances between existing and the presented actuators. 

Actuator Dimensions 
Number of 

Positions 

Energy 

Consumption 

Generated 

Force 
Stroke 

Energy/Stroke 

Ratio 

Staab et al [36] 0.24 cm2 2 1.6 mJ 17 mN ≈100 µm 16 mJ/mm 

Fu et al [37] 1.6 cm2 2 58 mJ 0.07 mN 50 µm 1160 mJ/mm 

Dieppedale et al [38] 0.0004 cm2 2 0.048 mJ / ≈10 µm 5 mJ/mm 

Miao et al [19] 0.36 cm2 2 25 mJ / 380 µm 66 mJ/mm 

Oberhammer et al [23] ≈0.006 cm2 3 / 1.1 mN ≈±10 µm / 

Han et al [39] 56 cm2 4 / / 1 × 1 mm2 / 

Presented actuator 10.9 cm2 4 19.1 mJ 10.2 mN  1 × 1 mm2 19 mJ/mm 

5. Application 

An application of the digital actuator is presented in this section. This application consists of a linear 

conveyor able to realize long displacement and takes advantage of the high precision and of the two 

displacement directions of the actuator. In this application, two rack gears are used (Figure 10a): rack 

gear 1 is placed on the top side of the actuator, which corresponds to the mobile part of the conveyor, 

and rack gear 2 is fixed on the top side of the MPM. During the functioning of the conveyor, the two 

rack gears can be engaged or disengaged as represented in Figure 10b. The high precision of the digital 

actuator is an important property for this application because it ensures the engaging/disengaging of the 

two rack gears without fail at each step. When the two rack gears are engaged, the movement of the 

MPM generates a displacement of the conveyor mobile part (rack gear 1). For this application, two 

orthogonal displacement directions are needed: one direction for the actuation and one for the 

engaging/disengaging of the two rack gears. With the same current value, the electromagnetic force 

generated with the TW (x-axis switching) is higher than with the BW (y-axis switching). The x-axis has 

then been chosen for the actuation direction because a high actuation force can be necessary if the mass 

of the conveyed part is important. On the other hand, the required force during the engaging/disengaging 

phases is smaller so that the y-axis (switching using the BW) has been used for this direction. 

An experimental test has been realized to validate the principle of this linear conveyor. The two rack 

gears have been manufactured using rapid prototyping techniques and are shown in Figure 10c. The 

geometrical properties of the two rack gears and teeth are given in Table 5. In order to facilitate the 

engaging/disengaging phases, the teeth have a trapezoidal shape. Eight apertures have been fabricated 

in rack gear 1 in order to reduce its mass and to see the displacement of rack gear 2 during the functioning 

(visible in Figure 11a). 

The Figure 11 represents a displacement sequence with the experimental prototype. This sequence is 

composed of four steps. In the initial position, the two rack gears are disengaged and the MPM is located 

in the (–xMPM; –yMPM) discrete position (Figure 11a). At the first step, the MPM switches in the +y 

direction and reaches the (–xMPM; +yMPM) discrete position (Figure 11b) in order to engage the two rack 

gears. At the second step, the MPM switches in the +x direction and reaches the (+xMPM; +yMPM) discrete 

position (Figure 11c). During this step, the rack gear 1 is moved from a distance corresponding to the 

MPM stroke. At the third step, the two rack gears are disengaged then the MPM switches in the –y 

direction and reaches the (+xMPM; –yMPM) discrete position (Figure 11d). At the fourth step, the MPM 

reaches the initial position (–xMPM; –yMPM) by switching in the –x direction (Figure 11e) then a new 
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sequence can be realized. A representation of the current signals for x-axis switching (TW) and y-axis 

switching (BW) used for the displacement sequence are presented in Figure 11f,g, respectively. During 

the sequence, driving and holding currents are used in order to ensure properly the engaging/disengaging 

of the two rack gears and the displacement of the rack gear 1. Using this experimental setup, 

displacements of 30 mm (using the total length of rack gear 1) and a displacement velocity up to 7.5 mm/s 

have been achieved. 

 

Figure 10. Principle of a linear conveyor based on the digital actuator: (a) side view,  

(b) top view, (c) picture of the two rack gears. 

Table 5. Rack gears properties. 

Rack gears dimensions 

 Rack gear 1 Rack gear 2 

Length (along x-axis) 30 mm 5 mm 

Width (along y-axis) 10 mm 5 mm 

Thickness (along z-axis) 1.5 mm 1.5 mm 

Number of teeth 35 5 

Pitch 0.85 mm 0.85 mm 

Tooth dimensions 

Length (along x-axis) 0.33 mm to 0.36 mm (trapeze shape) 

Width (along y-axis) 0.5 mm 

Thickness (along z-axis) 0.5 mm 
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Figure 11. Displacement sequence of the linear conveyor: (a, b, c, d, and e) pictures of the 

prototype during the displacement sequence, (f) control signal for x-axis switching used for 

the sequence, (g) control signal for y-axis switching used for the sequence. 

6. Conclusion and Perspectives 

In this paper, a high-precision digital electromagnetic actuator having two orthogonal displacement 

axes and four discrete positions is presented. An analytical model of the actuator, which computes the 

forces exerted on the MPM and determines its displacement between two discrete positions, has been 

developed. Using the model, the minimal energy consumption (19.1 mJ) and the maximal displaceable 

mass by the actuator (1.83 g) have been determined. An experimental prototype of the actuator has then 

been manufactured, tested, and a good agreement between the experimental and simulated results along 

the two displacement directions has been observed. The high-precision property of the actuator has also 

been experimentally characterized by measuring the positioning repeatability errors along the 
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displacement direction (111 nm with 7 A holding current) and orthogonally to this direction (72 nm with 

7 A holding current). The actuator is then able to realize a discrete displacement with a positioning 

repeatability error lower than 0.01% of its stroke. The positive influences of the FPMs and of the holding 

current have also been observed on these errors. Finally, an example of the application of the digital 

actuator has been proposed and tested. This application consists of a linear conveyor which takes 

advantages of the two orthogonal displacement directions: one for actuation step and one for 

engagement/disengagement step. An experimental test of this conveyor has been realized and long stroke 

(30 mm) with high velocity (7.5 mm/s) have been reached. 

The main perspective of this work is to develop a digital actuator array realized using micro-fabrication 

techniques. These techniques will increase the manufacturing quality of the prototype then improve its 

precision. With this array complex tasks may be realized using the elementary actions of each actuator. 

One envisaged application consists of a plane displacement device which will take advantage of the two 

displacement axes of the elementary actuators. To control the plate displacement, dedicated control laws 

will be developed to realize the desired trajectory while ensuring an additional property as a 

minimization of the energy consumption or displacement time. 
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