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Abstract 

Sugar-based surfactants are renewable alternatives to petroleum-based surfactants in many applications 

such as detergency and cosmetics. However, their molecular structure gives often rise to relatively stable 

crystals, which can induce difficulties to dissolve them in water. This phenomenon is characterized by 

the Krafft temperature (TK), above which the surfactant solubility becomes high enough to induce self-

association into micelles.  Small changes in the molecular structure can result in large TK differences, 

which make rationalization and prediction of TK challenging. Few models were proposed in literature, 

but none of them are applicable to sugar-based surfactants. In this paper, we propose two decision tree 

models to estimate whether sugar-based surfactants exhibit potential dissolution issues at room 

temperature (i.e. TK above 25°C or not). The first one, based on descriptors of the whole molecule and 

including quantum-chemical ones, was able to correctly classify 86% of the surfactants in the validation 

set. The second one, built from simple structural counts of the polar headgroup and the alkyl chain, 

could predict the right class for 78% of the surfactants in the validation set. These classification models 

account for experimentally known trends between the molecular structure and TK, such as the impact of 

the polar headgroup size, the alkyl chain length and the presence of an amide linkage. To the end, our 

models were applied to a practical case to show how they can help designing synthesis campaigns of 

new surfactants. 

1. Introduction 

Surfactants are an important category of formulation ingredients (in detergents, cosmetics and foods), 

notably used for their ability to decrease surface tension of water or to solubilize hydrophobic 

compounds [1]. For such applications, surfactants are frequently used in the form of micelles. So, the 

ability of surfactants to dissolve as micelles in water can impact their performance properties [1] or their 

ability to be purified, notably in pre-formulations steps [2].  
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The Krafft temperature (TK) is used to assess this dissolution capacity. It is the temperature at which the 

solubility limit of the surfactant reaches the critical micelle concentration, above which surfactants self-

associate as micelles, rather than hydrated crystals, in the aqueous solution [3]. Below TK, at 

thermodynamic equilibrium, surfactants cannot form micelles in solution, which limits their 

performances. Indeed, the maximum surface activity of surfactants is reached when micelles appear, 

and surface activity of surfactants is exploited in many applications such as detergents and foams [4]. 

Moreover, surfactant micelles enable to solubilize hydrophobic compounds in an aqueous medium and 

this solubilisation ability is used in drug design or cosmetics [4]. Knowledge of TK is of special 

importance when considering biobased surfactants which are investigated as substitutes of petroleum-

based surfactants [5]. Although non-ionic petroleum-based surfactants usually do not exhibit any TK, 

some of their potential bio-based substitutes, in particular sugar-based surfactants, do exhibit one [6].  

Sugar-based surfactants are characterized by polar heads made from various sugars such as glucose, 

fructose or sucrose [6]. Due to the tunability of their molecular structures [7, 6], their production safety, 

renewability and their biocompatibility [5], they are particularly appealing as substitutes to ethylene 

oxide derivatives, which require the use of hazardous ethylene oxide for their synthesis and are most 

often produced from fossil resources. In that context, knowing whether a sugar-based surfactant would 

exhibit a TK above ambient temperature (e. g. about 25°C) is especially valuable, since in many 

applications, surfactants are used at ambient temperature or above [4]. Thus, any method to screen sugar-

based surfactants with respect to their ability to be dissolved in water would be beneficial to identify the 

most promising ones in applications, notably as substitutes to more conventional surfactants. 

The prediction of TK is challenging since the property involves the crystalline state of surfactants. Due 

to this fact, small variations of the molecular structure can have a large and often non-systematic impact 

on crystal lattice energies, as also recognized for other properties related to the solid phase such as the 

melting point [8, 9].  

Nevertheless, some structural trends have been pointed out for TK of sugar-based surfactants based on 

experimental results. At first, TK increases with alkyl chain length [10]. The linkage (i.e. the chemical 

moiety of the polar headgroup connected to the nonpolar chain) structure and stereochemistry also 

impacts TK significantly. In particular, amide-linked surfactants generally have a high TK, whereas their 

methylamide analogues tend to have a lower TK [11]. For noncyclic polar heads, TK increases with the 

number of alcohol units and the stereoregularity of the alcohols [10]. Increasing size of the polar 

headgroup was found to decrease TK in most of the cases [12, 13] but, in some specific cases, can 

increase [14]. While these trends are already a useful qualitative guide to target water-soluble 

surfactants, no predictive method is available to help rationalization and pre-screening of sugar-based 

surfactants prior to any synthesis. 
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One possible predictive method to access surfactant properties is Quantitative Structure-Property 

Relationships (QSPR). QSPR models are mathematical relationships developed by correlating between 

the molecular structure, represented by molecular descriptors, and a target physicochemical 

property [15]. Some QSPR models have been successfully developed to predict the TK for some specific 

anionic surfactant families [16-18]. Huibers [16] proposed a multilinear regression (MLR) model, 

developed on 43 anionic sodium sulfonates and sulfates and obtained a standard error of 5.3°C. From a 

training set of 32 sulfonates and sulfates, Jalali-Heravi et al. [17] developed another MLR model, 

achieving a lower standard error of 4.1°C. At last, Li et al. [18] proposed two QSPR models for TK. One 

MLR model, for sulfonates and sulfates, was based on a training set of 46 surfactants, and a standard 

error of 4.5°C was obtained. Another MLR model, based on a training set of 19 sulfonates and 

perfluorinated carboxylates, was characterized by a larger standard error of 10.4°C. All models included 

at least one geometrical descriptor (requiring the 3D structure of the surfactant), or quantum-chemical 

descriptor (based on a computed electronic structure of the surfactant). Although encouraging 

correlations were exhibited, none of these four models were validated with an external set, and thus the 

predictive power of the models remains unknown. To our knowledge, no predictive model was 

developed for TK of non-ionic surfactants, and especially sugar-based surfactants.  

In this context, this study aims to propose first QSPR models to evidence whether sugar-based 

surfactants exhibit a TK above 25°C or not (i.e. whether they exhibit dissolution issues at ambient 

temperature). A series of decision tree models were developed using several types of descriptors. 

Finally, their applicative potential as a pre-screening tool to focus synthesis campaigns on the most 

relevant surfactants was demonstrated for a practical application for which the anticipation of dissolution 

ability in water was important. 

2. Computational details 

a. Experimental data sets 

In a previous work [19], a dataset of 2626 entries on 24 amphiphilic properties of sugar-based surfactants 

were gathered. We only considered non-ionic surfactants, in order to study an homogeneous ensemble 

of molecules. For the same reason, only surfactants with one polar head and one alkyl chain were 

collected as surfactants with more complex structures may show markedly different behaviour [11]. A 

particular attention was addressed to amino surfactants, as amine linkers may exhibit a basicity that 

could imply an equilibrium between the non-ionic and the cationic form of the surfactant in solution. 

For this reason, entries on such surfactants were retained in the final database only when a tensiometric 

curve confirmed their behaviour was consistent with analogous non-ionic surfactants like in the work of 

Boullanger et al. [20]. Among them, both quantitative and non-quantitative TK data were collected. If 

quantitative data of TK were only rarely provided (only 37 data), some authors (e. g., Zhu et al. [21]) 

reported some visual observation of stirred solutions to notice whether surfactant crystals were 
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dissolving or not. This information can be considered as a qualitative evaluation of TK. Thus, whenever 

authors reported a verification of surfactant dissolution, we collected this information as non-

quantitative data, and kept only those that identified whether surfactants exhibited or not a TK value 

above 25°C. Note that the non-quantitative data collection often came from a posterior interpretation of 

authors data: we assumed that if a solid surfactant dissolves in the liquid at a given temperature, then it 

does not exhibit a TK above it. Otherwise, its TK was considered as above the considered temperature. 

In particular, whenever the test was conducted at “room temperature”, “ambient temperature” or 

“standard conditions”, we considered the test temperature to be 25°C. In addition, the 37 quantitative 

TK have also been expressed as non-quantitative values (e.g. 37°C is above 25°C). Indeed, if their 

number is not large enough to build a reliable predictive model, they can in this way be used in the 

dataset of non-quantitative data.  

A careful data curation was then performed to only keep the most reliable TK data to develop QSPR 

models. Indeed, any uncertainty in the training data will propagate into the models. In particular, we 

sought for indications about the purity of the compounds (e.g. NMR spectra or commercial information), 

since small impurities can have an important impact on the stability of crystal structures [22], a key 

factor underlying TK values.  

The final dataset (in Supporting Information, Table S1) contained a total of 152 data, including 37 

derived from quantitative TK. These data were partitioned into a training set of 101 data, used to build 

the decision trees (two thirds of the data) and a validation set of 51 data (one third of the data), used to 

estimate the predictive power of the decision trees. The validation set should be at best representative 

of the chemical diversity of the training set in order to ensure that most molecules of the validation set 

are representative of the applicability domain of the model. Moreover, both sets should be well balanced 

in terms of surfactants exhibiting TK > 25°C vs. those that do not. The partition used in this study was 

obtained randomly and satisfies these two criteria (Table 1).  

Fig. 1 is a principal component analysis of the descriptors calculated for this study that shows the 

chemical space spanned by the training set and the validation set. It can be seen that they are distributed 

in a similar region of the chemical space, i.e. that the molecules of the validation set are representative 

of the molecules of the training set.  

The whole database is also balanced, with 76 TK above 25°C out of 152 non-quantitative data, and keeps 

well balanced in both training and validation sets, as presented in Fig. 2. Indeed, the training set contains 

52 surfactants with TK > 25°C out of 101, while the validation set contains 24 such surfactants out of 

51. Thus, each set is also well-balanced in terms of experimental TK classes. 
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Fig. 1. Repartition of the surfactants belonging to the training and validation sets in the chemical space 

of the whole data set as defined by principal component analysis based on 896 descriptors 

 

Fig. 2. Distribution of qualitative TK data for the whole dataset, the training set and the validation set 

b. Molecular descriptors 

The molecular geometries of the 152 studied sugar-based surfactants of the dataset were optimized using 

Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level after preliminary conformation analyses 

to evidence the most suitable conformation to calculate descriptors. Frequency calculations were also 

performed at the same level of theory to ensure that the conformation well corresponds to a local 

minimum on the potential energy surface. This level of calculation has been successfully used in 

previous works [23] and already used for the development of QSPR models for other properties [24, 25] 

for this kind of sugar-based surfactants. 
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The geometries of the 44 hydrophilic (polar heads) and 19 hydrophobic (alkyl chains) fragments 

constituting the 152 molecules of the dataset were calculated using the same procedure. The separation 

between the polar headgroup and the alkyl chain was set before the first heteroatom, as in previous 

works [24, 25]. Then, both fragments were hydrogen-saturated. The Gaussian09 [26] suite of programs 

was used for all these calculations.  

It can be noticed that 28 out of the 152 sugar-based surfactants in Table 1 are in the form of enantiomeric 

mixtures [27], i.e. surfactants with D and L sugar alcohol polar heads which are difficult to separate due 

to their identical physical properties, or anomeric  mixtures [28], i.e. surfactants with polar heads 

containing a free anomeric alcohol in two different configurations in aqueous solution, which cannot be 

separated because a dynamical equilibrium occurs between each other. In all such isomeric mixtures, 

the different isomers were considered as various conformations of the same compound. The geometries 

of all relevant isomers were optimized and the most stable one was finally retained. 

Based on these quantum chemical calculated structures, about 900 constitutional, topological, 

geometrical and quantum-chemical descriptors were computed using CODESSA software [29] for each 

surfactant and each fragment. Additional descriptors were also obtained directly from the quantum-

chemical calculations. Descriptors arising from conceptual DFT [30, 31] (electronegativity, hardness, 

softness and electrophilicity index) were calculated from the energies of the Highest Occupied 

Molecular Orbital (EHOMO) and the Lowest Unoccupied Molecular Orbital (ELUMO). Moreover, the partial 

charge of the polar headgroup and of the first hydrocarbon fragment of the alkyl chain (CH2 or CH here) 

were also calculated based on Mulliken [32] and Natural Populations Analyses [33] (as implemented 

into Gaussian09 software), to take into account the possibility of electron withdrawing from polar 

headgroup to alkyl chain in surfactants as proposed by Huibers [34].  
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c. Model development 

In this work, decision trees were developed to classify surfactants according to the possibility of TK > 

25°C. As represented in Fig. 3, a decision tree is a model that classifies an instance in a leaf, associated 

with a predicted class, according to a set of consecutive rules (the nodes). In the context of this study, a 

node checks whether a given descriptor is above or below a threshold value, and a leaf either predicts a 

TK value above 25°C or not for the surfactant. To build decision trees from training set data, the J48 

method, a Weka [35] implementation of the C4.5 method [36], was used. This method consists of 

different steps. At first, for each available descriptor, the threshold enabling to best separate the entire 

set of molecules between the two classes is calculated and the best descriptor constitutes the first node 

of the decision tree which separates the surfactants into two new subsets. The same operation is then 

applied for each new subset until no significant separation between the two classes is obtained. At last, 

the tree is pruned to avoid over-parameterization by examining whether each node is beneficial to lower 

classification errors (based on a Bayesian approach).  

 

Fig. 3. Schematic representation of a decision tree 

d. Model validation 

To test the performances and predictive power of decision trees, Cooper statistics [37] were used (cf. 

Table 1). These statistics are based on the so-called confusion matrix, which summarizes the 

classification performances issued from a series of predictions. 

  



8 

 

Confusion matrix 

TK > 25°C ? 
Experiment 

yes No 

P
re

d
ic

ti
o

n
 

yes TP FN 

no FP TN 

 

Classification indicators 

TP True Positive TN True Negative 

FP False Positive FN False Negative 

Acc Accuracy (TP + TN) / (TP + TN  FP + FN) 

PP Positive Predictivity TP / (TP + FP) 

NP Negative Predictivity TN / (TN + FN) 

Table 1. Confusion matrix and classification indicators 

In this study, TP is the number of molecules with the correct classification “TK > 25°C”, FP is the 

number of molecules with an incorrect classification “TK > 25°C”, FN is the number of molecules with 

an incorrect classification “no TK > 25°C” and TN is the number of molecules with the correct 

classification “no TK > 25°C”.  

Acc represents a general assessment of the quality of classification for a given set. PP and PN are focused 

on the performance of the model to classify in a particular class. In our case, PP represents whether the 

prediction of TK > 25°C occurrence is reliable, and NP represents whether the opposite prediction is 

reliable. The closer Acc, PP and NP are to 100%, the higher are the performances of the model. 

The quality of fitting of the models was evaluated on these criteria for the predictions performed on the 

training set. To the end, to assess the predictive power of the models, the surfactants of the validation 

set, not used to train the models, are classified by the developed trees, and the resulting Acc, PP and NP 

enabled to assess the predictive power of the new decision trees.  

3. Results and discussion 

a. Development of classification models 

Various decision trees were developed depending on the type of descriptors used. Some models were 

developed from descriptors of the whole molecule (i for integral), others from fragment descriptors (f). 

For each of these two approaches, three types of decision trees were developed either including 

quantum-chemical descriptors (all for all types of descriptors), focusing on constitutional and 

topological descriptors (ct), or only with constitutional descriptors (c). The six decision trees and their 

performances are summarized in Table 2 and detailed in Supporting Information (Figs. S1-S6). 
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Type ndesc 
Training Validation 

Acc PP NP Acc PP NP 

i/all 9 95% 98% 93% 86% 92% 81% 

i/ct 3 82% 80% 84% 75% 73% 76% 

i/c 2 72% 78% 69% 76% 86% 70% 

f/all 5 89% 93% 86% 76% 78% 75% 

f/ct 3 83% 85% 82% 75% 79% 70% 

f/c 4 82% 88% 78% 78% 90% 71% 

Table 3. Performances of the six decision trees developed in the present study 

Predictive capabilities of the final models range from 75% to 86% in global accuracy (Acc) on the 

validation set. In most of the cases, the positive predictivity (accuracy of TK > 25°C prediction) was 

greater than the negative predictivity (for five out of six models, in training and in validation). Such 

difference indicates that the obtained decision trees are especially efficient in the identification of non-

dissolving surfactants. This trend is even more pronounced for the best models in terms of accuracy in 

the validation set, i/all and f/c, with differences of 11% and 19%, respectively. So, these models are 

particularly recommended to identify molecules with dissolution issues. 

The decision tree presenting the highest accuracy in prediction was obtained for the 273 integral 

descriptors of all types (i/all, shown in Fig. 4). Its predictive power was high, with Acc = 86% for the 

validation set. As for most models, the model tends to be even more reliable to identify surfactants with 

TK > 25°C (PP = 92%), as compared to the opposite prediction (NP = 81%). In pre-screening 

applications, this feature is particularly useful to discard surfactants that would be likely not to dissolve 

in water.  

 

Fig. 4. Decision tree based on integral descriptors for the classification of the surfactants upon their TK 
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In this decision tree, HACA2,TMSA is the hydrogen-bond acceptor surface area of order 2 divided by the 

total molecular surface area and based on Zefirov [38] partial charge model, BOC,max is the maximal 

bond order of a C atom, p-/+ is the polarity parameter (i.e. the difference between maximal and minimal 

partial charges), BOH,max is the maximal bond order of a H atom, nC is the number of C atoms, nN is the 

number of N atoms, qO,max is the maximal partial charge for a O atom based on Zefirov partial charge 

model, NC,min is the minimal nucleophilicity index for a C atom, and BOH,min is the minimal bond order 

for a H atom (> 0.1). 

The structure of the decision tree is relatively complex. However, it is consistent with some known 

experimental trends. In particular, HACA2,TMSA, the descriptor at the first node of the decision tree, is 

related to both the alkyl chain length and the polar headgroup size. Indeed, since alkyl chains do not 

contain H-acceptors atoms, for a given polar head, HACA2,TMSA, is larger for shorter alkyl chains. In 

addition, when keeping alkyl chain constant, increasing the polar headgroup size usually corresponds, 

for sugar-based surfactants, to the addition of oxygen and nitrogen atoms, both H-acceptors. Thus, 

HACA2,TMSA, is larger for larger polar heads. Moreover, H-bonding capability is known to influence 

crystallization. As a consequence, H-acceptor behaviors (as well as H-donor ones) are expected to be 

relevant to TK. 

The number of N atoms (nN) is present at another node in the decision tree, at which the surfactants 

containing N atoms are classified as TK > 25°C. This relates to the generally low solubility observed for 

surfactants with amide linkages [39]. 

At last, the number of C atoms (nC) in the molecule also appears at the end of a branch of the tree. 

Surfactants of the tested subsets are classified as exhibiting dissolution issues for high nC. Since C atoms 

are present in both the alkyl chain and the polar headgroup of the surfactant, this descriptor may reflect 

the overall size of the surfactant. It is known that the melting point generally increases with the size of 

the molecule [8], and TK is also sometimes defined as corresponding to the melting point of the hydrated 

surfactant [40]. Thus, within a subset, it is not surprising to classify larger surfactants as non-dissolving. 

If the other parameters in the tree (minimal and maximal atomic bond orders, atomic nucleophilicity 

indices and partial charges) are less easily interpretable, they are all related to charge distributions of 

surfactants inside the head, and notably to possible H-bonding sites on the head (e.g. qO,max) that favor 

crystallization [22]. 

Among the developed decision trees, another one was evidenced (Fig. 5), owing to its simplicity of use. 

Based on simple atomic counts of the alkyl chain and the polar headgroup of the molecule, it also 

presented satisfactory prediction performances with Acc = 78% for the validation set. Once again, 

predictions of dissolution issues from this decision tree seems particularly reliable (PP = 90%) and the 

decision tree is more likely relevant to identify surfactants presenting them. 
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Fig. 5. Decision tree based on fragment descriptors for the classification of the surfactants upon their 

TK 

In this decision tree, nH,c is the number of H atoms in the alkyl chain, nC,rel,h and nN,rel,h are the relative 

number of C and N atoms in the polar head, and nat,h is the number of atoms in the polar head. The 

structural trends involved in the different nodes of the tree are in agreement with those already identified 

by experimentalists. Furthermore, the decision tree rationalizes these known experimental trends on a 

series of threshold values of structural descriptors of surfactants.  

The first node separates molecules according to their number of hydrogens in the alkyl chain. Since 

longer chains have more hydrogen atoms, this descriptor is related to the alkyl chain length which is 

known as a critical structural factor that impacts Krafft temperatures through higher van der Waals 

interactions, TK increasing with alkyl chain length [10]. Besides, in the experimental database, 39 of the 

54 surfactants with short alkyl chains (containing 20 H atoms or less) dissolve in water at 25°C. On the 

contrary, the majority of surfactants with long alkyl chains (61 out of the 98 surfactants containing more 

than 20 H atoms) shows TK > 25°C. 

For the longest alkyl chains (above 20 H atoms, which corresponds to 9 C atoms for saturated alkyl 

chains), the next node uses the number of atoms in the polar head. This descriptor is related to the size 

of the polar head, which is another relevant structural factor impacting TK. It decreases with larger polar 

heads in most of the cases [11]. Accordingly, polar heads with more than 47 atoms are classified as 

dissolving at 25°C.  

It can be noticed that polar heads with one or two sugar residues often contain less than 47 atoms (for 

example, maltose contains 43 atoms). Thus, most of the time, surfactants with one or two sugar residues 

(which constitute most of the studied sugar-based surfactants) and an alkyl chain of 10 atoms or longer 

are classified as exhibiting TK > 25°C. This suggests that in our database, sugar-based surfactants with 

10 C atoms or more in the alkyl chain are likely to exhibit TK above 25 °C, which is lower than the 

threshold of 12 atoms proposed by Marchant et al. [11]. 
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In the case of alkyl chains with 20 H atoms or less (corresponding to a saturated alkyl chain length of 9 

C atoms or less), the next node is based on the relative number of C atoms in the polar head. This can 

be related to the level of polarity of the polar head, as O or N atoms in the polar headgroup decrease the 

value of the descriptor. The decision tree accounts for the fact that, with a more polar head, a surfactant 

is more hydrophilic, which can favor dissolution in water. Based on this fact, the decision tree classifies 

heads with a higher polarity (nC,rel,h ≤ 0.2571) as dissolving.  

At last, surfactants with small alkyl chain and weakly polar headgroup are classified according to the 

relative number of N atoms in the polar head. At this node, surfactants containing N atoms (generally in 

amide or amide groups) tend to exhibit dissolution issues whereas surfactants with no N atom as 

dissolving. This classification is in agreement with the experimental trend observed that sugar-based 

surfactants with amide linkers that more likely present dissolution issues than their analogues with other 

linkers [11]. 

b. Application of Krafft point models to guide synthesis campaigns 

Surfactant ability to dissolve in water can be critical in various applications, thus, its anticipation can 

guide synthesis campaigns. For instance, in recent studies, Lu et al. [41, 42] studied the cytotoxicity of 

sugar-based surfactants and synthesized a range of molecules characterized by gradual structural 

modifications (cf. Table 3) to investigate the impact of these modifications on the surfactant/cell 

interactions. It was therefore essential to know the surfactant physical state, as monomer, micelle or 

solid, because it may affect the mechanism of biological activity.  
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Surfactant Id structure 

experimental 

dissolution issues 

at 25°C 

predicted TK > 25°C? 

qc 

(Fig. 4) 

simple 

(Fig. 5) 

1 (n=6) 

 

no dissolution  

TK = 30°C  
no yes 

2 (n=8) no dissolution yes yes 

3 (n=7) 

 

turbid solution yes no 

4 (n=9) turbid solution yes yes 

5 (n=6) 

 

no dissolution  

(TK = 32°C)  
no yes 

6 (n=8) no dissolution yes yes 

7 (n=6) 

 

dissolution no no 

8 (n=8) dissolution no no 

Table 3. Experimental and calculated TK for the sugar-based surfactants investigated in the 

cytotoxicity study [41, 42] 

From the analysis of reported studies, dissolution issues are usually expected at or above a chain length 

of 12 for non-ionic sugar-based amphiphiles [11]. Synthesized molecules were designed with chain 

lengths of 7 to 10 carbons and, unexpectedly, dissolution issues in water were even observed with 8 

carbon alkyl chains for surfactants with one sugar residue [41, 42]. Six of the studied surfactants were 

either only partially dissolved or formed a turbid solution (Table 2).    

At that time, no model was available to estimate the TK of sugar-based surfactants. In the present work, 

TK was estimated from the qualitative models (cf. Table 3). With the two models, all molecules 

exhibiting dissolution issues were identified, while the ones that did not exhibit such issues (maltose 

derivatives - surfactants 7 and 8) were also correctly identified. For three of the six non-dissolving 

molecules contradictory predictions were obtained for the shorter chain, and in two of them, the 

measured TK was close to 25°C (30 and 32°C), which suggest that contradictory predictions from both 

models can be beneficial to identify surfactants with TK close to 25°C. Moreover, both models correctly 

predicted dissolution issues for surfactants with 9 to 10 carbon atoms in the alkyl chain and only one 

sugar residue in the polar headgroup (surfactants 2, 4 and 6). Thus, TK significantly above 25°C may be 

expected for these surfactants. 

The results show that the predictive models developed for TK for the non-ionic sugar based surfactants 

of this study (not present in the dataset used for the development of the model) were able to raise relevant 
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dissolution issues even for derivatives with short alkyl chains.  This approach can therefore be used 

favorably as a pre-screening tool prior to synthesis campaign of new surfactants.  

4. Conclusion 

The Krafft point is an important surfactant property to describe surfactant ability to dissolve in water. 

Indeed, when the temperature is below the Krafft point of a surfactant, it cannot be used at its optimal 

surface activity and solubilization potential. Thus, knowing surfactant TK helps to estimate their 

performance in formulations. In this study, we developed new models to qualitatively predict whether 

sugar-based surfactants exhibit a Krafft point above room temperature (i.e. dissolution issues at ambient 

temperature). The best model is able to correctly classify 86% of sugar-based surfactants but requires 

quantum chemical calculations for each tested surfactant. Another, simpler model was evidenced, based 

on atomic counts in polar heads and alkyl chains. It correctly classifies 78% of sugar-based surfactants. 

These models identify surfactants exhibiting TK > 25°C more accurately than those that do not. The 

descriptors and structures of the decision trees account for different known experimental trends and 

rationalize them as successions of thresholds, like the increase of the Krafft point with the size of the 

alkyl chain, its frequent decrease with the size of the polar head, or its increase with the presence of 

amide linkage. In particular, one of the decision trees emphasizes that many surfactants start to exhibit 

dissolution issues between chain lengths of 9 and 10 carbon atoms, lower than the literature threshold 

of 12 carbon atoms.  To the end, we illustrated how these models can help to design relevant 

experimental synthesis campaigns, by pointing out potential dissolution issues. Molecular design 

applications are also possible for the developed models, by calculating the properties of a large number 

of combinations from a few polar heads and alkyl chains and raise solubility issues of possible 

candidates in surfactant formulations.  
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