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is by introducing the embedded strong discontinuity into 
lattice elements, resulting with mesh-independent com-
putations of failure response. Moreover, mechanical lat-
tice can be coupled with mass transfer problems, such as 
moisture, heat or chloride ions transfer which affect the 
material durability. Any close interaction with a fluid can 
lead to additional time dependent degradation. For illustra-
tion, the lattice approach to porous media coupling is given 
here as well. Thus, the lattice element models can serve for 
efficient simulations of material failure mechanisms, even 
when considering multi-physics coupling. The main pecu-
liarities of such an approach have been presented and dis-
cussed in this work.

Keywords  Lattice element model · Discrete element 
model · Material failure · Localized failure · Quasi-
brittle failure · Embedded strong discontinuity · Mesh-
independent softening · Multiple cracks

1  Introduction

Lattice element models, or simply lattice models, date back 
to the 1941 and the paper of Hrennikoff [1], in which he 
developed the grid-work method for modelling two-dimen-
sional elastic continua with trussed framework system. This 
idea has been strongly evolving over the years resulting 
with many different lattice models presently. We could gen-
erally define the lattice models as an assembly of discrete 
one-dimensional elements for representation of structural 
solid. Such an evolution of this simple idea is not surpris-
ing taking into consideration the simplicity of the model-
ling of complex solids or structures with this approach and 
lighter computational cost. Moreover, efficient represen-
tation of some aspects, which are not easily tackled with 

Abstract  This paper presents the lattice element models, 
as a class of discrete models, in which the structural solid 
is represented as an assembly of one-dimensional elements. 
This idea allows one to provide robust models for propaga-
tion of discontinuities, multiple cracks interaction or cracks 
coalescence. Many procedures for computation of lattice 
element parameters for representing linear elastic contin-
uum have been developed, with the most often used ones 
discussed herein. Special attention is dedicated to present-
ing the ability of this kind of models to consider material 
disorder, heterogeneities and multi-phase materials, which 
makes lattice models attractive for meso- or micro-scale 
simulations of failure phenomena in quasi-brittle materials, 
such as concrete or rocks. Common difficulties encountered 
in material failure and a way of dealing with them in the 
lattice models framework are explained in detail. Namely, 
the size of the localized fracture process zone around the 
propagating crack plays a key role in failure mechanism, 
which is observed in various models of linear elastic frac-
ture mechanics, multi-scale theories, homogenization 
techniques, finite element models, molecular dynamics. 
An efficient way of dealing with this kind of phenomena 
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solid elements, like localized failure and cracking of the 
material make the lattice models very attractive.

Up to the present moment, many various lattice mod-
els have been developed for a number of applications. The 
main distinction between existing lattice models is how the 
lattice nodes interact between each other. This interaction 
of lattice nodes is defined through the behaviour of lattice 
elements which are shown in Fig. 1a in a simple triangu-
lar lattice. The choice of certain lattice model should be 
guided by the application requirements. Thus, one could 
choose a lattice with spring elements between the lattice 
nodes. In this version springs can be viewed as cohesive 
forces between the rigid particles of material, like shown 
in Fig.  1b. Depending on the application, the next choice 
would be whether normal, shear or rotational springs 
should be considered. The simplest model is when normal 
springs are used only to transfer the force between the parti-
cles. The most extensive model would be with the inclusion 
of all three mentioned springs in 2D. One could also make 
a choice with beams as lattice elements. Many beam lat-
tices use Euler–Bernoulli theory, while Timoshenko beams 
provides more accurate response when elements in lattice 
are short and deep. Moreover, different values of Poisson’s 
ratio are obtained with these two beam theories.

Variations with respect to lattice elements choice imply 
different corresponding procedures for obtaining lattice 
parameters. Namely, an important task with lattice compu-
tations is to use the correct stiffness of the lattice elements 
(springs or beams) in order to be able to simulate the cor-
responding equivalent continuum. It means that the lattice 
should be able to reproduce the linear elastic behaviour of 
the continuum solid and its uniform straining when uniform 
loading is applied. Lattice parameters are usually computed 
from this condition.

Simplicity and successful representation of localized 
failure and cracking mechanisms are the most important 
features that led to rapid development of lattice models. 
Namely, failure and cracking mechanisms can be simulated 
in a straightforward manner usually by detecting if any lat-
tice element which represents the cohesive force between 
the particles has reached a certain failure criterion. If yes, 
cohesive fracture is initiated leading to gradual separa-
tion of the crack surfaces across the cohesive zone. The 
cohesive crack approach brings the benefit of avoiding the 

issue of singularity of the stress at the crack tip which is 
present in linear elastic fracture mechanics. Addition-
ally, with lattice models, it is possible to simulate multiple 
cracks without worrying about multiple crack interactions. 
Various approaches are developed to deal with a post-peak 
behaviour of such elements. Classical approaches com-
pletely remove those failed elements and usually perform 
re-meshing of the lattice upon their removal. This leads to 
a very brittle response of the structure. Another approach 
is to model the post-peak behaviour of failed elements with 
progressive degradation of material stiffness leading to sof-
tening behaviour with fracture energy of material as input 
parameter. This results with gradual redistribution of inter-
nal forces to neighbouring elements and progressive failure. 
Softening behaviour of lattice elements is usually captured 
by sequentially linear algorithms trying to approximate the 
nonlinear softening curve. Classical damage or plasticity 
constitutive laws for softening can be used with nonlinear 
incremental iterative analysis.

If one would like to simulate cracking, the choice of lat-
tice elements is very important to achieve this goal as well. 
Namely, for the prediction of correct crack path in shear 
tests, the shear and rotational degree of freedom should be 
used, either with shear and rotational springs or by using 
beam elements. It was shown in [2] that prediction of crack 
path in Nooru-Mohamed test with a lattice constructed 
from normal and shear springs failed, with crack propagat-
ing straight. When the rotational spring was introduced, 
the crack could curve, and a pattern similar to the one in 
the experiment was obtained. Another important choice 
for prediction of correct crack pattern is lattice regularity. 
We can distinguish here between regular (periodic lattice 
with structured grid) and irregular lattices with disordered 
topology (unstructured grid). It is much easier to achieve 
the uniform straining with a regular lattice. However, it can 
also strongly bias the cracking patterns with its structured 
grid. On the contrary, irregular lattices provide lower pre-
determination of cracking direction but generally do not 
provide uniform straining. It is important to emphasize that 
the procedure for the computation of lattice parameters 
significantly differs in these two cases. The procedures for 
obtaining lattice parameters in various models with springs 
and beams can be found in the extensive overview of lattice 
models by Ostoja-Starzewski [3].

Fig. 1   a Lattice network with 
marked lattice nodes and ele-
ments b lattice network with 
springs

(a) (b)
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It is well known that disorder can strongly influence 
the failure mechanisms. Lattice models possess a natu-
ral ability of considering disorder through material het-
erogeneities and representation of different multi-phase 
materials with interactions between their phases. Another 
important aspect which can strongly influence the failure 
mechanism is the size of the localized zone, i.e. frac-
ture process zone, which forms around the propagating 
crack. Narrow localized zone produces less dissipated 
energy resulting with brittle failure. Wider localiza-
tion is associated with more ductile behaviour. The size 
of the localized fracture process zone stands as an uni-
versal issue in various models trying to simulate cracks 
and discontinuities. In linear elastic fracture mechanics, 
the amount of plastic dissipation related to the size of 
the localized fracture process zone around the crack tip 
is important for not underestimating material properties. 
Standard finite elements dealing with failure in soften-
ing produce non objective and mesh dependent results, 
which is also related to the size of the localized zone 
where finer mesh produces narrower zone of localiza-
tion and consequently more brittle response. In order to 
fully understand the size of the localized zone, one could 
use molecular dynamics framework in which interactions 
between the atoms and molecules are observed taking 
into consideration disorder at the atomistic scale. How-
ever, this approach requires complicated inter-atomic 
potentials and a significant computational power. On the 
contrary, lattice models are less computationally demand-
ing and can capture disorder, as well as stabilized locali-
zation zone. These favourable properties lead to the vast 
usage of lattice models in simulating the behaviour at 
finer scales of the material, like micro-scale and meso-
scale, where the material can be observed as collection 
of particles in equilibrium with their interaction forces. 
Application to many materials ranging from metals, com-
posites, ceramics and polymers to granular materials can 
be found in the literature. However, the development and 
evolution of lattice models were mostly influenced by the 
industrial requirements for the composite materials, espe-
cially concrete. It is well known that physical properties 
of concrete strongly depend on the composition of mate-
rial at lower scales. Many authors were trying to simulate 
concrete at meso-scale, which can be observed as a two 
or three phase composite with aggregates surrounded by 
cement paste and interface transition zone. One approach 
at concrete meso-scale, like shown in [4, 5], is by over-
lapping digital images of concrete internal structure onto 
the lattice and assigning different material properties to 
the lattice elements, whether the lattice element coincide 
with aggregate, cement paste or interface. Meso-scale 
models can capture fundamental aspects of heterogeneity. 
Micro-scale refers to the size of several micrometers and 

hardened cement paste with capillary pores filled with 
liquid water and vapour. Concrete micro-scale can be 
captured not directly by overlapping lattice, but by intro-
ducing variations in material by statistical distributions. 
Lattice models can also be used at macro-scale, that is 
the usual engineering scale, for simulations of fracture 
propagation. This is usually performed under quasi-static 
conditions, but dynamic environment can be simulated as 
well.

Recently, a number of powerful lattice models has been 
published. One of the most recent novel features is the 
introduction of embedded strong discontinuity into lattice 
truss bar elements [6, 7], and beam elements [8, 9]. The 
embedded strong discontinuity comes as a result of intro-
ducing the Dirac delta function into the lattice elements to 
represent the displacement jumps between the particles, 
corresponding to crack openings. The formulation based on 
embedded strong discontinuity acts as a localization limiter 
and stabilizes the localized zone, producing the release of 
fracture energy independently of the chosen mesh. Another 
recent feature is the application of the contact between the 
particles, typical for classical discrete element models. The 
latter is important for fragmentation under compression 
test. Contact detection and interaction between the released 
particles are enabled after the removal of the broken cohe-
sive links [10, 11]. The contact can also be modelled 
between the load platens and the specimen constructed 
from lattice elements [12, 13]. Moreover, lattice models 
have been recently used in solving the transport problems 
in cracked heterogeneous materials. Among them, inter-
action between the mechanical aspects captured by lattice 
models and fluid flow can be found in [14–17]. The future 
potential lies in the further development of lattices for solv-
ing fluid problems, hydraulic fracturing problems or appli-
cations in partially-saturated soils. Moreover, the potential 
could be in other multi-physics applications as well.

The intention of this paper is to give the reader an exten-
sive overview of lattice models and their peculiarities. 
Complex phenomena related to failure of the materials can 
be simulated with lattice models, yet they are still simple 
and computationally not very demanding. This paper also 
provides very recent developments and advances in the 
field of lattice element modelling.

The outline of this paper is as follows. In Sect. 2 we give 
a brief overview of various existing lattice approaches. We 
also discuss the procedures for obtaining lattice parameters 
and provide parameters for most used lattices. Section  3 
is dedicated to applications of lattice models on material 
failure and cracking mechanisms. Issues related to numeri-
cal instabilities occurring in failure and softening are also 
addressed here. In Sect. 4, we discuss the implementation 
of embedded strong discontinuities into the framework 
of lattice models. Section  5 pertains to the influence of 
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transport in material failure and multi-physics application 
of fluid-structure interaction with lattice models, which 
can be used to represent the cracking under the influence 
of fluid flow. Conclusions are given at the end of the paper.

2 � Topology of Lattice Element Models

This section provides an overview of various lattice mod-
els, with respect to lattice topology. Lattice-spring and 
lattice-beam models are addressed here as well. The main 
distinction with respect to topology is the grid regular-
ity. Two major groups can be extracted: regular lattices 
with structured grid and irregular lattices with disordered 
and unstructured grid. The stress-strain relationship of the 
material should be derived based not only on the mate-
rial properties, but also on the geometric properties of the 
underlying lattice structure to obtain uniform straining of 
the lattice. Regular or irregular lattice topologies imply dif-
ferent computation of lattice element parameters. Regular 
lattices can easily represent uniform straining when the 
material is uniformly loaded, while the irregular ones are 
better for representation of crack patterns in heterogeneous 
materials.

2.1 � Regular Lattices

A regular lattice, or a lattice with structured grid, may be 
squared or triangular (Fig. 2). It is periodic, where the unit 
cell can be considered as a repeating element in the mesh 
(Fig.  2). The lattice can also be periodic, but with disor-
dered topology, where the inner structure of the unit cell is 
not necessarily nicely ordered, but it repeats itself in space. 
We will first introduce the lattice-spring models which 
use springs to transfer forces between the particles. These 
springs can be normal, shear or rotational ones (Fig.  3). 
Then, we will introduce lattice-beam models as a natural 
extension of the lattice-spring models.

2.1.1 � Lattice‑Spring Models

The basic idea in setting up the lattice-spring models is 
based on the equivalence between the strain energy stored 

in a unit cell of lattice structure (which represents the 
repeating element in the mesh and is connected by springs 
to its neighbours) and the continuum strain energy

A periodic unit cell in triangular and squared lattice is 
shown in Fig. 2. The strain energy of a lattice-spring model 
can be computed as the sum of energies of single bonds

where b denotes the b-th spring, F is a force on the spring 
b and u is the displacement of the spring b. Corresponding 
continuum strain energy can be expressed as a volume inte-
gral in the continuum model

where � and � are the stress and strain, respectively. If one 
wants to obtain uniform strain fields with a lattice, these 
two energies can be used to relate the stiffness tensor con-
taining spring constants and the one containing continuum 
constants. Lattice parameters can be derived from this rela-
tion. While the procedure for deriving the parameters for 
various lattices can be found in [3], the frequent example of 
triangular lattice with springs is presented here. Triangular 
lattices have hexagonal unit cells like shown in Fig. 4. Unit 

(1)Ecell = Econtinuum

(2)Ecell =
1

2

Nb∑
b

(F ⋅ u)(b)

(3)Econtinuum =
1

2 ∫V

� ⋅ �dV

Fig. 2   a Regular triangular 
lattice network with springs b 
regular square lattice network 
with springs

(a) (b)

Fig. 3   Spring as a cohesive link between the two nodes. Three types 
of springs: normal spring kn, shear spring ks and rotational spring kr
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cells can be connected to their neighbours by normal, shear 
or rotational springs, and their combinations.

If the normal springs in triangular lattice are used only, 
we obtain the so called triangular lattice with central inter-
actions where normal force on the spring can be expressed 
as

where kn is the normal spring constant, while n represents 
spring unit vectors. This model can be used to represent in-
plane elasticity in two dimensions where the corresponding 
constitutive law is given by

and Cijkm is the stiffness tensor of continuum constants. If 
the springs are of length l and positioned at the angles of 
0◦, 60◦ and 120◦ in the mesh, the area of the unit cell is 
V = 2

√
3l2 and the stiffness tensor can be related to the 

spring network by

Taking all spring constants k(b)
n

 to be the same kn results 
with

With such computed lattice parameters, where only one 
independent elastic constant kn exists, one can use the regu-
lar triangular lattice-spring model with only normal springs 

(4)Fi = k(b)
n
n
(b)

i
n
(b)

j
uj ; i, j = 1, 2

(5)�ij = Cijkm�km ; i, j, k,m = 1, 2

(6)Cijkm =
1

2
√
3

6�
b=1

k(b)
n
n
(b)

i
n
(b)

j
n
(b)

k
n(b)
m

(7)

C1111 = C2222 =
9

8
√
3
kn

C1122 = C2211 = C1212 =
3

8
√
3
kn

to model the isotropic continuum. Here, classical Lamé 
constants are obtained from (7)

The planar anisotropy considers six independent material 
constants Cijkm. In order to successfully model the anisotropic 
case with six independent parameters, three different normal 
spring constants k(b)

n
 should be used, together with rotational 

springs k(b)
r

. Moreover, rotational springs are used for Pois-
son’s ratio variation. The unit cell for this model contains 
six normal springs and six rotational springs (Fig. 4). While 
the normal springs are represented by a spring constant kn, 
rotational springs have a spring constant kr which provides 
the relation between the change in the angle between two 
neighbouring normal springs and the corresponding force. 
Since the unit cell is symmetric, twelve constants reduce to 
six independent ones (3 axial and 3 rotational springs). The 
angle change between two adjacent springs (b) and (b + 1) is 
measured by ΔΦ = �(b+1) − �(b) and the energy stored in the 
rotational spring is

Summing the energies over the cell of all normal and rota-
tional springs and comparing it to the stiffness tensor leads 
to the derivation of the elastic moduli for this anisotropic 
spring model. With this model we can also represent iso-
tropic material if we assume that all normal springs have 
the same value kn and all rotational spring constants have 
the same value kr. This is known as the Kirkwood model 
[18]. In this case, two independent constants exists which 
are related to the continuum constants by the following 
equations (see also [3])

Two material constants, planar bulk modulus (�) and shear 
modulus (�) can be derived from relations (10)

while Poisson’s ratio (�) can vary between 1/3 and −1

(8)� = � =
3

8
√
3
kn

(9)E(b) =
1

2
k(b)
r
|ΔΦ|2

(10)

C1111 = C2222 =
1

2
√
3

�
9

4
kn +

1

l2
kr

�

C1122 = C2211 =
1

2
√
3

�
3

4
kn −

9

4l2
kr

�

C1212 =
1

2
√
3

�
3

4
kn +

9

4l2
kr

�

(11)

� =
1

2
√
3

�
3

2
kn

�

� =
1

2
√
3

�
3

4
kn +

9

4l2
kr

�

Fig. 4   Unit cell in triangular lattice with normal and rotational 
springs
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One can use a slightly different, Keating model [19], with 
a different calculation of the energy stored in rotational 
springs resulting with a different range of Poisson’s ratio: 
from −1∕3 to 1/3.

Among these, Born model [20] can be considered as 
well. It is a model in which axial and shear forces can be 
transferred between the particles via normal and shear 
springs. However, this model is not rotationally invariant. 
Another model in which axial and shear force are transmit-
ted between the particles neglecting their rotations is the 
confinement shear lattice model [21].

Since the introduction of rotational degrees of freedom 
into the lattice spring models provides the stiffness matrix 
resembling the beam stiffness matrix, beams come as a nat-
ural choice to represent lattice elements.

(12)� =
1 −

3k

knl
2

3 +
3kr

knl
2

2.1.2 � Lattice‑Beam Models

In the lattice-beam models, lattice nodes which can be con-
sidered as the centres of the unit cells, are connected by 
beams that can carry normal force, shear force and bending 
moment. Thus, each lattice node contains three degrees of 
freedom (in 2D), two translational ui, vi and one rotational 
�i (Fig. 5). When the lattice elements are chosen as beams, 
the lattice network becomes a frame structure. Beam lat-
tices are used to represent the so-called micro-polar con-
tinuum. We can choose the classical Euler–Bernoulli and 
Timoshenko beams as lattice elements, while the latter 
should be used when beam elements in the lattice are short 
and deep.

The relationships between the properties of a continuum 
phase and its representative beams in the lattice is again 
obtained by comparing the strain energies accumulated in 
continuum and lattice unit cells, according to Eq. (1). The 
shape and size of the unit cell depend on the mesh configu-
ration, while the frequently used ones are again triangular 
and squared beam lattices (Fig. 6). The strain energy of the 
beams in the hexagonal cell can be written as

where F(b), Q(b) and M(b) are the normal force, shear force 
and moment of each beam. That can be obtained from the 
constitutive equations of Euler–Bernoulli beam

where � is axial strain, 𝛾̃ is the difference between the rota-
tion angle of the beam and the rotation angle of its end 
node and � is the curvature. The full derivation of lattice 
beam parameters can be found in [3]. Additional deriva-
tion of regular triangular beam lattice models can be found 
in [22], where the authors use triangular Euler–Bernoulli 
beam lattice and equivalent lattice spring model with three 
springs, normal, shear and rotational. They have shown that 

(13)Ecell =
1

2

6∑
b=1

(
F(b)𝛾 (b) + Q(b)𝛾̃ (b) +M(b)𝜅(b)

) l(b)
2

(14)

F(b) = E(b)A(b)𝛾 (b)

Q(b) =
12E(b)I(b)

(l(b))2
𝛾̃ (b)

M(b) = E(b)I(b)𝜅(b)

θ

θ

Fig. 5   Unit cell connected to neighbours by beams. Beam node can 
carry two translational degrees of freedom and one rotational

Fig. 6   Lattice-beam models 
a regular triangular lattice b 
regular square lattice

(a) (b)
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these two lattices are equivalent and can identically rep-
resent micro-polar continuum if the spring constants are 
expressed through the following beam properties

Moreover, Euler–Bernoulli beam lattice and equivalent 
spring lattice are related to the underlying continuum. 
Linking the stress strain relationships of the lattice beam, 
lattice spring and continuum model leads to the connection 
between the continuum variables and the spring constants 
in a lattice spring system or to the beam properties in a lat-
tice beam system. The full procedure is explained in [22], 
while the final expressions and the connection between 
these models are presented in Tables 1, 2, and 3.

When the beams used in the lattice are short and deep, 
resulting with stubby connections (Fig. 7), it is more appro-
priate to use Timoshenko beam elements. The unit cell 
strain energy is again obtained from Eq. (13), the same as 
for Euler–Bernoulli beam, except that the shear force is 
computed differently and comes from Timoshenko beam 
governing equations

(15)

kn =
E(b)A(b)

l

ks =
12E(b)I

l3

kr =
12E(b)I

l

(16)Q(b) =
12E(b)I(b)

(l(b))3(1 + 𝛽)
l(b)𝛾̃ (b)

where � is the dimensionless ratio of bending to shear 
stiffness

The paper [23] presents the Timoshenko beam lattice, with 
its extensive derivations, for the fracture of a composite 
structure. The basic relations between continuum constants, 
modulus of elasticity and Poisson’s ratio, and Timoshenko 
beam lattice are given in Table 4.

2.2 � Irregular Lattices

In the previous subsection, we described the lattice-spring 
and lattice-beam models with regular geometries. It has 
been noted that regular lattices can represent elastically 
uniform behaviour due to the symmetry of the mesh and 
periodicity of the unit cell in which strain energies are com-
puted to derive the lattice parameters. However, regular 
geometry in a lattice can influence the biased crack propa-
gations. Irregular lattices or random geometry lattices can 
greatly reduce this effect, but are not generally elastically 
uniform under uniform straining.

It has been shown in [24] that scaling of element stiff-
ness terms in irregular lattice based on a Voronoi discre-
tization of the domain results in homogeneous response of 
the material under uniform straining. This can be valid for 
both, lattice-spring and lattice-beam models.

Voronoi tessellation can be constructed from a random set 
of points distributed all over the domain, by assigning to each 
point the part of the domain which is closer to it than to any 
other of the chosen points. This point represents the nucleus 

(17)� =
12E(b)I(b)

G(b)A(b)l2

Table 1   Continuum properties related to lattice spring and lattice 
beam properties

Continuum Lattice spring Lattice beam

� kn−ks

3kn+ks
1−

(
h

l

)2

3+
(

h

l

)2

G
√
3

4
(kn + ks)

√
3

4

�
E(b)A(b)

l
+
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Table 2   Lattice spring related to continuum and lattice beam proper-
ties

Lattice spring Continuum Lattice beam
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Table 3   Lattice beam properties related to continuum and lattice 
spring properties

Lattice beam Continuum Lattice spring
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Fig. 7   Slender (Euler–Bernoulli) and stubby (Timoshenko) beams in 
a unit cell
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of the Voronoi cell. The domain is then covered by non over-
lapping polygons Ωi corresponding to point Pi with a rule

where d(., .) denotes the distance in the Euclidean space. It 
follows that each side of a Voronoi cell splits the distance 
d(Pi,Pj) = lij in half (see Fig. 8). This is an important prop-
erty by which the scaling of the lattice properties will be 
performed.

According to the random distribution process, the nuclei 
can be more or less uniformly distributed. The details of the 
Voronoi tessellation can be found in [25]. It is worth noting 
that the Voronoi tessellation is dual to the Delaunay triangu-
lation, and either discretization can be derived from its cor-
responding dual (Fig. 9). This is a very convenient property 
in lattice networks, where Delaunay edges can be regarded 
as lattice elements and their geometrical properties can be 
extracted from Voronoi cells.

Bolander et al. [24, 26, 27] developed irregular spring lat-
tices for quasi-static crack propagation. They have shown that 
the stiffness of the spring lattice with normal kn, shear ks and 
rotational kr springs can be scaled according to the Voronoi 
diagram (Fig. 8) as

(18)Ωi =
(
P such that d(P,Pi) ≤ d(P,Pj), ∀j ≠ i

)

(19)

kn =
EAij

lij

ks =
EAij

lij

kr =
knh

2
ij

12

This stiffness is dependent on the distance lij between the 
lattice nodes i and j, and the length of the neighbouring 
Voronoi edge hij. The Aij = hij ⋅ t can represent the cross 
section area of the lattice element, where t is thickness 
when 2D case is considered. Such scaling of spring stiff-
ness parameters results with an elastically homogeneous 
continuum representation. However, if kn ≠ ks, the lattice is 
not going to be homogeneous.

Scaling of the stiffness presented in relations (19), can 
also be used in a 3D case (see also [27])

where Aij is now the Voronoi facet area representing the 
common area of the two neighbouring 3D Voronoi cells 
(Fig.  10), Jp is the polar moment of inertia, I11 and I22 
are the two principal moments of inertia of the facet area 
(Fig. 11).

It is generally more difficult to obtain the uniformity of 
the beam lattice with irregular mesh. One way is to use a 
special case of square beam lattice with Voronoi scaling 
where axial beam components are dominant [24]. An alter-
native way to compute lattice parameters to obtain homo-
geneous lattice response presented in [2] is based on an 
iterative process of searching for the right combinations 
of the parameters. Although, irregular beam lattices with 
parameters computed from Voronoi scaling do not neces-
sarily provide elastic uniformity of all nodes and lattice ele-
ments, it has been shown that their macroscopic responses 
correspond to the equivalent continuum responses and no 

(20)

kn = ks1 = ks2 =
EAij

lij

k�a =
EJp

lij
; k�s1 =

EI11

lij
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Table 4   Continuum properties related to the Timoshenko beam lat-
tice properties
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Fig. 8   Two neighbouring 2D Voronoi cells

Fig. 9   2D irregular lattice with Voronoi tesselation. Delaunay trian-
gulation and Voronoi tesselation are corresponding duals. (Color fig-
ure online)
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global stiffness is gained or lost with this way of comput-
ing parameters [8]. The amount of straining disorder intro-
duced into the beam lattice with irregular mesh depends on 
the disorder of the mesh. Many present lattice-beam models 
use Voronoi scaling or similar variations to compute the lat-
tice parameters in the case of irregular meshes. Euler–Ber-
noulli beams with Voronoi scaling are used to construct 
lattice elements in [10, 11]. The same scaling procedure is 
used with Timoshenko beams in [8, 9]. In [12, 13, 21], a 
similar procedure with a modification such that the vertices 
of the Voronoi cells correspond to the centres of the masses 
of the underlying Delaunay triangles is used. In [28–30], a 
lattice element similar to Euler–Bernoulli beam is devel-
oped according to the Voronoi scaling. All these works are 

dealing with meso-scale of heterogeneous materials like 
concrete or rocks where straining is not uniform. The main 
concern of the models is to successfully represent cracking 
patterns with respect to material heterogeneities, while very 
often an additional disorder through statistical distributions 
due to variations in material properties is also needed.

3 � Failure Modelling with Lattice Element Models

3.1 � Failure of the Materials

One of the important goals scientists and engineers have 
been tackling for a long period of time is how to describe 
the failure and fracturing of materials. When the material 
is homogeneous and the crack is predetermined, one could 
predict the failure mechanism. However, most materials are 
heterogeneous and their failure mechanisms become very 
complex due to the influence of heterogeneities, occurrence 
of multiple cracks merging together or plastic deformations.

An essential part of dealing with failure is to define the 
criterion which states when the fracture will propagate. 
One of the classical approaches is based on the energy bal-
ance proposed by Griffith [31]. It considers a crack of area 
A (crack length in two dimensional problems) propagating 
due to external forces by an amount of dA. Griffith defined 
the energy release rate as

where dW is an increment of the work of externally applied 
loads and d� is an increase of elastic potential energy of the 
system available for the crack growth. The creation of the 
crack will use some additional energy equal to 2�sdA, with 
�s as a crack surface energy. This criterion states that the 
crack will propagate if the release of the energy from the 
system is larger than the energy required for the crack to 
propagate:

The critical energy release rate Gc = 2�s represents the 
internal characteristics of the material. The Griffith crite-
rion is very applicable in linear elastic fracture mechanics, 
but it lacks the possibility to consider additional dissipa-
tion of the energy G due to plastic deformation and micro 
cracks.

Another criterion is to use the stress intensity factors K 
developed by Irwin [32], which participate in the equation 
for stress at the vicinity of the crack tip

(21)G =
dW − d�

dA

(22)G ≥ Gc.

(23)�(k)

ij
(r, �) ≈

�
K(k)√
2r�

�
f
(k)

ij
(�)

Fig. 10   3D irregular lattice with Voronoi cells. (Color figure online)
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Fig. 11   Two neighbouring 3D Voronoi cells
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where �ij are the Cauchy stresses, r is the distance from 
the crack tip, � is the angle with respect to the plane of the 
crack, and fij(�) is a dimensionless function depending on 
the angle � and the fracture mode (k) (fracture modes are 
shown in Fig. 12). The critical stress intensity factors KIc, 
KIIc, KIIIc for all failure modes can be obtained.

It can be shown that the works of Irwin and Griffith can 
be made equivalent and that Eq. (23) is valid in linear elas-
tic fracture mechanics. One can notice that when the distance 
to the crack tip r tends to zero, Cauchy stress goes to infin-
ity. However, stress at the crack tip is not singular in reality, 
because a small localized zone in which nonlinear and dis-
sipative processes occur (called fracture process zone) is cre-
ated in a neighbourhood very close to the propagating crack 
tip. Thus, Eq.  (23) is valid outside of this fracture process 
zone, where material behaviour is linear elastic. This disad-
vantage of the mentioned approach was manifested in the 
underestimation of the critical failure strength of many duc-
tile materials. Irwin proposed a modification [32] based on 
Orowan’s findings [33], in which he included an additional 
energy term due to plastic work near the crack tip

where �p is the term due to plastic dissipation. The same 
approach is applied for damaged materials in which a 

(24)Gc = 2�s + �p

small zone of microcracks is created instead of plastic 
deformation.

In most real materials which exhibit nonlinear and ine-
lastic behaviour, the localized plastic zone near the crack 
tip is not necessarily in a region closest to the crack, but 
it may be spread wider and even change during the crack 
growth. Linear elastic fracture mechanics is not applica-
ble in these cases. Moreover, heterogeneities can induce 
distortions of the crack front and modify the values of 
stress intensity factors. Therefore, more general theories 
are needed for such materials. Among them, an important 
criterion for fracture propagation which can consider non-
linear elastoplastic materials is the J-integral developed by 
Rice [34], which calculates a contour integral around the 
crack tip

where w is the strain energy density, Ti are the components 
of traction, ui are displacement components, and n is a unit 
vector normal to the crack contour Γ. In a case of linear 
elastic material, the J-integral can be reduced to Griffith 
theory and made equivalent to the energy release rate G.

As indicated in [35], the localized plastic zone or local-
ized damage zone around the propagating crack can be con-
sidered as a small scale cut-off distance of the elastic solu-
tion. It is crucial to correctly identify this distance since it 
has a significant effect on the response of the cracked mate-
rial and influences energy dissipation. Thus, one can meas-
ure the stress or the stress intensity factor outside of the 
cut-off distance by the Eq. (23) which holds true for linear 
elasticity.

Previous approaches can be applied in linear elastic 
fracture mechanics to ideal homogeneous materials or to 
real materials with fracture process zone, when the fail-
ure is ruled by a single crack. On the contrary, failure of 
a vast number of real materials (especially brittle ones) is 
strongly governed by disorder, mainly pertaining to hetero-
geneities, which complicate the failure mechanisms even 
more. Namely, the occurrence of multiple cracks which can 
coalesce, branch or simultaneously grow, while singular 
stresses at the crack tips interact with each other, require 
more detailed description and understanding of the het-
erogeneous nature of the material. Additional criteria for 
fracture propagation are needed to create new interfaces, 
together with corresponding contributions from plastic-
ity and damage at the crack tips. According to [35], the 
response of the structure with multiple cracks is not unique 
when Griffith criterion or criterion based on stress intensity 
factor is used.

Many experiments have shown that heterogeneities rule 
the phenomenon of fracture. For example, two pieces of 
the same material will not produce identical crack paths 

(25)J = ∫Γ

(
wn − Ti

�ui
dx

)
dΓ

Fig. 12   Three failure modes: Mode I is the opening mode, Mode II is 
the in plane shearing mode, and Mode III is the out of plane tearing 
mode
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nor macroscopic responses. The latter usually exhibits the 
decreasing curve, called strain softening, representing a 
material instability which occurs under the failure. Such 
instability is characterized by the decreasing stresses even 
with increasing strains. It has been shown that the softening 
curve depends on the size of the localized zone in which 
damage or plasticity are concentrated. This phenomenon 
can also be confirmed with standard finite elements, in 
which softening and the localized zone are mesh depend-
ent. Namely, the damage becomes more localized when 
refining the finite element mesh, leading to mesh dependent 
mechanical response (Fig.  13). In order to provide mesh-
independent softening response, localization needs to be 
stabilized. Several methods called localization limiters (see 
[36]) have been proposed to deal with localization produc-
ing the mesh-independent results. Some of them use the 
mesh-dependent value of softening modulus to provide the 
desired dissipation and do not require any modification of 
the theoretical formulation. The same can be achieved by 
localization limiter based on viscoplastic regularization. 
Another class of localization limiters is based on non-local 
theory of plasticity [37] or non-local damage formulation 
[38]. In non-local theory, stresses are computed from the 
average of strains in the chosen neighbourhood defined 
by the characteristic length, which can span several finite 
elements. However, an important disadvantage of the non-
local theory is the lack of the physical basis for choosing 

the appropriate value of the characteristic length. The 
reader is referred to reference [36] for more details on 
localization limiters.

Another widely published approach to numerically deal 
with materials which undergo strain localization and sof-
tening with pathological dependence on the refinement 
of the grid is multi-scale modelling [39]. The idea of this 
approach is to consider the effect of the heterogeneities of 
the microstructure on the global response of the structure. 
However, the major question is how to properly transfer 
the length scales and preserve the energy. There are several 
multi-scale modelling techniques. The straightforward tech-
nique is the direct numerical analysis which is expensive 
but useful for verification of multi-scale models. Homog-
enization is another technique in which the heterogeneous 
material is replaced by an equivalent homogeneous mate-
rial [39, 40]. In order to achieve this goal, the representa-
tive volume element (RVE), which is a micro or meso 
sub-domain representative for the entire micro or meso 
structure in an averaged sense, needs to be defined. How-
ever, the different sizes of the RVE’s in a localized process 
produce non objective results, which again seems to be the 
major drawback. Namely, the ongoing question is still how 
to properly identify the size of the localized zone to obtain 
the correct failure response. One approach to tackle this 
problem in homogenization methods is failure zone averag-
ing presented in [39]. Another approach published recently 
is to model the discrete cracks in softening RVE with 
embedded strong discontinuities whose formulation eas-
ily distinguishes between loading in the damaged zone and 
unloading in the neighbourhood [41], or when continuum 
elements with embedded strong discontinuity formulation 
are used in a standard FE2 scheme at micro and macro scale 
[42]. Accurate multi-scale modelling of materials require 
the use of multi-scale techniques being able to successfully 
bridge the various scales and to provide the most important 
effects of lower scales. Multi-scale theories can be found in 
the literature, even for modelling nano-composite materials 
and atomistic and molecular systems [43]. However, bridg-
ing the scales can be extremely complex and computation-
ally demanding especially when getting to lower nano and 
atomistic scales. Special software procedures and some-
times code coupling strategies are needed to complete this 
task [44].

Although methods based on localization limiters and 
multi-scale homogenization techniques can provide mesh 
independent softening responses, there is still a question 
of the true origin of the localized fracture process zone. In 
order to fully understand it, one has to consider the disor-
der explicitly through a lot of statistics and to observe the 
fracture at the atomistic level [35]. Molecular dynamics is 
a numerical tool developed in the late 1950s for studying 
physical movements of atoms and molecules. The atoms 

Fig. 13   Finite element simulation of uniaxial tension test. Material 
parameters: E = 20000  MPa, �u = 30  MPa, K = −3000  MPa. The 
result for softening part of the curve is mesh dependent. Namely, 
smaller the element, the more localized damage and smaller fracture 
energy leads to more brittle response. (Color figure online)
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and molecules interact between each other resulting with a 
dynamical evolution of the system. The principle of molec-
ular dynamics simulations is to determine the trajectories 
of atoms by solving Newton’s equation of motion. Forces 
between the particles and their potential energies are cal-
culated using inter-atomic potentials, which represent the 
crucial ingredient of molecular dynamics simulations. 
Molecular dynamics simulations are computationally very 
intensive since the evaluation of the potential as a function 
of the millions of particles is needed. Another difficulty is 
the choice of the size of the integration time step which 
must be small enough to avoid discretization errors. Time 
steps are usually of the order of 1 femtosecond (10−15s).

Despite the heavy computational requirements, molecu-
lar dynamics simulations have been successfully applied 
to provide more insight into the propagation of cracks 
considering the atomistic aspects of a material [45]. It has 
been shown that the serious shortcomings of the fracture 
mechanics related to singularities at the crack tip and the 
size of the localized zone can be solved by considering the 
bond breaking between atoms and thus departing from the 
continuum mechanics towards the atomistic description of 
fracture. More precisely, it is possible to correctly identify 
the size of the fracture process zone at the atomistic level. 
The trajectories of the atoms obtained through Newton’s 
equation of motion can provide the structural, dynamical, 
thermal and mechanical properties of the system. Molecu-
lar dynamics simulations can naturally account for nonlin-
earities and disorder of the system.

An inter-atomic potential function provides a descrip-
tion of the terms by which the atomic particles in the sim-
ulation will interact. One simple two-body inter-atomic 
potential is Lennard-Jones potential (LJ) used for calcu-
lating van der Waals forces in vacuum. Although rather 
simple, LJ is able to describe a huge variety of material 
behaviours. Several modifications of the potential have 
been developed resulting in the possibility to represent 
both ductile and brittle behaviours. Simulations obtained 
with LJ potential have shown that stress and strain fields 
due to a point source force acting on a bidimensional 
amorphous material result with average stresses and dis-
placement fields which compare well with the predic-
tions from classical isotropic elasticity. However, large 
stress and strain fluctuations are found near the local-
ized zone which come as a result of intrinsic disorder of 
amorphous systems [46]. Fracture and damage of silicate 
glasses and ceramics can be solved by combining two-
body and three-body potentials. The two-body interaction 
accounts for Coulomb interaction due to charge trans-
fer, while three-body potential serve for covalent effects 
[47]. A significant potential lies in molecular dynamics 
simulations which can be used to obtain the critical stress 
intensity factors, fracture toughness or the morphology of 

fracture surfaces. They also provide a great potential for 
understanding the mechanical behaviour, crack propaga-
tion and failure mechanisms in various materials. Valu-
able information can be extracted at the crack tip and the 
surrounding region up to sub-micron length scales, as 
well as information about the origin of stress heteroge-
neities which control these mechanisms [45] (Fig.  14). 
However, such simulations are very complicated and 
computationally expensive often dealing with millions 
of atoms. Thus, they are not practical, especially in engi-
neering practice. A more efficient way of considering the 
above mentioned phenomena which are crucial for failure 
of real materials and highly influence the failure mecha-
nisms can be obtained through the use of lattice models.

3.2 � Lattice Models for Failure at Micro‑/Meso‑scale

Lattice models, described previously in Sect. 2, may be suc-
cessfully used for simulations of failure of heterogeneous 
disordered materials. They can be considered as an alterna-
tive to molecular dynamics simulations, but with justifica-
tion on a larger length scale. Namely, molecular dynamics, 
as a more fundamental approach, describes the material at 
the atomistic scale, while lattice models may naturally be 
used in representing the micro-/meso-scale of quasi-brittle 
materials like soils, rocks, concrete, ceramics, marl etc. The 
latter are cemented granulates forming macroscopic solids, 
where the grains of the material are taken as a large col-
lection of small scale units (atoms and molecules) interact-
ing elastically with each other. Thus one should deal with 
elastic or plastic equations of motion instead of compli-
cated interatomic potentials [35]. The granular meso or 
micro structure of such materials naturally agrees with the 

Fig. 14   Snapshot of a molecular dynamics simulation showing the 
crack and nanopores (dark) and atoms (light) in an amorphous Si

3
N

4
 

film. Initially the crack propagates straight. Voids in front of the crack 
coalesce with each other and form a second crack (Taken from [45])
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framework of lattice models (Fig. 15). As stated in Sect. 2, 
lattice models are constructed from a collection of lattice 
nodes which can be regularly of irregularly distributed 
along the domain. Lattice nodes are connected with lattice 
elements usually forming a Delaunay triangulation, while 
each node corresponds to a single grain or particle of the 
material. Material particles can be represented by Voronoi 
cells (Figs. 9 and 10), which are dual to Delaunay triangu-
lation, or spheres (alternatively circles in 2D) (Fig. 1b).

An assembly of such micro or meso scale particles, which 
are cemented and bonded together, form the vast number of 
quasi brittle materials. In order to bond the particles together, 
a cohesion force between them is required. This is easily ful-
filled with lattice model approach, where lattice elements can 
represent the cohesive forces between the particles. A signifi-
cant benefit of the cohesive approach for fracture has already 
been experienced in the early 1960s by Barenblatt [48] and 
Dugdale [49] with an introduction of cohesive zone models. 
The cohesion force in the material results from atomic and 
molecular bonds at the atomistic scale of the material. The 
concept of cohesive fracture is regarded as a gradual separa-
tion of the surfaces involved in the crack which takes place 
across an extended crack tip, or cohesive zone, and is resisted 
by cohesive tractions when material elements are pulled 
apart. Traction first increases with the separation of sur-
faces until a maximum value is reached, and then gradually 
reduces to zero which results in softening behaviour. Thus, it 
is necessary to describe the traction-displacement curve as a 
constitutive behaviour of the fracture for full failure applica-
tion. The area under this curve represents the fracture energy 

which is a physical parameter and can be obtained experi-
mentally. The greatest advantage of the cohesive approach 
for fracture is that it bypasses the problem of singularity of 
the stress at the crack tip and defines the criterion related to 
the cohesive strength of the material. Moreover, it can con-
sider the dissipative processes in the non-linear localized 
zone which can spread even to the wider area around the 
crack. Thus, fracturing of both ductile and brittle materials 
can be studied with cohesive fractures.

In order to trigger the cohesive fracture, an additional cri-
terion for breaking of the lattice needs to be introduced into 
the model. Such a breaking rule should reflect the atomis-
tic state of the rupture initiation and one should carefully 
choose it, taking care about the correct failure mechanism 
occurring in the observed material. More precisely, the fail-
ure criterion on every beam or spring in the domain should 
be checked to realize if the bond reached its ultimate value. 
If the failure criterion is reached, the cohesive bond is either 
removed or undergoes softening (more information on the 
post failure response is provided in the Sect. 3.5). Mechani-
cal breaking rules can be based on a certain stress crite-
rion, where traction acting on the crack is compared to the 
ultimate stress value like in cohesive zone models, or even 
maximum strain criterion. In quasi-brittle materials, stress 
and strain criteria often pertain to failure modes I, II and 
III, reflecting the tensile opening or shear sliding (Fig. 12). 
However, their combination resulting with mixed-mode 
fracture propagation can also be encountered. Failure due 
to bending cannot be neglected in some materials (glass for 
example) and its contribution can also enter the failure rules.

Fig. 15   Grainy structure of different rocks: a breccia (sedimentary), b conglomerate (sedimentary), c limestone (sedimentary), d gneiss (meta-
morphic), e granite (igneous), and f quartz-diorite (igneous). The size of all of the samples is approximately 5 cm. Taken from [9]
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Having the failure criterion checked on every lattice ele-
ment, it is allowed to have many small and sharp cracks 
which can interact, simultaneously grow or merge together 
forming dominant larger cracks, like shown in Fig. 16. This 
represents a significant advantage over models in linear 
elastic fracture mechanics where multiple cracks invoke 
many problems. Moreover, one does not need to think 
about the definition of complex crack geometries, which 
especially provide a lot of difficulties in 3D. Alternatively, 
it is also possible to enforce the single crack by knowing 
the connectivity between the elements and allowing to 
break only the elements in the closest neighbourhood of the 
crack.

Lattice models possess a natural ability for introduc-
tion of disorder. This represents a huge benefit since dis-
order has an important effect on the breaking process. 
Disorder in lattice models usually pertains to meso-scale 
heterogeneities of some composite material or can contain 
the effects of micro structural deviations. In many lattice 
models (which simulate the meso-scale structure), disor-
der pertains to local densities, elastic modulus or material 
strength. Namely, each cohesive link in the lattice is rep-
resented by a certain constitutive law which describes the 
material behaviour (Fig.  17). Perfectly brittle failure in 
Fig.  17a is characterized by elastic behaviour with given 
modulus of elasticity and failure threshold. One could 
implement the presence of disorder by applying the differ-
ent values for threshold or modulus of elasticity by some 
random distribution. This leads to a different behaviour of 
each bond reflecting the disorder at microscopic scales. 
Moreover, if one wants to obtain more ductile behaviour 
in each bond, the constitutive law with softening behaviour 
could be implemented (Fig. 17b). The variation is possible 
in this case as well by applying the different values of frac-
ture energies Gf  for softening.

A vast number of lattice model applications can be 
found in meso-scale simulations of composite materials 
like concrete or rocks. The multi-phase structure of com-
posites is clearly recognizable at the meso-scale, where 
concrete is composed of coarse aggregates bonded together 
with cement. Each phase is characterized by different mate-
rial properties which can be applied to different lattice ele-
ments like shown in Fig. 18. Coarse aggregates as spherical 
inclusions can be generated with the Gibbs point process, 
taking into account both prescribed density and inclusion 
radius [6]. Other cumulative distribution functions can be 
used to randomly place the aggregates inside the observed 
domain [28]. It is also possible to estimate the critical size 
of the aggregates where only larger ones are modelled by 
positioning them inside the domain, while the heteroge-
neities produced by finer ones can be considered by some 
distributions. The model can also account for interface 
elements which appear between the two phases, result-
ing with a three phase material. Some papers refer to such 
observational scale as a mini-scale [12]. Two phases can 

Fig. 16   A result of the 3D lattice model simulation presented in [9]. 
Cylindrical rock specimen is constructed out of beams as the cohe-
sive links. The grey coloured beams are intentionally positioned at 
the opposite ends of the specimen representing the weak phase of the 

material which triggers the cracks. Breaking rules on the cohesive 
links allow to simulate simultaneously many cracks in the domain 
which can propagate, coalesce and merge. (Color figure online)

(a) (b)

Fig. 17   Constitutive behaviour of each cohesive link in the force-dis-
placement coordinate system: a perfectly brittle failure b failure with 
softening
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be easily identified at the meso-scale of rocks, where one 
phase could represent the intact rock while the second one 
accounts for pre-existing defects [8, 9].

Such favourable properties led to the vast usage of lat-
tice elements in simulations of concrete micro-/meso-scale. 
Some of the notable lattice model applications to concrete 
are presented in papers of Schlangen and van Mier [4, 5], 
Schlangen and Garboczi [2], Chang et  al [22], Lilliu and 
van Mier [50], Karihaloo et  al [23], or in some recent 
papers by Vassaux et  al [10, 11], Grassl et  al [28, 29], 
Cusatis et al [12, 13, 21].

3.3 � Lattice Models for Failure at Macro‑scale

We have shown that the concept of lattice models comes as 
a natural choice for simulations at finer scales, especially 
because the material structure is discontinuous and often 
resembles a lattice. However, despite their natural appli-
cability at finer scales, lattice models may also be used to 
simulate the failure of solids at a macro-scale, where the 
lattice structure represents an initially continuous material 
in which discontinuities develop during loading. The failure 
of solids with discontinuity propagations has been a major 
topic of research in the last decades and still represents a 
task which is not easily tackled. This is generally due to 
occurrence of instabilities in numerical algorithms upon 
reaching softening behaviour in material caused by crack 
propagation, and geometric representations of cracks and 

discontinuities, especially when many of them are present 
in the domain. The enhanced finite element methods for 
handling discontinuities inside continuum solid elements, 
like X-FEM [51–53] and FEM with embedded strong dis-
continuities (ED-FEM) [54–58], have been developed to 
solve the problem of failing solids. However, X-FEM and 
ED-FEM require the tracking algorithms for the disconti-
nuities which are still very challenging in 3D. On the con-
trary, lattice models do not require tracking algorithms, 
but cracks occur as a result of breaking the cohesive links 
between the cells and thus represent a propagating discon-
tinuities in a homogeneous solid. For example, simulations 
of macro-scale structures with reinforced concrete incor-
porating the reinforcement into the lattice structure are 
conducted in [59, 60]. Failure of homogeneous solids with 
reinforced fiber inclusions can be found in [24, 26].

3.4 � Similarity Between the Lattice Element Models 
and Discrete Element Models

It is worth noting that the concept of lattice elements can be 
very similar to discrete element method (DEM) with cohe-
sion, in which rigid particles are kept together by cohe-
sive forces as well. The discrete element method is usually 
applied to large displacement problems of granular media, 
while each particle is governed by equations of motion dur-
ing the simulation [61]. Moreover, the particles are inter-
acting between each other and the collision between the 
particles with contact is involved during the simulation. In 
the case of standard discrete element method, one can com-
pute only the contact forces between the particles and can-
not determine the stress distribution at the particle scale. 
In the case of cohesive DEM, the cohesive bonds can be 
modelled like in lattice models, with beams (Fig. 19). The 
cohesive DEM approach has already been used for model-
ling cohesive materials, like concrete, asphalt, hard rock 
and cemented sands [62–65]. Cohesive DEM approach 

Fig. 18   Multi-phase representation of concrete. Material parameters 
of the lattice elements falling into cylindrical inclusions correspond 
to aggregates, while the ones outside correspond to cement. In addi-
tion, it is possible to consider the interface elements

Fig. 19   Two aggregates idealized with spherical particles kept 
together by a beam as a cohesive link in cohesive DEM
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still uses the contact law for the interaction of particles that 
were debonded during the simulation [66].

Lattice models find their main purpose in simulating 
small displacement problems especially with localized 
failure resulting in cracking mechanisms where stress 
concentrations and its redistribution upon cracking is 
more important. This usually occurs under quasi-static 
conditions, which is in contrast with DEM where dynamic 
equations of motion of each particle are solved. In most 
quasi-static lattice models, rigid particles are not pro-
grammed for collision with contact detection and inter-
action like in DEM, mostly because there are no larger 
movements and significant changes in particle topology. 
The important aspect is to capture the crack propagation 
between the particles while the particle connectivity is 
preserved from the beginning. This is suitable for tension 
and shear tests where no major collisions of the loose par-
ticles of the material are expected. The main role of the 
particles is in computing the stiffness parameters where 
larger particles bring more stiffness to their cohesive link. 
The results of the simulations are often plotted on the 
frame or lattice structure showing the stresses in the cohe-
sive lattice elements, while the particles are not necessar-
ily plotted.

However, lattice models have been recently enhanced to 
capture the collision between the unbonded particles with 
implemented contact algorithms [10–13]. Such models are 
very similar to cohesive DEM models with contact. The 
model presented in [10, 11] proved that the implementation 
of contact and collision between the particles even under 
quasi-static loading conditions where no significant change 
in topology appears, brings the ability to reliably simulate 
compression tests, where detachment of the material occurs 
with additional sliding and fragmentation between the bro-
ken parts.

Despite being applied mostly to quasi-static loading 
conditions, the lattice elements can also be used for sim-
ulation of dynamic problems as well. D’Addetta and co-
authors [67, 68] developed the discrete lattice model with 
Voronoi cells as randomly shaped convex polygons which 
represents material grains, and where both static and 
dynamic equations of motion are solved. The wide appli-
cability of this model is ranging from the quasi-static uni-
axial loading and shearing of geomaterials to the dynamic 
fragmentation due to explosion, impact and collision of 
solids. The lattice model presented in [69, 70] is developed 
for dynamic problems with contact interaction and detec-
tion between the unbonded Voronoi cells which are kept 
together prior to failure by large displacement geometri-
cally exact shear deformable beams as cohesive forces. 
The model is suitable for impact simulations in which 
cracks occur as a result of large movements of the rigid 
Voronoi particles.

3.5 � Dealing with Post‑peak Softening Response

Occurrence of cracks leads to redistribution of stresses 
to the surrounding area. Since the stresses are redistrib-
uted, new cracks may form and continue to propagate. If 
the stored elastic energy is larger that the fracture energy 
already used in crack forming, strong drops in the force-
displacement curve can happen. This can easily lead to 
a brittle response of the structure. Additionally, snap-
back or snap-through responses in the load-displacement 
curves often occur when complex failure mechanisms 
are present. The softening part of the load-displacement 
curve comes as a result of the failure of the bonds, and it 
can provide numerical difficulties and instabilities in non-
linear incremental-iterative analysis due to negative stiff-
ness terms. Moreover, complex situations like unloading 
and reloading of the already failed elements bring even 
more challenges for integration schemes.

In order to trace the global softening curve all the way 
down, one should consider an incremental-iterative pro-
cedure with arc-length or displacement control of the 
nonlinear system.In order to avoid possible divergence 
in the solution, most lattice models uses a sequentially 
linear scheme instead of nonlinear incremental-iterative 
scheme. One such algorithm, called the saw-tooth algo-
rithm, is well explained in [71].

In sequentially linear algorithms, one needs to solve 
the system and check if the failure criterion in each ele-
ment is satisfied. If yes, the crack is starting to propa-
gate and internal boundary conditions related to the 
crack should be changed. Namely, in a brittle failure like 
shown in Fig. 17a, the element is removed from the mesh 
or its modulus of elasticity is set to zero. Consequently, 
the system is restarted from the origin and solved again 
in a completely linear way with previously modified 
parameters for the crack. Failure criteria for the recently 
obtained solution need to be checked again to decide 
which bonds are eligible to break in the current step. 
The repetition of such process represents the sequentially 
linear analysis in which solving of the system of linear 
equations and change of internal boundary conditions are 
repeated as many times as bonds are broken. The advan-
tage of such approach is that the solution is always sta-
ble and simple, while the stiffness matrix does not con-
tain negative stiffness terms which occur in a nonlinear 
incremental-iterative analysis with stress reduction. Thus, 
one does not worry about the convergence issues since 
only linear analysis is performed in a sequential manner. 
The disadvantage of the complete removal of lattice ele-
ments is that sudden release of the stress dropping to zero 
in failed elements usually leads to a very brittle failure, 
and global fracture energy can be easily underestimated 
with respect to the experiment.
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Since the global response depends on the way how the 
stiffness of the broken elements is reduced, one needs to 
consider the gradual decrease in stiffness leading to soften-
ing behaviour (Fig. 17b), instead of just instantly reducing 
it to zero. This is possible by reducing the strength from ft 
to zero in n steps while the corresponding reduced Youngs 
modulus Ei is subsequently computed from the envelope 
curve (Fig. 20) [71].

Although the sequentially linear algorithm is stable 
and approximates a nonlinear curve without the use of 
iterative solvers, it suffers from the mesh objectivity prob-
lem. Namely, the issue of the size of the localized zone 
which has already been addressed previously, is still pre-
sent. Refinement of the mesh produces narrower localized 
zone and more pronounced underestimation of the dissi-
pated energy. In order to overcome this issue, regulariza-
tion schemes have been developed. Some of them pertain 
to increasing of ductility of cohesive bonds to obtain the 
correct macroscopic response which corresponds to a non-
linear reference curve [71]. However, a unique representa-
tion of dissipated fracture energy independent of the size of 
the lattice elements is needed. The embedded discontinu-
ity approach which acts as a localization limiter has been 
recently applied with lattice element models to overcome 
the mesh dependency related to the size of the localized 
zone.

4 � Embedded Strong Discontinuity in Lattice 
Element Models

The importance of the size of the localized zone around 
the crack has been noticed in failure of various materials. 
Inside this zone, plastic or damage dissipative mecha-
nisms occurs influencing the final failure. This phenom-
enon is even confirmed by using various models. Namely, 
in linear elastic fracture mechanics, the amount of such 
dissipation and the size of the zone around the crack tip 
play a key role in failure criteria. In standard finite ele-
ments, the size of the mesh is related to the size of the 
localized zone, influencing the dissipation. The same 
happens with lattice element models. Various methods 
and approaches have been developed to stabilize the size 
of this zone by producing mesh independent results.
One of the approaches which can successfully bypass the 
issue of the mesh size related to size of the localized zone 
is the embedded discontinuity approach. It has already 
been mentioned in Sect. 3.2, in the context of solid ele-
ments with propagating discontinuities. More precisely, 
it is the embedded strong discontinuity, or discontinuity 
in the displacement field, which is capable of providing 
mesh independent response. The reason for this is that the 
discontinuity always remains localized inside the element 
by using the displacement jump, usually represented by 
the Heaviside function. The main idea of the approach is 
that by providing a fracture energy as an input, which is a 
physical parameter obtained from an experiment, results 
remain mesh independent. This approach can be observed 
as a localization limiter that enhances the classical con-
tinuum mechanics theoretical formulation by admitting 
discontinuities in the displacement field [72, 73]. The 
numerical implementation of the discontinuity requires 
a modification of the standard finite element procedure, 
which is similar to the method of incompatible modes 
[74, 75].

The embedded strong discontinuity concept has been 
firstly used in lattice models, with truss bars as lattice ele-
ments [6, 7], transmitting normal force and accounting 
for softening failure of the truss bar. Moreover, embed-
ded weak discontinuity is also present in this formulation, 
representing the jump in the strain field, which serves for 
interface elements in concrete where two materials are 
provided inside one element. The detailed finite element 
implementation of embedded strong and weak discontinu-
ity into truss bar can be found in [36, 76]. Since the failure 
of quasi-brittle materials requires the shear failure mecha-
nism, the Timoshenko beam as lattice element is taken to 
construct the lattice model in 2D [8] and 3D [9] setting. 
Timoshenko beam with embedded strong discontinuity for-
mulation in rotation can be found in [77], or in rotation and 
transversal beam direction in [78].

ε ε

Fig. 20   Reduction of strength ft to zero of each cohesive link in n 
steps by sequentially linear algorithm
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4.1 � 2D Lattice Model with Enhanced Timoshenko 
Beams as Lattice Elements

A lattice model with Timoshenko beams as cohesive links, 
with embedded strong discontinuity, is presented in [8] 
(Fig. 21). In order to provide the beam failure modes, the 
Timoshenko beam is enriched with kinematic enhance-
ments in its longitudinal and transversal directions, result-
ing with discontinuities in normal force and shear force, 
respectively.

The embedded strong discontinuity in the beam lon-
gitudinal local direction enable the grain dilation due to 
mode I or tensile failure mode. Timoshenko beam allows to 
account for pronounced shear effects which is used here for 
representing the failure in mode II (shear sliding along the 
grains) adding the corresponding displacement or strong 
discontinuity in the transversal local direction (Fig.  22). 
Thus, a set of two failure mechanisms provides the pos-
sibility for representing a complex crack evolution, while 
localization is stabilized inside beam elements and remains 
mesh independent.

4.2 � Kinematics of Enhanced Timoshenko Beam 
Element

In order to obtain a heterogeneous displacement field, kin-
ematics of the Timoshenko beam needs to be enhanced. 
More precisely, it is the axial and shear strains which need 
to be enhanced to provide mode I and mode II failure. One 
can start from standard kinematics of a geometrically linear 

Timoshenko beam finite element of length le and cross sec-
tion A to obtain the strain measures ���

where � = [u v �]T is the generalized displacement vec-
tor with its longitudinal displacement, transversal displace-
ment and rotation. The strong form of Timoshenko beam 
can be recast in terms of stress resultants

where ��� = [N T M]T represents the stress resultant vec-
tor and � = [f q m]T is the distributed load vector. The 
enhanced displacement field with discontinuity needs to be 
constructed out of regular and singular parts, where the lat-
ter can be represented as a product of the Heaviside func-
tion and displacement jump. The enhanced displacement 
fields can then be written as

where enhancements pertain here to longitudinal and 
transversal displacements, while rotation remains linear. 

(26)���(x) =

⎡⎢⎢⎢⎣

�(x) = du

dx

�(x) = dv

dx
− �

�(x) = d�

dx

⎤⎥⎥⎥⎦

(27)

dN

dx
+ f (x) = 0

dT

dx
+ q(x) = 0

dM

dx
+ T(x) + m(x) = 0

(28)�(x) = �(x) + ���Hxc
=

⎡⎢⎢⎣

u(x)

v(x)

�(x)

⎤⎥⎥⎦
+

⎡⎢⎢⎣

�u
�v
0

⎤⎥⎥⎦
Hxc

Fig. 21   Lattice model constructed from enhanced Timoshenko 
beams as cohesive links and Voronoi scaling which serves for compu-
tation of lattice parameters as elaborated in Sect. 2.1.2. (Color figure 
online)

Fig. 22   The strong discontinuity propagation between the Voro-
noi cells invokes the enhanced kinematics activation. (Color figure 
online)
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��� = [�u �v 0] is the discontinuity related parameter which 
is similar to incompatible mode parameter and Hxc

 is the 
Heaviside function defined by Hxc

(x) = 0 for x ≤ xc and 
Hxc

(x) = 1 for x > xc. The non-regular displacement field 
produces the strain field which is enhanced through the 
Dirac delta resulting from the discontinuous displacement 
field

In order to obtain the interpolation function for disconti-
nuity in displacement fields which cancels its contribution 
on the boundaries, one can rewrite enhanced displacement 
fields from Eq. (28) with the function N2

where {N1(x) = 1 − x∕le, N2(x) = x∕le} are the standard 
linear interpolation functions, and their derivatives are 
{Bd

1
(x) = −1∕le, Bd

2
(x) = 1∕le}. The second part of (30) per-

tains to the discontinuity contribution producing the addi-
tional interpolation function M(x) (Fig. 23)

(29)���(x) = ���(x) + ����xc =
⎡
⎢⎢⎣

�(x)
�(x)
�(x)

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

�u
�v
0

⎤
⎥⎥⎦
�xc

(30)
u(x) = u(x) + �uN2(x) + �u(Hxc

− N2(x))

v(x) = v(x) + �vN2(x) + �v(Hxc
− N2(x))

(31)M(x) =

�
−

x

le
; x ∈ [0, xc⟩

1 −
x

le
; x ∈ ⟨xc, le] .

Finally, the discontinuous displacement fields can be inter-
polated as

This formulation, cancelling the contribution of incompat-
ible mode parameter on the element boundary in the regular 
part of the equation, represents the embedded strong disconti-
nuity. It will later provide the possibility of avoiding the addi-
tional global unknowns, since the discontinuity parameter 
will be computed locally inside the element. The enhanced 
strain field can be obtained from the enhanced displacement 
field from Eq. (32) resulting in

where G(x) is the derivative of M(x)

4.3 � The Enhanced Weak Form

The enhanced strain field from Eq. (33) can be written in its 
generalized form

where � is the standard strain displacement matrix for the 
Timoshenko beam

and � is the matrix of discontinuity related functions G. 
The virtual strains can be interpolated in the same manner 
as the real strains

(32)

u(x) =

2∑
a=1

Na(x)ua +M(x)�u

v(x) =

2∑
a=1

Na(x)va +M(x)�v

�(x) =
2∑

a=1

Na(x)�a.

(33)

�(x) =
2∑

a=1

Ba(x)ua + G(x)�u

�(x) =
2∑

a=1

(
Ba(x)va − Na(x)�a

)
+ G(x)�v

�(x) =
2∑

a=1

Ba(x)�a

(34)G(x) = G + �xc = −
1

le
+ �xc , x ∈ [0, le].

(35)��� = �� +����,

(36)� =

⎡⎢⎢⎣

B1 0 0 B2 0 0

0 B1 −N1 0 B2 −N2

0 0 B1 0 0 B2

⎤⎥⎥⎦

(37)���� = ��� +�����

α

α

u u

u

Fig. 23   Timoshenko beam with standard degrees of freedom and 
additional ones related to jumps in the displacement fields. M(x) and 
G(x) are the discontinuity related additional interpolation functions
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where �� and ���� denote the nodal virtual generalized dis-
placement and virtual displacement jumps. The only differ-
ence in real and virtual strain fields concerns the modified 
enhanced contribution �̃. Namely, it is necessary to enforce 
the orthogonality between enhanced strain and constant 
stress within the element which will fulfil the patch test 
condition as already shown for the method of incompatible 
modes in [75]

When the interface is positioned in the middle of element, 
condition (38) is automatically verified and �̃ remains the 
same as �. It should be noted that � contains the enhanced 
discontinuity function G which can be decomposed into 
regular part G and singular part holding the Dirac delta 
function �xc. The final work of internal forces upon intro-
ducing the enhanced strain and virtual strain fields results 
with

The standard internal force vector and the local residual 
vector due to discontinuity result from Eq. (39)

If the local residual �(e) from Eq.  (40) is reduced to zero, 
the vector � = ∫ le

0
�xc���dx of the internal forces at the dis-

continuity can be obtained through the regular part of the 
enhanced local function

4.4 � Constitutive Model

The constitutive model defined in [8] is classical elastoplas-
ticity where total regular strains can be additively decom-
posed into elastic �e and plastic components �p with addi-
tional contribution � from the singular part which is related 
to discontinuity opening. Thus, the total strain fields which 
contain regular and singular components can be written

The failure criteria related to discontinuity opening can be 
defined with failure functions

(38)�̃ = � −
1

le ∫
le

0

�dx.

(39)
Gint = ∫le

(�d��)T���dx + ∫le

����T (� + �xc)���dx.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h(e)=0

(40)
�int = ∫ le

0
�d,T���dx

�(e) = ∫ le
0
(� + �xc)���dx.

(41)� = −∫
le

0

����dx, � = (tu, tv, 0)
T

(42)
� = � + � = �e + �p + �

� = � + � = �e + �p + �

where Nu, Tu are the ultimate capacity forces and qu, qv are 
stress-like softening variables which increase with expo-
nential softening law

and tu, tv are traction forces at the discontinuity obtained 
from equilibrium equations (41).

4.5 � The Local Algorithm

This is an element-wise algorithm, similar to the standard 
return mapping algorithm in plasticity, performed in beam 
longitudinal and transversal direction with its ultimate goal 
of computing the internal variables related to discontinuity. 
After computing the internal variables locally, the global 
solution procedure can be performed.

We will assume to be given the best iterative value of dis-
placements u(i)

n+1
 and v(i)

n+1
 for which we can obtain the trial 

value of the traction force

where �u,n, �v,n are the discontinuity parameters at the pre-
viously converged time step for softening plastic deforma-
tion. The trial values of failure functions are calculated next

with qu,n and qv,n defined in (44). If the trial values of the 
failure functions are negative or zero, the elastic trial step is 
accepted for final, with no modification of the plastic strain 
from the previous time step

The plastic softening parameter will remain intact, while 
the traction force change due to displacement increment.

(43)
Φu

(
tu, qu

)
= tu −

(
Nu − qu

) ≤ 0

Φv

(
tv, qv

)
= ||tv|| −

(
Tu − qv

) ≤ 0

(44)
qu = Nu

(
1 − exp

(
−�u

Nu

Gf ,u

))

qv = Tu

(
1 − exp

(
−�v

Vu

Gf ,v

))
.

(45)

ttrial
u,n+1

= − ∫
le

0

G

[
EA

( 2∑
a=1

Bau
(i)

a,n+1
+ G�u,n

)]

ttrial
v,n+1

= − ∫
le

0

G

[
GA

( 2∑
a=1

Bav
(i)

a,n+1

−

2∑
a=1

Na�
(i)

a,n+1
+ G�v,n

)]

(46)
Φ

trial

u,n+1
= ttrial

u,n+1
−
(
Nu − qu,n

)
,

Φ
trial

v,n+1
=
|||ttrialv,n+1

||| −
(
Vu − qv,n

)

(47)
�u,n+1 = �u,n; �u,n+1 = �u,n,

�v,n+1 = �v,n; �v,n+1 = �v,n
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On the other hand, if the trial values of failure functions 
are positive, the current step is in the softening plasticity 
and there is a need to modify the elastic strain and internal 
variables �u,n, �v,n in order to re-establish the plastic admis-
sibility at the discontinuity. The internal softening plasticity 
variables ought to be updated by using evolution equations

and

where �u,n+1, �v,n+1 are softening plastic multipliers. The 
value of the plastic multiplier is determined from the con-
ditions Φu,n+1 ≤ tol and Φv,n+1 ≤ tol and the solutions of 
nonlinear equations are obtained iteratively using the New-
ton-Raphson method

In the plastic softening step, the traction forces are pro-
duced by a change of discontinuity parameters �u and �v.

4.6 � Global Procedure

The global solution should be performed in order to pro-
vide new iterative values of nodal displacements upon com-
pleting the local phase in which internal variables are com-
puted. The set of global equilibrium equations is checked 
with previously computed internal forces

If the convergence is satisfied, a new pseudo-time incre-
mental step is performed. If it is not satisfied, a new itera-
tive sweep is performed. From the incremental-iterative 
finite element procedure we obtain the new values of nodal 
displacement. Contribution of one single element, denoted 
with superscript (e), can be stated as

The superscript (i) denotes the iteration counter. The parts 
of the element stiffness matrix are

(48)
�u,n+1 = �u,n + �u,n+1sign

(
ttrial
u,n+1

)

�v,n+1 = �v,n + �v,n+1sign
(
ttrial
v,n+1

)

(49)
�u,n+1 = �u,n + �u,n+1

�v,n+1 = �v,n + �v,n+1

(50)
Φu,n+1 = Φ

trial

u,n+1
+
(
qu,n+1 − qu,n

)
+ EAG�u,n+1 ≤ tol

Φv,n+1 = Φ
trial

v,n+1
+
(
qv,n+1 − qv,n

)
+ GAG�v,n+1 ≤ tol

(51)
‖‖‖A

nel
e=1

(f int,e,(i) − f ext,e) < tol
‖‖‖

(52)
[
K(e) F(e)

F(e),T H(e)

](i)
n+1

(
Δ�

(e),(i)

n+1

Δ���(e),(i)

n+1

)
=

(
�
ext,(e)

n+1
− �

int,(e),(i)

n+1

�
(e),(i)

n+1

)
.

where

The local equilibrium is automatically satisfied by using 
the traction computed with Eq. (41).

The static condensation of the matrix allows us to form 
the final stiffness matrix for the element contribution to the 
FE assembly

where

The solution of the global system (51) provides the next 
iterative update Δ�(e),(i)

n+1
. Matrix �s contains consistent tan-

gent stiffness components for the discontinuity obtained as 
a derivatives of the exponential softening laws from (44) 
with respect to the corresponding displacement jumps. 
It is worth noting that local computation of discontinuity 
parameters provides the possibility to perform static con-
densation at the element level keeping the same number of 
global unknowns like in standard finite element procedures. 
Global solution of Eq. (51) can be controlled in incremen-
tal iterative way either with arc-length or displacement con-
trol. When utilizing the displacement control, the iterative 
process can be performed by Newton-Raphson iterations 
with tangential stiffness, or with secant stiffness.

4.7 � A Beam Validation Test

In order to verify the mesh independence of the softening 
response, the beam of length l = 1  cm and b = 1  cm, 
h = 0.8 cm (cross-section width and height) is subjected to 
imposed displacements which produce the tension and 
shear failure. Material parameters of the beam are 
E = 1000 kN/cm2, � = 0.2, Nu = 0.176 kN, Ty = 0.015 kN, 
Tu = 0.0176  kN. Hardening modulus for shear is 
Kv = 100 kN/cm2. Fracture energies for mode I and mode 
II are G(u)

f
= 15 N/m, G(v)

f
= 2 N/m.

(53)

K
(e),(i)

n+1
=

(
�� int,(e)

��(e)

)(i)

n+1

= ∫
le

0

�T�n+1�dx

F
(e),(i)

n+1
=

(
�� int,(e)

����(e)

)(i)

n+1

= ∫
le

0

�T�n+1�dx

H
(e),(i)

n+1
=

(
��(e)

����(e)
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The beam is discretized with 3, 5 and 10 finite elements, 
while the initial weakness is introduced into one of them. 
Fig. 24 shows the beam force-displacement responses. The 
softening response in both cases, where failure in mode I 
and mode II happens, remains mesh-independent. This is a 
consequence of the embedded strong discontinuity formu-
lation where the localized zone is not defined by the size of 
the element, but by the discontinuity which is represented 
by the Dirac delta function inside the element.

4.8 � Uniaxial Tension Test in the Lattice

Uniaxial tension tests on 2D Timoshenko beam lattice 
with embedded strong discontinuities for mode I and mode 
II were performed in [8]. The material is represented as a 
two-phase heterogeneous composite with stronger (phase I) 
and weaker phase (phase II). The heterogeneous specimens 
with initially 40, 50, and 60% of phase II material are sub-
jected to the imposed displacement on the upper boundary 
causing the stretching of the lattice.

The obtained macroscopic curves for all three specimens 
(Fig. 25) reveal that the specimens are broken at the end of 
the loading programme. In the tension test, one dominant 
macro crack propagated through the specimen and led it to 
failure.

The influence of heterogeneity on a global response can 
be studied with such lattice models. Different levels of het-
erogeneity lead to different failure mechanisms, and even 
linear elastic response is not the same. With an increase of 
the amount of weaker phase, the global modulus of elastic-
ity decreases.

The failure patterns of three different heterogeneous 
specimens are shown in Fig. 26 presenting the final cracks 
at the end of tension test computations. Namely, one macro 
crack is present in all of the specimens, and it dominates 

the final failure mechanism. However, in each specimen, 
the macro crack formed differently depending on the initial 
heterogeneity, which decides the crack path.

4.9 � 3D Lattice Model with Enhanced Timoshenko 
Beam as Lattice Element

The extension of the 2D lattice model presented in the pre-
vious subsection is extended towards a 3D space in [9]. 
This model provides a capability of representing cracks 
propagating through rock until complete localized fail-
ure. The model is based upon the discrete lattice of 3D 
Timoshenko beams that can capture failure modes by using 
the embedded strong discontinuities. Failure modes are pre-
sented with: mode I or tensile opening, mode II or in-plane 
shear sliding and mode III or out-of-plane shear sliding, as 
well as the mixed-mode fracture propagation which is often 
the dominant mechanism in rock failure. The model can 
also consider variability of model parameters.

(a) (b)

Fig. 24   The computed beam response for: a mode I failure and b mode II failure. Taken from [8]

Fig. 25   The computed macroscopic response with different levels of 
heterogeneity for uniaxial tension test. Taken from [8]
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The standard kinematics for a 3D Timoshenko element are

where ��� =
[
� �y �z �x �y �z

]T represents the regular part 
of the beam strain vector while the displacement vector 

(57)

�(x) = du(x)

dx
,

�y(x) =
dv(x)

dx
− �(x),

�z(x) =
dw(x)

dx
+ �(x),

�x(x) =
d�(x)

dx
,

�y(x) =
d�(x)

dx
,

�z(x) =
d�(x)

dx

� =
[
u v w � � �

]T is given according to displacements 
shown in Fig.  27. The chosen Timoshenko beam element 
has 2-node interpolation and a single Gauss point integra-
tion, which makes all deformation values constant. In order 
to construct embedded strong discontinuities one needs to 
enhance the displacement fields as

(58)

u(x) =

2∑
a=1

Na(x)ua +M(x)�u

v(x) =

2∑
a=1

Na(x)va +M(x)�v

w(x) =

2∑
a=1

Na(x)wa +M(x)�w

�(x) =
2∑

a=1

Na(x)�a, �(x) =

2∑
a=1

Na(x)�a

�(x) =
2∑

a=1

Na(x)�a

(a) (b) (c)

Fig. 26   Final failure patterns created in tension test for specimens with a 40% of phase II, b 50% of phase II and c 60% of phase II (broken links 
are red coloured). Taken from [8]. (Color figure online)

Fig. 27   A 3D 2-node Timoshenko beam

Fig. 28   Failure mechanism for 
two samples obtained within the 
experiment: a the detachment 
of the material is noticed at the 
lower part of the specimen, b 
the diagonal failure is pro-
nounced. Taken from [9]
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Such enhancements lead to construction of mode I, II and 
III in a similar way like presented for 2D case.

The 3D lattice model was used to simulate the experi-
mental result of the specimen subjected to uniaxial com-
pression test with no lateral confinement (Fig.  28). The 
experiment showed that the post-peak behaviour of lime-
stone, which is very brittle, is also obtained with the numer-
ical model. Very close macroscopic curves are obtained for 
three different choices of the finite element mesh (coarse, 
fine and the finest) (Fig. 29). However, a slight difference 
in macroscopic curves can be noticed, which is a result 
of material heterogeneities that were initially distributed 
according to the Gauss distribution.

In this example, the lower part of the specimen is largely 
affected by damage and cracking. Moreover, the cracks are 

irregular throughout the specimen, which is a result of ini-
tial heterogeneity. The failure mechanism obtained with 
the numerical model also corresponds to the experiment. 
Fig. 29c shows the distinction between the failed elements 
in mode I, and failed elements in shear modes II and III. 
Failure in unconfined compression test is strongly influ-
enced by the shear failure. A large number of elements also 
broke due to mixed mode failure and these overlap on the 
two figures in Fig. 29c.

4.10 � Influence of Specimen Shape Deviations

The 3D lattice model from [9] was used to confirm 
the experimental findings of unavoidable, but insuffi-
ciently investigated influences of the test specimen shape 

(a) (b) (c)

Fig. 29   Unconfined compression test: a computed macroscopic 
response compared to solid model and experiment, b crack opening 
(presented as euclidean norm of all three failure modes) at the end of 

numerical test for c red marked elements are broken elements due to: 
mode I, modes II and III. Taken from [9]

Fig. 30   Basic groups of speci-
mens—ID, A, B, C and D; con-
vex (Bkv, Ckv), concave (Bkk, 
Ckk) and mixed (Bmj, Cmj) 
types of non-flatness/waviness 
for groups B and C. Taken from 
[79]. (Color figure online)
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deviations on unconfined compressive strength appearing 
in testing which can significantly affect the results [79]. It 
is well known from laboratories that the inaccuracies of the 
cylindrical specimens resulting with deviations from flat-
ness, perpendicularity and parallelism lead to the reduc-
tion of strength and various moduli. The basic groups of 
specimen shape deviations can be categorized as shown in 
Fig. 30.

In the presented research [79], ninety intact rock cylin-
drical test specimens intentionally constructed with ini-
tial shape deviations are included. Some of them are also 
constructed and tested with the numerical model to pro-
vide more insight into experimental results and addition-
ally verify the hypothesis. Fig. 31 shows the specimens of 
the characteristic groups constructed with the numerical 
model. The reliable representation of the changing bound-
ary conditions in the numerical model due to deviation is 
achieved by using the penalty contact elements which can 
properly capture the gradual contact with the load platens, 
as the consequence of geometrical irregularities of a par-
ticular specimen.

The results showed that within the group A, which 
examines the effect of non-parallelism, no significant 
changes and drops in the strength were observed compared 
to the group ID, which represents the ’ideal’ specimen. 
Moreover, similar failure patterns were noticed in these two 
groups. The group D, with the effect of non-perpendicular-
ity, had similar strengths as the groups ID and A. The effect 
of non-flatness was investigated through group B, which 
showed significant drops in strength due to the occurrence 
of local failure near the irregularities of the base.

5 � Lattice Element Models for Transport Processes

Mechanical failure aspects of the materials with lattice ele-
ment models have been elaborated so far. Simplicity of the 
lattice models allow us to consider important aspects of 

quasi-brittle failure such as fine scale effects of the mate-
rial heterogeneities influencing the failure, localization and 
complex multiple cracking. However, various transport pro-
cesses through the material can additionally influence its 
durability. For example, cracks can occur due to moisture 
or heat transport inducing internal stresses, or corrosion 
expansion can damage the reinforcement in the material. 
Moreover, any quasi brittle material in a close interaction 
with the fluid will be subjected to additional time depend-
ent degradation and mass transport effect on its durability 
needs to be examined.

Due to advantageous lattice model properties in suc-
cessful representation of failure, some researchers recently 
extended the existing lattice models by coupling their 
mechanical aspects with the mass transport within the lat-
tice. Bolander and Berton [80] developed the model for 
the shrinkage of concrete due to transfer of moisture by 
coupling the mechanical lattice model with the diffusion 
process along one-dimensional conduit lattice elements. 
Nakamura et  al. [81] studied the time dependent dry-
ing shrinkage of concrete due to transfer of moisture and 
degradation of the reinforcement in reinforced concrete 
due to chloride ions penetration by solving the diffusion 
equation within the lattice. Diffusivity of the chlorides in 
cracked concrete with lattice approach was further studied 
in [82–84]. Grassl [16] developed a lattice element model 
for flow in cracked concrete by using dual lattices, where 
one serves for mechanical simulation and the other for 
flow simulation. This work was extended to simulate the 
hydraulic fracture with lattice element approach by using 
the Biot’s theory of poro-elastic medium [17]. Nikolic et al. 
[14, 15] developed the lattice approach to simulate the fail-
ure of fluid saturated fractured poroplastic medium based 
on Biot’s theory. Asahina et al. [85] examined the fracture 
hydro-mechanical aspects of wetting and drying by cou-
pling the lattice model for mechanical behaviour and finite 
volume model for flow. Hydraulic fracturing application is 
performed by coupling the lattice element model and dis-
crete element model for rocks in [86].

In this Section, the main aspects of the coupled hydro 
mechanical lattice approach for the analysis of fluid satu-
rated poroplastic medium with fractures, developed in 
[14, 15] will be briefly presented. Hydro mechanical lat-
tice model, which can account for transient fluid flow, is 
based on a mechanical 2D model with Timoshenko beams 
as lattice elements presented in [8] and in Sect. 4. Local-
ized failure of porous medium is simulated with embed-
ded strong discontinuities positioned inside cohesive links, 
as presented above. The goal of the coupled model is to 
simulate the time dependent failure of a fully saturated 
heterogeneous poroplastic medium. In order to couple the 
mechanical response of the lattice and the transport of the 
fluid, Terzaghi and Biot’s porous media theory [87, 88] is 

Fig. 31   Representative numerical rock specimens from the observed 
groups with initial shape deviation. Taken from [79]
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used, while the recent contributions in porous media can be 
found in [89]. Fluid flow is governed by diffusion equation 
and Darcy’s law across the lattice network, while special 
care is taken in computing the lattice permeability (flow) 
parameters.

5.1 � Coupling of the Mechanical Part and Fluid 
Transport

The equations of the porous medium saturated with a fluid 
are presented here. Convective terms and gravity accelera-
tion are neglected in this problem. The standard equilib-
rium equation of a porous medium is given by relation

where the total stress can be decomposed into

where subscripts s and f denote the solid and the fluid con-
tribution to the total stress. The effective stress �′ repre-
sents the mechanical stress and measures the material prop-
erties of the solid skeleton under drained conditions, p is 
fluid pressure and b is the Biot coefficient. The continuity 
equation for the fluid flow can be written as

where � is the amount of fluid content which is defined as 
the variation of fluid volume per unit volume of porous 
material and vf  is the fluid flux. The fluid content can be 
written as

where us represents the displacements of the solid skeleton 
and M Biot’s modulus defined as

where nf  denotes porosity, Kf  is the bulk modulus of the 
fluid, Ks is bulk modulus of the solid and b is the Biot coef-
ficient defined by

The Kt is the overall bulk modulus of the porous medium. 
The inclusion of the fluid content (62) into the fluid conti-
nuity Eq.  (61) results with coupled time dependent diffu-
sion equation

(59)∇ ⋅ � = 0,

(60)� = �s + �f = �� − bp

(61)
��

�t
+ ∇ ⋅ vf = 0

(62)� =
1

M
p + b∇ ⋅ us

(63)
1

M
=

nf

Kf

+
b − nf

Ks

.

(64)b = 1 −
Kt

Ks

.

(65)1

M

�p

�t
+ b∇ ⋅ vs + ∇ ⋅ vf = 0.

Vectors vs and vf  represent the velocities of the solid and 
the fluid, respectively. The latter is defined by the Darcy 
law

where kf  is the permeability of the porous medium. The 
boundary conditions are applied on both the solid and the 
fluid part of the coupled medium.

One can notice that such formulation brings two cou-
pling mechanisms in fluid structure interaction problem 
of this kind. Namely, the changes in the pore pressures 
influence the stress by Eq. (60), while deformation of the 
mechanical skeleton produces the changes in the flow 
field by Eq. (65).

5.2 � Coupling of the Mechanical and Transport Lattices

The transport of the fluid flow from Eq.  (65) is gov-
erned across the transport lattice which coincide with 
the mechanical lattice (Fig. 32). More precisely, the fluid 
flow is spread across the lattice, where fluid pressure is 
added as an additional degree of freedom of the lattice 
element (Fig. 33). While the mechanical part of the lat-
tice uses the beam elements, the transport lattice can be 
viewed as an assembly of one-dimensional conduit ele-
ments (Fig. 34). The cross section of each lattice conduit 
element is considered as the cross section area available 
for fluid flow. It is computed as the shortest distance 
between centroids hf  of the two neighbouring triangles 
multiplied by the thickness (Fig. 34). Alternatively, dual 

(66)vf = −kf∇p

�uid

Fig. 32   Transport lattice for the fluid flow. (Color figure online)
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lattice approach, where one lattice is used for mechanical 
simulation and the other for transport process, is used in 
[16, 17].

The total stress from Eq.  (60) is presented in terms of 
stress resultants ��� = [N T M]T and can be decomposed into 
effective stress resultants and pore pressure forces

(67)
⎡⎢⎢⎣

N

T

M

⎤⎥⎥⎦
=

⎡⎢⎢⎣

N�

T �

M�

⎤⎥⎥⎦
− b

⎡⎢⎢⎣

pA

0

0

⎤⎥⎥⎦

where the effective stress resultant components can be 
obtained through the Timoshenko beam’s elasticities 
denoted with �sk.

The strain vector is obtained with Eq. (29) from above. The 
Darcy law from Eq. (66) can be written for the lattice trans-
port model as

One can use the linear shape functions for pressure interpo-
lation {N

p

1
(x) = 1 −

x

le
, N

p

2
(x) =

x

le
} and corresponding 

derivatives {Bp

1
(x) = −

1

le
, Bp

2
(x) =

1

le
} to construct the finite 

element problem. The pressure interpolation can be written 
as

while the discretization of the pressure gradient from 
Eq. (69) results with

and the pressure time derivative from Eq. (65) is given as

The superscript p denotes the pressure interpolation, while 
the superscript d stands for mechanical displacement and 
strain interpolation. The generalized nodal pressure field 
can be denoted with � = (p1, p2)

T

The weak form for a coupled problem leads to the finite 
element residual equation for the mechanical part of the lat-
tice denoted with subscript d

where the total stress resultants ��� are obtained in terms 
of effective stress resultants ���′ and pore pressures � in 
Eq.  (67). The symbol �nel

e=1
 denotes the finite element 

assembly operator for all element contributions. The 
effective stress resultants ���′ are calculated in terms of 

(68)

⎡
⎢⎢⎣

N�

T �

M�

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

EA 0 0

0 GA 0

0 0 EI

⎤
⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
�sk

⎡
⎢⎢⎣

�
�
�

⎤
⎥⎥⎦

(69)vf = −kf
dp

dx

(70)p(x, t) =

2∑
a=1

Np
a
(x)pa(t).

(71)
�p

�x
(x, t) =

2∑
a=1

Bp
a
(x)pa(t),

(72)
𝜕p

𝜕t
(x, t) =

2∑
a=1

Np
a
(x)ṗa(t).

(73)�d = �ext − �
nel
e=1 ∫

le

0

�d,T���dx

Fig. 33   The enhanced lattice element of Timoshenko beam with its 
mechanical degrees of freedom and fluid pressure degrees of free-
dom, discontinuous shape function M(x) and its derivative G(x). 
(Color figure online)

Fig. 34   The fluid flow disposable cross section area
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regular parts of the enhanced strain field. The enhanced 
strain parameters ���, due to the embedded strong discon-
tinuity formulation, in each element where localization 
occurs are obtained by solving the local equilibrium of the 
effective stresses:

where �′ represents the corresponding effective stresses act-
ing at the discontinuity. Subsequent static condensation of 
these parameters allows to keep the standard matrix at the 
global level.

The coupled fluid Eq. (65) results with the finite element 
residual form

(74)�(e) = ∫le

�����dx + ��
where �ext represents the external applied fluxes. Equa-
tions (73–75) need to be solved simultaneously to obtain 
the response for the hydro mechanical lattice approach. The 
full details of the model can be found in [14].

5.3 � Drained Compression Test

The compression test of a fluid saturated rock sample with 
its boundary conditions (Fig.  35) is presented (see [14] 
for full details). The external compression load imposed 
on the top base is applied via constant velocities of 
v0 = 5 ⋅ 10−4  m/s and v0 = 1.5 ⋅ 10−3  m/s. Two heteroge-
neous samples, with a random distribution of stronger and 
weaker phase, are considered.

Figures  36 and 37 show displacements and pore pres-
sures of heterogeneous samples 1 and 2 plotted in a 
deformed mesh at the final time step of the simulation. In 
these two cases, the spatial distribution of the weaker and 
stronger phase led to different macro crack propagations. 
It is the strength of the model to consider heterogeneities 
which influence the failure mechanism together with a fluid 
flow. Namely, pore pressures remain equal to zero at pervi-
ous sides and reach their highest values near the localized 
zone.

Macroscopic responses (Fig.  38) indicate that higher 
rates of imposed displacement cause samples to be more 
resistant with these boundary conditions. This is due to an 
increase of pore pressure which is brought by a shorter time 
left for drainage at the sample centre. Such response reveals 

(75)
�p = �ext − �

nel
e=1

[
∫
le
�p,TM−1�pdx�̇�−

− ∫
le
�p,T𝛼�ddx�̇� − ∫

le
�p,Tkf�

pdx�e

]

Fig. 35   Geometry of the 
poroplastic sample and imposed 
boundary conditions. Taken 
from [14]

(a) (b) (c)

Fig. 36   The state of the 1st heterogeneous sample after the compression test (imposed velocity v
0
= 5 ⋅ 10

−4 m/s): a horizontal displacement b 
vertical displacement c pore pressure. Taken from [14]. (Color figure online)
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coupling effects which are more pronounced in non linear 
behaviour and the formation of localization zone.

5.4 � Lattice Element Models for Multi‑physics 
Applications

Lattice element models have already been proved to be 
efficient in coupling the mechanical failure and transport 
problems. Multi-physics applications of lattice models have 
been tackled only recently, while there is still a plenty of 
potential here. Partially saturated porous media formulation 
could describe the inevitable effects of suctions, which can 
occur in partially saturated concrete influencing the chlo-
ride transport with surface tension in capillaries, or in rocks 

where strong degradation of the material is present due to 
wetting and drying. Lattice models could also be used in 
failure of thermomechanical or piezoelectric materials.

6 � Conclusions

Lattice element models are an effective and computa-
tionally inexpensive class of discrete models capable of 
representing important peculiarities of material failure. 
Among them, the most important ones are capabilities to 
represent:

(a) (b) (c)

Fig. 37   The state of the 2nd heterogeneous sample after the compression test (imposed velocity v
0
= 5 ⋅ 10

−4 m/s): a horizontal displacement b 
vertical displacement c pore pressure. Taken from [14]

(a) (b)

Fig. 38   Macroscopic curves of the poro-plastic sample obtained within the compression test a cumulative vertical reaction versus impose dis-
placement b pore pressure at the sample centre versus imposed displacement. Taken from [14]
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–– linear elastic continuum and uniform straining of the 
topologically regular or irregular lattice with appropri-
ate computation of lattice element parameters

–– localized failure by applying the breaking criterion on 
the lattice elements, which represents cohesive forces 
between the particles; the issue of singularity at the 
crack tip, which is present in linear elastic fracture 
mechanics, is bypassed by the cohesive crack approach

–– complex and multiple crack propagations through the 
domain where one does not need to worry about the 
crack interactions

–– mesh-independent softening response, with introduction 
of embedded strong discontinuities by enhancing the 
kinematics of lattice cohesive link elements to represent 
displacement jumps.

These favourable properties make the lattice models 
appropriate to simulate the quasi-brittle failure behaviour at 
finer scales of the material, like micro-scale or meso-scale. 
This has been mostly used with quasi-brittle materials such 
as concrete or rocks. However, lattice models can be used 
also in dynamic environments and at macro-scale to cap-
ture the propagating discontinuities in a structure.

Recent works have shown that transport processes can be 
coupled with the mechanical response of the lattice model. 
For example, moisture or heat transport induce internal 
stresses which can damage the material. The corrosion 
expansion can damage reinforcement. Any close interaction 
of the material with a fluid will result with time dependent 
material degradation reducing its durability. Such multi-
physics applications in lattice models are preformed by 
coupling the mechanical lattice and transport lattice, where 
the latter can be considered as a lattice of one-dimensional 
conduit elements. The full, two-way coupling procedure 
in porous media, is presented in this paper. Thus, one can 
simulate the key aspects of the material failure mechanisms 
in a very efficient way, even when including multi-physics 
interactions.
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