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In this work, we present geometrically non-linear beam finite element with embedded discontinuity
which can represent elastoplastic constitutive behavior with both hardening and softening response.
The constitutive equations are presented in rate form by using the multiplicative decomposition of defor-
mation gradient. Formulation of elastoplastic response is presented in terms of stress resultants including
the interaction between axial force, shear force and bending moment appropriate for metallic materials.
The softening response is used to model the failure in connections, introducing displacement field discon-
tinuity or a rotational hinge. The hinges or displacement discontinuity are presented in the framework of
incompatible modes that can handle three different failure modes dealing with bending, shearing or axial
deformation. With several numerical simulations, the FEM implementation is proven very robust for
solving the problems of practical interest, such as push-over analysis.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The model capable of predicting the complete failure (collapse)
of a frame structure is very important in the limit load design. Typ-
ical application is push-over analysis used in earthquake engineer-
ing; a nonlinear static analysis of a building structure subjected to
an equivalent static load that is pushing a structure towards the
limit capacity. This type of the analysis was developed in work
[1] as incompatible modes in the small displacement framework.
During push-over analysis of a structure, there are hinges that
develop, in a step-by-step manner, leading to the failing mecha-
nism. In structural analysis those hinges can be included by using
static condensation method [7]. The incompatible mode method is
more robust, while the static condensation method is more effi-
cient. For improved prediction, it is necessary [1] to include geo-
metric nonlinearities of the second order, indicating the need for
improvement.

The truly large kinematics of steel frame structures combined
with elastoplastic hardening/softening is the main novelty of this
work. The ductile material like steel can handle large displace-
ments and deformation of a structure during the limit load analy-
sis. The geometrically exact beam with nonlinear kinematics and
nonlinear constitutive behavior should be capable of following
response of a structure to the complete failure (collapse). In this
work, we propose elastoplastic beam element in geometrically
nonlinear regime [4] that can handle softening response, which is
included in the framework of incompatible modes.

In the formulation of the proposed beam element we use, as the
starting point, the previous works [4,11]. The proposed beam ele-
ment includes nonlinear kinematics and nonlinear constitutive
response. The constitutive behavior is defined as plasticity with
linear hardening that includes interaction between axial force,
shear force and bending moment. The evolution equations for
internal variables are developed in rate form, imposing the need
to employ a numerical time integration scheme, -here chosen as
the backward Euler scheme.

The main novelty concerns the beam model’s ability to reach
the ultimate capacity of a cross section, activating one of three fail-
ure modes, which represent non-linear softening response in either
bending moment, shear or axial force. These failure modes are han-
dled by field discontinuity as incompatible modes, see [5]. In this
work, we presume that only one softening failure mechanism can
be activated at the time. The outline of the paper is as follows.

In the next section, we present the main ingredients of the geo-
metrically exact beam with the elastoplastic constitutive response.
The interaction between axial force, shear force and bending
moment is taken in the elastoplastic regime, while the axial
response remains elastic. Section 2 presents corresponding
kinematic enhancement in terms of ‘‘discontinuity” or ‘‘jump” in
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the displacement field or the rotational field depending upon the
activated failure mode. The enhancement is included as an
incompatible mode in the geometrically nonlinear framework. Sec-
tion 3 deals the FEM implementation, while Section 4 presents the
results of several numerical simulations. Section 5 contains the
conclusions.

2. Reissner’s beam with non-linear kinematics

In this section, we give a detailed formulation of the two-
dimensional beam in the framework of large displacement and
large elastoplastic strains. The formulation of Reissner’s beam
[10] kinematics equations employs rotated strain measure. The lin-
earization of these strain measures reduce the strains of the
Timoshenko beam [4,9]. The plastic strains corresponding to stress
resultant follow from yield criterion introducing the interaction
between axial force, shear force and bending moment. The equa-
tions are expressed in rate form [11]. The consistent linearization
of the weak form of equilibrium equations provides tangent stiff-
ness matrix, for both material and geometric part.

Providing the beam element with the embedded discontinuity
within the framework of a large displacement is needed for mod-
eling softening phase. The later can concern the failure process in
the connections, modeling separately the failure in bending, in
shearing or in axial force. The multiplicative decomposition of
the deformation gradient into regular and irregular parts corre-
sponds to the additive decomposition of the rotated strain measure
proposed by Reissner [10]. Moreover, the weak form of equilibrium
equation has to be recast within the framework of incompatible
modes [5], which allows handling of the embedded discontinuity
calculation at the element level.

2.1. Geometrically nonlinear kinematics

In the framework of large displacement gradient theory, the
position vector in deformed configuration can be written as

u :¼ u0 þ ft ¼ xþ u

yþ v

� �
þ f

� sinw

cosw

� �
ð1Þ

where x and y are coordinates in the reference configuration, u and
v are displacement components in the global coordinate system, f is
the coordinate along the normal to the beam axis in the reference
configuration and w is the rotation. The corresponding form of the
deformation gradient F can be split into displacement part Fu,v
and rotation part Fw as:

The failure mode in connection can be represented by jump in
displacement components u, v and in the rotation w, with the cor-
responding kinematic enhancement in terms of the ‘‘discontinu-
ity”. In the finite deformation framework, such a displacement
discontinuity has to be introduced in deformed configuration [4].
This splits displacement field into the regular part ð~��Þ and the ‘‘en-
hanced” part ð���Þ representing the corresponding displacement or
rotation ‘‘jump”. By introducing d�x as the Dirac function where
the jump occurs, the additive decomposition of displacements
and rotation gradient fields can be written as:
uðx;tÞ¼ ~�uðx;tÞþðNaðxÞþHðxÞÞ��uðtÞ! @u
@x

¼ @~�u
@x

þGaðxÞ��uþd�x��u¼ @�u
@x

þd�x��u

vðx; tÞ¼ ~�vðx;tÞþðNaðxÞþHðxÞÞ��vðtÞ! @v
@x

¼ @~�v
@x

þGaðxÞ��vþd�x��v ¼ @�v
@x

þd�x��v

wðx;tÞ¼ ~�wðx;tÞþðNaðxÞþHðxÞÞ��wðtÞ! @w
@x

¼ @~�w
@x

þGaðxÞ��wþd�x
��w¼ @�w

@x
þd�x

��w

ð3Þ
where Na(x) is interpolation function, H(x) is Heaviside function and
Ga(x) is the first derivative of the interpolation function Na(x). By
using last result (3) we can write the deformation gradient for both
the displacement and the rotation fields, in terms of the multiplica-
tive decomposition of:

F ¼ Iþr�uþ d�xr��uþ Iþr�wþ d�xr��w

¼ ðIþr�uÞ Iþ d�x
r��u

I þr�u

� �
þ Iþr�w
� �

Iþ d�x
r��w

I þr�w

 !
¼ Fu;vFu;v þ FwFw ð4Þ
From the polar decomposition of the deformation gradient F,

into rotation R and stretch U, we define the rotated strain measure
H:

F ¼ RU ! U ¼ RTF; R ¼ cosw � sinw

sinw cosw

� �
! H ¼ U� I ð5Þ

where I is identity tensor. With the results (4) and (5), we can
obtain the corresponding additive decomposition of the stretch
tensor:

where

Uu;v ¼ 1þ @�u
@x

� �
coswþ @�v

@x sinw 0
� 1þ @�u

@x

� �
sinwþ @�v

@x cosw 1

" #
; Uu;v ¼

��ucoswþ ��v sinw 0
���usinwþ ��v cosw 0

" #
d�x

Uw ¼ �f @�w
@x 0

0 1

" #
; Uu;v ¼ �f��w 0

0 0

" #
d�x

Finally, we can write the internal virtual work in an alternative
form that is more in line with the corresponding 3D representa-
tions [4]Z
L

Z
A
F̂ � PdAdx ¼

Z
L

Z
A
Ĥ � TdAdx ð7Þ

where F̂ is variation of the deformation gradient, P is first Piola-
Kirchhoff stress. In last Eq. (7), we used the following result for Biot
stress tensor T and corresponding rotated strain measures H and

their variations Ĥ:

T ¼ RTP ! T11

T21

 !
¼ RT P11

P21

 !
ð8Þ
2.2. Constitutive model and its rate form

In the elastic regime the simplest set of constitutive equations
for finite strain beam is chosen in terms of Biot stress resultants
and rotated strain measure:

T ¼ CeH ð9Þ



14 I. Imamovic et al. / Computers and Structures 189 (2017) 12–20
where Ce is the elastic modulus. In the plastic regime, we can split
displacement and rotation gradients into elastic part (�e) and plastic
part (�p):
F ¼ Iþr�ue þr�up þ Iþr�we þr�wp

¼ ðIþr�ueÞ Iþ r�up

Iþr�ue

� �
þ ðIþr�weÞ Iþ r�wp

Iþr�we

� �
¼ Fe

u;vF
p
u;v þ Fe

wF
p
w ð10Þ

Multiplicative decomposition of the deformation gradient cor-
responds to the additive decomposition of the stretch tensor U:

where

Ue
u;v ¼ 1þ @�ue

@x

� �
coswþ @�ve

@x sinw 0

� 1þ @�ue
@x

� �
sinwþ @�ve

@x cosw 1

" #
;

Up
u;v ¼

@�up
@x coswþ @�vp

@x sinw 0

� @�up
@x sinwþ @�vp

@x cosw 0

" #

Ue
w ¼ �f @�we

@x 0
0 1

" #
; Up

w ¼ �f @�wp

@x 0
0 0

" #
The Helmholtz free energy can be defined as a quadratic form:

where Ue is elastic part of the stretch tensor, �np is vector of harden-
ing variables and Kh are corresponding hardening moduli. The yield
criterion condition has to be satisfied:

�/ðT; �qÞ 6 0 ð13Þ
where �q is vector of internal hardening stress like variables. The
second principle of thermodynamics states that the plastic dissipa-
tion must remain non-negative:

0 6 D ¼ T� dWe

dUe

 !
_Ue

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
De¼0

þT _Up � @Np

@�np
d�np

dt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Dp

ð14Þ

The principal of maximum plastic dissipation can be formulated
[2] as the constrainedminimization, where constraint is yield func-
tion (13). This can further be recast as corresponding uncon-
strained minimization by using Lagrange multiplier method:

min
T;�q

max
_�c

½LpðT; �q; _�cÞ ¼ �DpðT; �qÞ þ _�c � �/ðT; �qÞ� ð15Þ

where _�c is the Lagrange multiplier. Regarding the Kuhn-Tucker
optimality conditions, the result can be used to provide the evolu-
tion equations for internal variables in rate form along with the
loading/unloading conditions:

@Lp

@T
¼ � _Up þ _�c

@�/
@T

¼ 0 ) _Up ¼ _�c
@�/
@T

@Lp

@�q
¼ � @�np

@t
þ _�c

@�/
@�q

¼ 0 ) @�np

@t
¼ _�c

@�/
@�q

_�c P 0; �/ 6 0; _�c�/ ¼ 0

ð16Þ
The appropriate value of plastic multiplier _�c can be determined
from the plastic consistency condition for the case of sustained
plastic flow:

_�/ ¼ 0 ) _�c ¼
@�/
@T C

e _U
@�/
@T C

e @�/
@T þ @�/

@�q K
h @�/
@�q

ð17Þ

By replacing the last result in stress rate equation, we can
obtain the elastoplastic modulus Cep that should replace the elastic
modulus Ce in plastic regime:

Cep ¼ Ce � Ce @�/
@T � Ce @�/

@T
@�/
@T C

e @�/
@T þ @�/

@�qp K
h @�/
@�qp

ð18Þ

We note in passing that the elastoplastic tangent stiffness above
remains the same in the discrete problem, obtained by using the
backward Euler time integration scheme.

In the softening regime the Helmholtz free energy can be writ-
ten as a quadratic form in softening variables:

Wð��nsÞ ¼ 1
2
��nsKs

��ns|fflfflfflffl{zfflfflfflffl}
Ns

; Wð�Þ ¼ Wð�Þ þWð��nsÞd�x ð19Þ

where ��ns is a set of internal variables, representing the connection

failure and Ks is set of softening moduli. The yield function for soft-
ening is chosen as a multi criteria form, related to, bending, shear-
ing and axial force:

_��ci��/i ¼ 0 ) ��/iðti; ��qs
i Þ 6 0 ð20Þ

where ti is traction force and ��qs
i is stress-like variables, which are

work-conjugated to the softening internal variables at the disconti-
nuity for the corresponding failure mode. Among all admissible val-
ues of these variables, the principal of maximum dissipation
pertinent to softening states will pick the ones that maximize soft-
ening dissipation. This can be solved as an unconstrained minimiza-
tion problem, to provide the evolution equations for internal
variables along with the loading/unloading conditions:

@Ls

@��qs
¼ � _��ns þ

X3
1

_��c
@��/

@��qs
¼ 0 ) _��ns ¼

X3
1

_��ci
@��/

@��qs

_��c P 0; ��/ 6 0; _��c��/ ¼ 0

ð21Þ
2.3. Stress resultant form

By using the rotated strain measure H, we obtain the only non-
zero components, defined as:

H11 ¼ R� fK; H21 ¼ C ð22Þ
The explicit form of generalized strains can be written as

The linearized strain measures (23) coincide with the strains of
the Timoshenko beam [4]. Eq. (23) can be written in matrix com-
pact form:



I. Imamovic et al. / Computers and Structures 189 (2017) 12–20 15
R ¼ KTðhð�aÞ � nÞ þ KThð��aÞd�x

R ¼
R

C

K

0B@
1CA; K ¼

cosw � sinw 0
sinw cosw 0
0 0 1

264
375; hð�aÞ ¼

1þ d�u
dx

d�v
dx
d�w
dx

0BB@
1CCA;

hð�aÞ ¼
��u
��v
��w

0B@
1CA; n ¼ Kg1; g1 ¼

1
0
0

0B@
1CA

ð24Þ

By using the same compact notation for the virtual strains
(denoted with superposed ð�̂Þ), we can write the weak form of
the equilibrium equation, see [4]:

Gða; âÞ :¼
Z
L
ðR̂N þ ĈV þ K̂MÞdx� GextðâÞ ¼ 0 ð25Þ

In (25) above, N, V and M denote stress resultants, expressed in
terms of the Biot stress:

r¼ ðN;V ;MÞT ; N¼
Z
A
T11dA; V ¼

Z
A
T21dA; M¼�

Z
A
fT11dA ð26Þ

The yield function, in the stress resultant form, is defined
according to classic works [11,8], except for a small modification
to account for isotropic hardening:

�/ð�r; �qÞ ¼ jmj þ n2ð1þ v2Þ þ v4 � 1 6 0

m ¼ M þ �qM

My
; v ¼ VV þ �qV

Vy
; n ¼ N þ �qN

Ny

ð27Þ

where m is a non-dimensional bending moment; v is a non-
dimensional shear force; n is a non-dimensional axial force;
�qM; �qV ; �qN are internal hardening stress like variables; whereas My,
Vy and Ny denote yield bending moment, yield shear force and yield
axial force. The yield function for softening is chosen as a multi cri-
teria form, pertaining to, bending moment, shear and axial force:

_��ci��/i ¼ 0 )
��/MðtM; ��qs

MÞ ¼ jtMj � ðtMy � ��qs
MÞ 6 0

��/V ðtV ; ��qs
V Þ ¼ jtV j � ðtVy � ��qs

V Þ 6 0
��/NðtN; ��qs

NÞ ¼ jtNj � ðtNy � ��qs
NÞ 6 0

ð28Þ

where tM, tV, tN are traction forces, tMy ; tVy ; tNy are the corresponding
ultimate values where softening starts and ��qs

M ;
��qs
V ;
��qs
N are stress-like

variables work-conjugate to softening variables at the discontinuity.

2.4. Consistent linearization of virtual work equations

As shown in (7) [4], the virtual work equation can be expressed
in terms of different stress– strain energy-conjugated pairs. Any of
them leads to a nonlinear problem, which requires an iterative
solution procedure. With Newton’s iterative method, we need to
perform consistent linearization at each iteration.

2.4.1. Incompatible modes implementation
The embedded discontinuity formulation that handles the soft-

ening is implemented in the framework of incompatible modes [5].
Namely, we turn to Hu-Washizu variational formulation, where
the weak form is constructed for all three groups of equations:
kinematics, constitutive and equilibrium equations. Namely, we
choose the spaces of virtual displacements, virtual stress and vir-
tual strain to write:

Gaðu;H;T; ûÞ :¼
Z
L

Z
A
ĤTdAdx�

Z
L
ûTfdx ¼ 0

Grðu;H;T; T̂Þ :¼
Z
L

Z
A
T̂HdAdx ¼ 0

GR̂ðu;H;T; ĤÞ :¼
Z
L

Z
A
ĤðCepH� TÞdAdx ¼ 0

ð29Þ
where virtual fields are denoted with superposed ð�̂Þ; Ĥ - virtual

rotated strain field; T̂ - virtual stress field and û - virtual displace-
ments field. Virtual rotated strain measure can be derived by taking
the directional derivative of strain measure U (11) and exploiting
relation U = H + I:

In Eq. (30), the additive decomposition of the displacement gra-
dient field produces an additive decomposition of the virtual strain

measure Ĥ. The virtual stress field can be expressed as:

T̂ ¼ CepðĤþ d�x
^
HÞ ð31Þ

By exploiting results (22)–(25) and (29)–(31) we can construct
the weak form of equilibrium equations in terms of stress
resultants:

Gaða;R;a; âÞ :¼
Z
L

dTð�aÞKþ �whTð �aÞdK
dw

� �
CepKTðhðaÞ � nÞdx

�
Z
L
âTfdx ¼ 0

Grða;R; r; r̂Þ :¼
Z
L
r̂ðR� RÞdx ¼ 0

GR̂ða;R; r; R̂Þ :¼
Z
L
R̂ðCepR� rÞdx ¼ 0

ð32Þ
The virtual strain measure R̂ can be derived by taking the direc-

tional derivative of the strain measures in (23), which can be writ-
ten explicitly as:

R̂ ¼ d�̂u
dx

coswþ d�̂v
dx

sinwþ ŵ � 1þ d�u
dx

� �
sinwþ d�v

dx
cosw

� �
^
Rd�x ¼ �̂�ud�x coswþ �̂�vd�x sinwþ ŵ½��̂�u sinwþ �̂�v cosw�d�x

Ĉ ¼ � d�̂u
dx

sinwþ d�̂v
dx

coswþ ŵ 1þ d�u
dx

� �
cosw� d�v

dx
sinw

� �
^
Cd�x ¼ ��̂�ud�x sinwþ �̂�vd�x coswþ ŵ½�̂�u cosw� �̂�v sinw�d�x

K̂ ¼ d �̂w
dx

;
^
Kd�x ¼ �̂�wd�x

ð33Þ

The virtual strains components (33) can be put in the matrix
form as

The discrete form can be obtained at the later stage, given that
the linearization and discretization commute. The weak form of
the virtual work equation can be expressed as:

Gða; âÞ :¼
Z
L
R̂ � rdx�

Z
L
âTfdx ¼ 0 ð35Þ
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where a is a vector real displacements, â is a vector of virtual dis-
placements; R̂ is a virtual strain measure; r is a vector of stress
resultant forces and f is a vector of external forces.The stress resul-
tant forces r for the elastoplastic response can be written as

r ¼ CepKTðhðaÞ � nÞ; C ¼ diag Cep
N ;Cep

V ;Cep
M

� � ð36Þ
where Cep

N ;Cep
V ;Cep

M are elastoplastic stiffnesses of the beam section
for an axial force, shear force and bending moment.

By enforcing the orthogonality condition [3] for the element
with incompatible modes, which results in elimination of the
stress field and allows us to write the remaining set of equilibrium
equations (32) as

Gaða;R;a; âÞ :¼
Z
L
R̂CepðRþ Rd�xÞdx�

Z
L
âTfdx ¼ 0

GR̂ða;R; r; R̂Þ :¼
Z
L

^
RCepðRþ Rd�xÞdx ¼ 0

ð37Þ

In the last expression, the virtual strains are obtained explicitly
by directional derivative computation:

In order to provide the quadratic convergence of Newton’s

method, we need to find the consistent tangent stiffness. The latter
can be obtained by consistent linearization of the weak form in
(37)1 resulting with

L½G�ja ¼ Gaða;R;a; �̂aÞ
			
a
þ d
db

½Gð�̂a;aþ bDaÞ�
			
b¼0

¼ Gða; âÞ þ
Z
L
ðdð�̂aÞ; �̂wÞ½DK

m þ DK
g �

dðD�aÞ
D�w

� �
dx

þ
Z
L
ðdð�̂aÞ; �̂wÞ½DF

m�
dðD��aÞ
D��w

 !
dx ¼ 0

ð39Þ

where Dk
m and Dk

g are defined in (42), along with

L½G�jR ¼ Gða; R̂Þ		R þ d
db

½GðR̂;aþ bDaÞ�		
b¼0

¼ Gða; R̂Þ þ
Z
L
ðdð�̂�aÞ; �̂wÞ½DF

m�
dðDaÞ
Dw

� �
dx

þ
Z
L
ðdð�̂�aÞ; �̂wÞ½DH

m þ DH
g �

dðD��aÞ
D��w

 !
dx ¼ 0

ð40Þ

where

DF
m ¼DH

m ¼ K

hTð��aÞ dKdw

" #
Cep KT; dKT

dw hð��aÞ
h i

; DH
g ¼

0 dK
dw r

rT dKT

dw hTð��aÞ d2K
dw2 r

24 35
ð41Þ

Dk
m ¼ K

hTðaÞ dK
dw

" #
Cep KT; dKT

dw hðaÞ
h i

; Dk
g ¼

0 dK
dw r

rT dKT

dw hTðaÞ d2K
dw2 r

24 35
ð42Þ
3. Finite element approximation

We choose the simplest finite element approximation for the
presented beam model with plasticity that fits within the frame-
work of incompatible modes method. We here provide some
details of numerical implementation for a beam element with
two nodes and three localized failure modes. We allow for dis-
placement discontinuity representation for bending moment,
shear force and axial force, each with an additional parameter ae:

xðnÞ ¼
X2
a¼1

NaðnÞ � xa; NaðnÞ ¼ 1
2
ð1þ nanÞ

uhðn; tnþ1Þ ¼
X2
a¼1

NaðnÞ � uaðtÞ þMeðnÞae
uðtÞ;

vhðn; tnþ1Þ ¼
X2
a¼1

NaðnÞ � vaðtÞ þMeðnÞae
vðtÞ;

whðn; tnþ1Þ ¼
X2
a¼1

NaðnÞ � waðtÞ þMeðnÞae
wðtÞ;

MeðnÞ ¼
�N2ðnÞ ¼ � 1

2 ð1þ nÞ; for n 2 ½�1;0�
H�nðnÞ � N2ðnÞ ¼ 1

2 ð1� nÞ; for n 2 ½0;1�

(

ð43Þ

where n 2 [�1, 1] is natural coordinate at the parent element and
H�nðnÞ is Heaviside function related to the point �n ¼ n ¼ 0. The
two-node element interpolation is enhanced with the displacement
discontinuity, placed in the center of this element. The correspond-
ing approximation of displacements gradient can then be written
as:

duhðn; tÞ
dx

¼
X2
a¼1

BaðnÞuaðtÞ þ GeðnÞae
uðtÞ

dvhðn; tÞ
dx

¼
X2
a¼1

BaðnÞvaðtÞ þ GeðnÞae
vðtÞ

dwhðn; tÞ
dx

¼
X2
a¼1

BaðnÞwaðtÞ þ GeðnÞae
wðtÞ

ð44Þ

where

BaðnÞ ¼ dNaðnÞ
dx

; BaðnÞ ¼ ð�1Þa
le

GeðnÞ ¼ dMaðnÞ
dx

; GeðnÞ ¼ � 1
le
; for n 2 ½�1;0Þ [ ð0;1�

� 1
le
þ d0; for n ¼ 0

(
with d0 the Dirac delta function placed in the center of the element.
This choice will ensure that the incompatible mode variation
remains orthogonal to the constant stress in each element.

By combining the results in (24), (43) and (44), we can construct
strain field approximation. We typically use reduced numerical
integration with a single point, n = 0, in order to avoid locking phe-
nomena [4]:
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We note that a pure bending deformation mode (Kirchoff’s
constraint), which imposes that both shear and membrane

deformations are equal to zero (Rh(n) = Ch(n) = 0, "n), can be
obtained only if we have one point of integration and
MeðxÞ _ae

wðtÞ ¼ 0. The stress field approximation can be obtained from
the regular part of the strain rate in (45) with no contribution from
the singular part, which represents softening plastic strain rate. We
can write:

Nhð0; tnþ1Þ ¼ EA eRhð0; tÞ þ Geð0ÞRhðtÞ

 �

Vhð0; tnþ1Þ ¼ GA eChð0; tÞ þ Geð0ÞChðtÞ

 �

Mhð0; tnþ1Þ ¼ EI
X2
a¼1

Bað0Þ � waðtÞ þ Geð0Þae
wðtÞ

 ! ð46Þ

where

RhðtÞ ¼ ae
uðtÞ cos

X2
a¼1

Nað0Þ � waðtÞ
 !

þ ae
vðtÞ sin

X2
a¼1

Nað0Þ � waðtÞ
 !

ChðtÞ ¼ �ae
uðtÞ sin

X2
a¼1

Nað0Þ � waðtÞ
 !

þ ae
vðtÞ cos

X2
a¼1

NaðnÞ � waðtÞ
 !

ð47Þ
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4. Numerical examples

Several numerical examples are presented in this section to
illustrate the performance of the proposed finite element formula-
Bending momen

Fig. 1. Linear elastic analysis: deformed config

Bending moment 

Fig. 2. Elastic-plastic analysis: deformed config
tion. All numerical computations are performed with a research
version of the computer program FEAP [12].

4.1. Straight cantilever under imposed end rotation

In this example, we present three different types of a response
for a cantilever beam under free-end bending load. The geometric
properties of the cross section correspond to standard hot rolled
profile IPE 200 and material properties take values for steel class
S235. The initially straight cantilever beam model is constructed
with three different meshes of 2, 4 and 8 elements. Each analysis
is performed under imposed end rotation w = p. The first analysis
represents the linear elastic response (see Fig. 1), the second anal-
ysis represents the elastoplastic response that remains in harden-
ing phase (see Fig. 2), whereas the third analysis represents the
elastoplastic response that goes into the softening phase, failure.
The failure is localized in the middle of the cantilever, where one
element is weakened (see Fig. 3). Response diagrams show the
mesh indifference of the proposed formulation.

For the chosen properties of the cantilever (Young’s modulus:
E = 2 � 104 kN/cm2; Hardening modulus: K = 0.05�E; Moment of
inertia: I = 1940 cm4; Area of the cross section: A = 28.5 cm2; Yield
bending moment: My = 3100 kN cm), some of the results can be
verified analytically. Namely, the elastic bending moment can be
computed as Me = p�EI/L = 1218320 kN cm and the elastoplastic
bending moment as Mep = (p � Ky)�EK/(E + K)L + Ky�EI/L =
9145,87 kN cm. The comparison, these reference values versus
numerical results computed with different number of elements,
is presented in Table 1.
t M

uration and diagram (M [kN cm]–w [rad]).

M

uration and diagram (M [kN cm]–w [rad]).



Bending moment M

Fig. 3. Ultimate limit analysis with included failure: deformed configuration and response curve.

Table 1
Cantilever beam under imposed an end rotation.

No. of elements Bending moment

Elastic analysis (kN cm) Elastoplastic anal. (kN cm)

2 1,218,300 9146
4 1,218,300 9146
8 1,218,300 9146
16 1,218,300 9146

Exact 1,218,320 9145,87
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4.2. Straight cantilever under imposed free-end vertical displacement

This example presents two different failure modes under free-
end vertical displacement. Namely, by imposing vertical displace-
ment at the free end of a cantilever, we can trigger failure due to
either bending moment or shearing force. The type of failure
Fig. 4. Failure in bending: deformed c

Fig. 5. Failure in shearing: deformed c
depends on chosen values for constitutive parameters. We first
perform analysis (see Fig. 4) where the ultimate bending Mu is
reached before the ultimate shear force Vu (Mu = 3800 kN cm,
Vu = 75 kN). We then modify the parameters (Mu = 3800 kN cm,
Vu = 65 kN), see Fig. 5, in the second analysis, in order to reach
the ultimate shear force before the ultimate bending moment. In
Table 2, we provide the results of studies for the typical rate of
convergence.

4.3. Push-over analysis of a symmetric frame

In this example, we present the results for a push-over analysis
of symmetric steel frame. The frame geometry is given in Fig. 6.
The material properties for all frame members are equal (Young’s
modulus: E = 2 � 104 kN/cm2; Hardening modulus: K = 0.05 E;
Moment of inertia: I = 1940 cm4; Area of the cross section:
A = 28.5 cm2; Yield bending moment: My = 3100 kN cm; Ultimate
onfiguration and response curves.

onfiguration and response curves.



Table 2
Reduction in residual and energy norm in one increment (softening).

No. of iterations Failure in the bending Failure in the shearing

Residual Energy Residual Energy

1 2.5451184E+03 2.89262392986E+00 2.5617356E+03 2.88022968875E+00
2 1.2603427E�02 7.72176817049E�09 2.2358020E�01 2.94749460179E�08
3 3.1269310E�10 5.37722363293E�25 5.5411964E�05 2.27071800263E�14
4 1.0282664E�07 2.31118241048E�20

qv qv qv

qvqv=14kN/m qv

qv qv qv

qv

Hc=3,0m 

Hc=3,0m 

Hc=3,0m 

Lb=5,0m Lb=5,0m Lb=5,0m 

Hc=3,0m 

qv qvAutop

Bending moment 

Fig. 6. (a) Frame geometry and loading and (b) deformed shape and bending moment distribution.

Fig. 7. Locations of softening plastic hinges and load versus displacement (utop = 100 cm).

connection

qv=10kN/m

Hc=3,0m

Lb=5,0m

utop

connection

Fig. 8. Frame geometry and loading.
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bending moment: Mu = 3100 kN cm; Yield shear force: Vy = 355 kN;
Ultimate shear force: Vu = 400 kN, Fracture energies: Gf,M = 550 and
Gf,V = 450), except the fact that the cross-section properties of the
columns are 10% stronger then cross-section properties of the
beams. The elements which connect beams to columns are 10%
weaker than cross-section properties of beams; these elements
are chosen to simulate the behavior of connections in the global
analysis of the steel frame structure. The vertical load was applied
to all beam members. This load is kept constant throughout push-
over analysis in order to simulate the dead load effect. The lateral
loading is applied in terms of an imposed incremental displace-
ment (utop) at the upper corner (point A, see Fig. 6). In Fig. 6b, we
present the deformed configuration of the steel frame and the cor-
responding distribution of the bending moments. In Fig. 7, we pre-
sent the position of activated plastic hinges in the final stage of
failure, along with the computed softening response in terms of
the force–displacement diagram. In Fig. 7b, the force denotes reac-
tion in the corner A, where is imposed the displacement.



a. Failure in the bending b. Failure in the shearing

Bending moment M
Bending moment M

Fig. 9. Deformed configuration.

Fig. 10. Response of the frame.
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4.4. Push-over analysis of a simple frame

In this example, we present ability to capture different failure
modes of the frame. We consider a simple steel frame presented
in Fig. 8, where the span is 5.0 m and height is 3.0 m. The mesh
is composed of 48 elements where the length of each element is
0.25 m. The material properties of all frame members are equal
(Young’s modulus: E = 2 � 104 kN/cm2; Hardening modulus:
K = 0.05 � E; Moment of inertia: I = 1940 cm4; Area of cross section:
A = 28.5 cm2; Yield bending moment: My = 3100 kN cm; Ultimate
bending moment: Mu = 3100 kN cm; Yield shear force: Vy = 355 kN;
Ultimate shear force: Vu = 400 kN, Fracture energies: Gf,M = 550 and
Gf,V = 450), but elements which connect beams and columns are
defined according to connection behavior see [6]. Two cases are
considered, in the first, connections are defined properly and in
the second case connection are defined with very low capacity
regard to the shear force (Vu = 30 kN), which can be caused by poor
construction during building. This construction error is assumed in
the right corner of the steel frame. Deformed configurations of the
frame for both cases are presented in Fig. 9. The results of analysis
for both cases are presented in Fig. 10, showing a significant reduc-
tion in frame limit load that can be brought by construction errors.
Fig. 10b shows this reduction of the limit load, caused by construc-
tion errors during building.

5. Conclusions

The presented geometrically non-linear planar beam model
provides the main novelty with its ability to account for both bend-
ing and shear failure. The proposed constitutive model contains
both coupled plasticity with isotropic hardening and nonlinear
law for softening with three different failure mechanisms. The
hardening response providing the interaction between bending
moment, shear force and axial force can be calibrated against dam-
age of beams or columns in a steel frame. The softening response
can be activated to model the failure mode in the connections with
different failure mechanisms. Which of mechanisms will be acti-
vated depends on interplay and stress redistribution during the
limit load analysis.

By using the proposed beam element we can perform ultimate
limit analysis of any frame planar steel structure, including the sec-
ond order effects as well as different failure mechanisms. The geo-
metrically nonlinear analysis allows the ultimate limit analysis
with large displacement without any need for correction of the
proposed property [1]. This advantage is very important in a steel
frame structure because of a large ductility of steel.

The results for all numerical examples illustrate an excellent
performance of the proposed beam element.

Acknowledgement

This work was supported by French Ministry of Foreign Affairs
through scholarship given by French Embassy in Sarajevo. This
support is gratefully acknowledged.

References

[1] Dujc J, Bostjan B, Ibrahimbegovic A. Multi-scale computational model for
failure analysis of metal frames that includes softening and local buckling.
Comput Methods Appl Mech Eng 2010;199:1371–85.

[2] Hill R. The mathematical theory of plasticity. Oxford: Clarendon Press; 1950.
[3] Ibrahimbegovic A. Nonlinear solid mechanics. Springer; 2009.
[4] Ibrahimbegovic A, Frey F. Finite element analysis of linear and non-linear

planar deformations of elastic initially curved beam. Int J Numer Meth Eng
1993;36:3239–58.

[5] Ibrahimbegovic A, Frey F. Geometrically non-linear method of incompatible
modes in application to finite elasticity with independent rotations. Int J
Numer Methods Eng 1993;36:4185–200.

[6] Imamovic I, Ibrahimbegovic A, Knopf-Lenoir C, Mesic E. Plasticity-damage
model parameters identification for structural connections. Coupled Syst Mech
2015;4(4):337–64.

[7] Medic S, Dolarevic S, Ibrahimbegovic A. Beammodel refinement and reduction.
Eng Struct 2013;50:158–69.

[8] Neal BG. Effect of shear and normal forces on the fully plastic moment of a
beam of rectangular cross-section. J Mech Eng Sci 1961;23(2).

[9] Nikolic M, Ibrahimbegovic A, Miscevic P. Brittle and ductile failure of rocks:
embedded discontinuity approach for representing mode i and mode ii failure
mechanisms. Int J Numer Methods Eng 2015;8(102).

[10] Reissner E. On one-dimensional finite-strain beam theory: the plane problem.
Z Angew Math Phys 1972;23.

[11] Simo JC, Hjelmstad KD, Taylor RL. Numerical formulations of elasto-
viscoplastic response of beams accounting for the effect of shear. Comput
Methods Appl Mech Eng 1983;42.

[12] Taylor RL. FEAP – A finite element analysis program. Berkeley; 2008.

http://refhub.elsevier.com/S0045-7949(17)30040-8/h0005
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0005
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0005
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0010
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0015
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0020
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0020
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0020
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0025
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0025
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0025
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0030
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0030
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0030
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0035
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0035
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0040
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0040
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0045
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0045
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0045
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0050
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0050
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0055
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0055
http://refhub.elsevier.com/S0045-7949(17)30040-8/h0055

	Nonlinear kinematics Reissner’s beam with combined hardening/softening elastoplasticity
	1 Introduction
	2 Reissner’s beam with non-linear kinematics
	2.1 Geometrically nonlinear kinematics
	2.2 Constitutive model and its rate form
	2.3 Stress resultant form
	2.4 Consistent linearization of virtual work equations
	2.4.1 Incompatible modes implementation


	3 Finite element approximation
	4 Numerical examples
	4.1 Straight cantilever under imposed end rotation
	4.2 Straight cantilever under imposed free-end vertical displacement
	4.3 Push-over analysis of a symmetric frame
	4.4 Push-over analysis of a simple frame

	5 Conclusions
	Acknowledgement
	References


