W. P. Doherty, E. L. Wilson, R. L. Taylor, and J. Ghaboussi, Numerical and computer methods in structural mechanics, Incompatible displacement models, pp.43-57, 1973.

E. L. Wilson and A. Ibrahimbegovic, Use of incompatible displacement modes for the calculation of element stiffnesses or stresses, Finite Elem Anal Design, vol.7, pp.229-270, 1990.

F. Armero, J. C. Simo, and R. L. Taylor, Improved versions of assumed enhanced strain tri-linear elements for 3d finite deformation problems, Comput Methods Appl Mech Eng, vol.110, pp.359-86, 1993.

S. Klinkel and W. Wagner, A geometrical nonlinear brick element based on the eas method, Int J Numer Methods Eng, vol.3, pp.4529-4574, 1997.

C. Juan, J. C. Simo, and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Methods Eng, vol.29, issue.8, pp.1595-638, 1990.

R. A. Radovitzky and E. Dvorkin, A 3d element for nonlinear analysis of solids, Communi Numer Methods Eng, vol.10, pp.183-94, 1994.

L. Sedita, K. Meftah, W. Zouari, and R. Ayad, Geometric non-linear hexahedral elements with rotational dofs, Comput Struct, vol.57, pp.37-53, 2016.

T. P. Pawlak, S. M. Yunu, and D. Cook, Solid elements with rotational degrees of freedom: part 1-hexahedron elements, Int J Numer Methods Eng, vol.31, pp.573-92, 1991.

A. Ibrahimbegovic, Stress resultant geometrically nonlinear shell theory with drilling rotations-part i. a consistent formulation, Comput Methods Appl Mech Eng, vol.118, pp.265-84, 1995.

A. Ibrahimbegovic, On finite element implementation of geometrically nonlinear reissner's beam theory: three-dimensional curved beam elements, Comput Methods Appl Mech Eng, vol.122, pp.11-26, 1995.

M. A. Biot, Mechanics of incremental deformations, 1965.
URL : https://hal.archives-ouvertes.fr/hal-01352219

M. Gurtin, An introduction to continuum mechanics, 1981.

A. Ibrahimbegovic, Nonlinear solid mechanics: theoretical formulations and finite element solution methods, 2009.

T. Hughes and F. Brezzi, On drilling degrees of freedom, Comput Methods Appl Mech Eng, vol.72, pp.105-126, 1989.

A. Ibrahimbegovic, On the choice of finite rotation parameters, Int J Numer Methods Eng, vol.149, pp.49-71, 1997.

O. C. Zienkiewicz and R. L. Taylor, The finite element method: basic formulation and linear problems, 1989.

A. Ibrahimbegovic and E. L. Wilson, A modified method of incompatible modes, Commun Appl Numer Methods, vol.7, pp.845-67, 1991.

A. Ibrahimbegovic and F. Frey, Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations, Int J Numer Methods Eng, vol.36, pp.4185-200, 1993.

A. Ibrahimbegovic and S. Mamouri, Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems, Comput Methods Appl Mech Eng, vol.191, pp.4241-58, 1999.

A. Ibrahimbegovic, M. A. Mikdad, and . Mikdad, Finite rotations in dynamics of beams and implicit time-stepping schemes, Int J Numer Methods Eng, vol.41, pp.781-814, 1998.

P. M. Pimenta and E. Campello, A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping, Latin Am J Solids Struct, vol.1, pp.119-159, 2003.

K. Yoon and P. S. Lee, Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors, Comput Methods Appl Mech Eng, vol.281, p.106130, 2014.

R. L. Taylor, A. Ibrahimbegovic, and H. Lim, Non-linear dynamics of flexible multibody systems, computers and structures, Comput Struct, vol.81, p.11131132, 2003.

J. C. Simo and L. Vu-quoc, A three-dimensional finite strain rod model. Part ii: geometric and computational aspects, Comput Methods Appl Mech Eng, vol.58, pp.79-116, 1986.

A. Ibrahimbegovic, Consistent finite element formulation of non-linear elastic cables, Commun Appl Numer Methods, vol.8, pp.547-56, 1992.

A. Ibrahimbegovic and F. Frey, Membrane quadrilateral finite elements with rotational degrees of freedom, Eng Fract Mech, vol.43, pp.547-56, 1992.

A. Ibrahimbegovic and S. Mamouri, Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations, Comput Struct, vol.70, pp.1-22, 2002.

M. F. Mccracken, A. J. Chorin, T. Hughes, and J. E. Marsden, Product formulas and numerical algorithms, Commun Pure Appl Math, vol.31, pp.205-56, 1978.

E. L. Wilson, The static condensation algorithmic, Int J Numer Methods Eng, vol.8, pp.198-203, 1974.

R. L. Taylor, J. C. Simo, and P. Wriggers, A note on finite-element implementation of pressure boundary loading, Commun Appl Numer Methods, vol.7, pp.513-538, 1991.