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Abstract

In this paper we seek refined yet efficient computational models of large overall motion
in statics and dynamics. The efficiency is achieved by the proposed model of 8-node
brick element with rotational degrees of freedom which allows to separate large
displacements and large rotations. The independent rotation field leads to an intrinsic
representation of the rotation tensor, ensuring a smooth interaction between 3D solids
and beam elements. The element is based on a sound variational formulation and the
incompatible mode method which allows to construct enhanced strain representation.
Several numerical examples are presented to show an excellent performance of this
element in the whole range of large overall motion in the statics and dynamics
problems.

Keywords: 3D solids, Dynamics problems, Large displacements and rotations, Elastic
deformation, Newmark scheme, Incompatible modes, Operator split

Introduction
Solid elements with low-order interpolations are generally recommended in structural
mechanics because they can be used efficiently in nonlinear applications since they have
a more robust performance in the distorted configurations. However, in many cases,
especially in bending dominated problems, standard brick elements show severe stiffening
effects knownas locking problems [1,2]. Severalmethods have beenproposed over years in
order to overcome these locking phenomena. For example, the enhanced assumed strain
(EAS) have been used in geometrically nonlinear version [3–5] where the strain field can
be enriched in order to improve the element’s performance under certain conditions. 3D
solid elements with rotational degrees of freedom are also proposedwith different discrete
approximations like the method of the mixed interpolations of tensorial components
[6] for the brick element of Wils on and Ibrahimbegovic [2]. The Space Fiber Rotation
concept (SFR) [7] and the shift of themid-side displacementDOFs of the classical 20-node
hexahedral element into corner nodal translations and rotations are proposed by Yunu
and al. [8].
In this paper, we propose themethod of incompatiblemodes for constructing enhanced

strain approximation as the most viable approach for improving the performance of low
order elements. A very important choice pertains to large strainmeasures, which allows to
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separate large displacements and large rotations. We illustrate the proposed approach on
an 8-node displacement-based hexahedron, including both usual displacement degrees of
freedom and rotation degrees of freedom that are independently interpolated. We reca-
pitulate the variational formulation including the incompatible displacement modes for
3D finite displacement elasticity problems, along with the fine details of the numerical
implementation.
Given the goal of using this element in dynamics, we introduce the inertial effects in the

variational formulation in order to handle dynamic analysis. It is important to state that the
proposed formulation is shown tobemore efficient thanothers formulationsusingfloating
frames. In fact, it is set in a fixed frame that allows to eliminate the Coriolis effects and lead
to a simple quadratic form of the kinetic energy. This results with a mass matrix with con-
stant components and consequently simplifies the time-integration computational phase.
The proposed enhanced solid element is compatible with shell finite elements [9] as

well as beam elements [10]. This offers an efficient performance for modeling linear and
nonlinear dynamic behavior of complex structures. The rotational degrees of freedom are
presented by orthogonal tensor, as an intrinsic representation of large rotations.
The outline of the paper is as follows. In “Standard variational formulations for statics”

section we present the variational formulations for the continuum with independent
rotation fields in geometrically nonlinear theory. Then, we discuss the regularized form of
the variational formulations, with some details of numerical implementation in “Modified
variational formulations for statics and its discrete approximation” section. We extend
to dynamics analysis in “Variational formulations for dynamics” section. The solution
procedures are developed to obtain the corresponding solutions in “Newmark implicit
time-stepping scheme” section. Several numerical simulations dealing with static and
dynamic problems are presented in “Numerical examples” section. Some closing remarks
are given in “Closing remarks” section.

Standard variational formulations for statics
In this sectionwediscuss the variational formulations for the continuumwith independent
rotation field in geometrically nonlinear theory. The starting point in our considerations
can be provided by the classical potential energy principle. It is a function of the finite
displacement field u, writing as a sum of the strain energy and the potential energy of
external forces

Π (u) =
∫
V
W (H(u)) dV −

∫
V
u · f dV (1)

where W (H(u)) is a stored energy given as a function of the chosen Biot’s finite strain
measure and u is the finite displacement field. The second integral represents the external
work for the Dirichlet boundary value problem.
The finite strain measure H, often called Biot strain [11], can be the most explicitly

defined via the polar decomposition theorem (e.g., see [12], p. 14). Namely, if the defor-
mation is a vector field ϕ, which is, without loss of generality for our purposes, specified
with respect to the Euclidean coordinate system with the base vectors ei, i.e. if

xϕ = ϕ(x); x = xiei; ϕ = ϕiei (2)

then, the deformation gradient can be written as
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F = ∇ϕ; F = ∂ϕi
∂xj

ei ⊗ ej (3)

where ′⊗′ denotes the tensor product.
Introducing the displacement vector field: u = ϕ(x) − x, the deformation gradient can

be rewritten in terms of the displacement gradient ∇u as

F = ∇ϕ = I + ∇u; ∇u = ∂ui
∂xj

ei ⊗ ej ; I = δijei ⊗ ej (4)

The polar decomposition theorem [13] states that the deformation gradient can be
factored in a unique way into F = RU where U is the right stretch tensor describing
deformation, while R is the orthogonal rotation tensor. Then, the Biot strain tensor,
defined with:H = U − I, is used to rewrite the polar decomposition theorem

I + ∇u = R(H + I) (5)

By eliminating the rotation field in (5) via orthogonality of R, we get a functional rela-
tionship betweenH and u

H + 1
2
H2 = 1

2
(∇u + (∇u)T + (∇u)T ∇u) (6)

which is needed in (1).
The relation in (6) is quite complex given geometrically nonlinear nature of the prob-

lem. Thus, we can choose much simpler formulation if the Biot strain is included in the
functional (1).
Hence, we want that the polar decomposition in (5) be recovered as the Euler Lagrange

equation of a new variational formulation rather than having it as a subsidiary condition
of the variational formulation in (1). The Lagrange multiplier procedure can be used to
impose that condition in the form

PF =
∫
V
P: [(I + ∇u) − R(I + H)] dV (7)

P is the non-symmetric Piola–Kirchhoff stress, which plays the role of the Lagrange
multiplier [14].
The weak form of the polar decomposition in (7) can be added to the variational formu-

lation in (1)

Π (u,R,P,H) =
∫
V

{W (H) − P · [(I + ∇u) − R(I + H)]} dV −
∫
V
u · f dV (8)

The formulation we propose, considers Biot strain and stress measures. The Biot stress
tensor is obtained by the pull-back of the first Piola–Kirchhoff stress P, by using the
rotation part R of the deformation gradient: T = RTP. The variational formulation in (8)
can be written as

Π (u,R,T,H) =
∫
V

{W (H) − T · H + T · [RT (I + ∇u) − I)]} dV −
∫
V
u · f dV (9)
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The Euler–Lagrange equations associated with the principle in (9) can be obtained by
taking the directional derivative in the direction of virtual displacements δu, virtual rota-
tions δR, virtual stresses δT and virtual strains δH. We thus obtain: linear momentum
balance, angular momentum balance, definition of strains H and rotations R and consti-
tutive equations

(i) div(RT) + f = 0

(ii) RT(I + ∇u)T = (I + ∇u)(RT)T

(iii) H = symm[RT (I + ∇u) − I]; skew [RT (I + ∇u)] = 0

(iv) symmT = ∂W (H)
∂H

= CH; symmT = 1
2
(T + TT )

(10)

We use the Legendre transform to introduce the complementary energy Σ(symmT)

−H · symmT + W (H) = −Σ(symmT) (11)

By introducing the result in (11) into the variational formulation in (9), we can eliminate
the strain fieldH to get the three-field variational formulation

Π (u,R,T) =
∫

V
{
−Σ(symmT) + T ·

[
RT (I + ∇u) − I

]}
dV −

∫
V
u · f dV (12)

The Euler–Lagrange equations in (10) remain preserved, apart from constitutive equa-
tions, which connects directly the stresses with the displacements and rotations

∂Σ(symmT)
∂ symmT

= symm[RT (I + ∇u) − I]; skew [RT (I + ∇u)] = 0 (13)

Modified variational formulations for statics and its discrete approximation
Enhanced displacement gradient

In seeking to improve performance of the discrete approximation, we consider the incom-
patiblemodesmethod to reparameterize the assumeddisplacement gradient field in terms
of additive decomposition of ‘compatible’ ∇u and enhanced (‘incompatible’) part d. In
particular, we assume the enhanced displacement gradient given as

D = ∇u + d (14)

The condition above can be included in the variational principle in (12) via Lagrange
multiplier procedure to get

Π (u,d,R,T,P) =
∫
V

{
−Σ(symmT) + T ·

[
RT (I + D) − I

]

−P · d} dV −
∫
V
u · f dV (15)

whereP is thefirst Piola–Kirchoff stress tensor, conjugatewith the enhanceddisplacement
gradient d.
Note that in the variational principle in (15) it is sufficient that the enhanced displace-

ment gradient belongs only to the space of square-integrable functions in the domain V
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denoted L2(V). Thus, the enhanced displacement gradient in the finite element approx-
imation can be discontinuous over an element boundaries (‘incompatible’). We note in
passing that the strong form and the Euler–Lagrange equation will not change, since

∫
V

δP · d dV = 0; d = 0 (16)

Regularized variational formulations

We assume that the complementary energy potential can be constructed as a quadratic
form in terms of stress

Σ(symmT) = 1
2
symmT · C−1symmT (17)

where C is the elasticity tensor defined by its standard form [13].
Hence, the variational principle in (15) becomes

Π (u,d,R,T,P) =
∫
V

{
−1
2
symmT · C−1symmT

+T ·
[
RT (I + D) − I

]
− P · d

}
dV −

∫
V
u · f dV (18)

The variational principle needs to be regularized in order to preserve stability. In geo-
metrically linear theory, Hughes and Brezzi proposed a regularized form of the variational
principle [14] in order to be able to use any convenient discrete approximation. The cor-
responding generalization of their proposal for the present geometrically nonlinear case
can be written as

Πγ (u,d,R,T,P) = Π (u,d,R,T,P) −
∫
V

1
2
skewT · γ −1skewT dV (19)

where γ is a regularization parameter. An optimal value of γ , γ = μ, was identified in
geometrically linear cases [14].
The regularized form of the variational principle preserves the Euler–Lagrange equa-

tions (10) and (13), while producing an additional Euler–Lagrange equationwhich is given
as

skewT = γ skew[RT (I + D) − I] (20)

By means of Eq. (20), the regularized variational principle can be obtained featuring
only the kinematics variables being able to reduce to a minimum the number of unknown
fields.

Π (u,d,R,T,P) =
∫
V

{
1
2
symm

[
RT (I + D) − I

]
· Csymm

[
RT (I + D) − I

]

+ 1
2
skew

[
RT (I + D) − I

]
· γ skew

[
RT (I + D) − I

]

−P · d
}

dV −
∫
V
u · f dV (21)
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Variational equations in compact notation

For computational efficiency, wewill further switch to thematrix notation. The variational
principle in (21) can be restated as

Π (u,d,R,p) =
∫
V

{
1
2
e(u,R,d) · Ce(u,R,d)

+ 1
2
ω(u,R,d) · γω(u,R,d) − pTd

}
dV −

∫
V
u · f dV (22)

where the symmetric part of the Biot strain measure is mapped into a 6-dimensional
vector

e(u,R,d) = Λ(R)(y(u) + d) − 1 (23)

while the shew-symmetric part is mapped into a 3-dimensional vector

ω(u,R,d) = Ξ(R)(y(u) + d) (24)

Here we used the following compact notation

R= [r1, r2, r3] ; [I + ∇u] = [y1(u), y2(u), y3(u)] ; dT =
[
dT1 d

T
2 d

T
3

]

Λ(R) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rT1 0T 0T

0T rT2 0T

0T 0T rT3
rT2 rT3 0T

0T rT3 rT1
rT3 0T rT2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Ξ(R)=

⎡
⎢⎢⎣

rT2 −rT1 0T

0T rT3 −rT2
−rT3 0T rT1

⎤
⎥⎥⎦; y(u) =

⎛
⎜⎜⎝
y1(u)

y2(u)

y3(u)

⎞
⎟⎟⎠ ; 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

The perturbed configuration is defined by uε = u + εδu and Rε = exp(εδW)R with δu
as the virtual displacement and δW as the infinitesimal skew-symmetric tensor of virtual
rotation where

δW = δRR, δWb = δw × b, ∀ b ∈ R
3 (26)

We note the key difference in dealing with large displacements (vector) and large rota-
tions (tensor) in this kind of computation (e.g. see [15] for more elaborate presentations).
This allows to write the variation of strain measures

δe(u,R,d) = Λ(R)(y(δu) + [Y(u) + D̃
]
δw)

δω(u,R,d) = Ξ(R)(y(δu) + [Y(u) + D̃
]
δw)

(27)

where Y(u) and D̃ are defined as follows

Y(u) =
⎡
⎢⎣

Υ (y1(u))
Υ (y2(u))
Υ (y3(u))

⎤
⎥⎦; D̃ =

⎡
⎢⎣

Υ (d1)
Υ (d2)
Υ (d3)

⎤
⎥⎦; Υ (v) =

⎡
⎢⎣

0 v3 −v2
−v3 0 v1
v2 −v1 0

⎤
⎥⎦ (28)
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We further simplify the writing with virtual displacement and virtual rotation vectors
grouped together in δaT = 〈

δuT , δwT 〉. The variational equations (principle of virtual
work) that follow from (22) are obtained by the directional derivative in the direction of
virtual displacement and virtual rotation δa, virtual enhanced displacement gradient δd
and virtual stresses δp.

δa · r(u,R,d,p) :=
∫
V
{δe · Ce(u,R,d) + δω · γω(u,R,d)}

−
∫
V

δu.f dV = 0

δd · h(u,R,d,p) :=
∫
V
{δd · ΛT (R)Ce(u,R,d)

+ δd · ΞT (R)γω(u,R,d) − δdTp}dV = 0

δp · g(u,R,d,p) :=
∫
V
{δpTd}dV = 0

(29)

Finite element incompatible mode interpolations

We deal here with the discrete problem, defined with the finite element approximations.
The displacement and rotation fields are approximated by using the standard isoparamet-
ric interpolations for three-dimensional solid elements with 8 nodes

u(x) =
8∑

I=1
NI (x)uI ≡ Nue, w(x) =

8∑
I=1

NI (x)wI ≡ Nwe (30)

where NI are the standard shape functions while uI and wI are the corresponding nodal
values.
The virtual displacements δu and virtual rotations δw are approximated in the same

manner

δu(x) =
8∑

I=1
NI (x)δuI , δw(x) =

8∑
I=1

NI (x)δwI (31)

With these interpolations, the displacement gradient of the virtual displacement field
can be written as

y(δu) =
8∑

I=1
BIδuI , BI =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂NI
∂x1 I3

∂NI
∂x2 I3

∂NI
∂x3 I3

⎤
⎥⎥⎥⎥⎥⎥⎦

(32)

The interpolation of the enhanced displacement gradient is constructed by using deriva-
tives of the incompatible displacement α [2]

d =
Nim∑
J=1

ĜJ (x)αJ ≡ Ĝ(x)αe, Ĝ = [Ĝ1, Ĝ2, Ĝ3
]
, ĜI =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂MI
∂x1 I3

∂MI
∂x2 I3

∂MI
∂x3 I3

⎤
⎥⎥⎥⎥⎥⎥⎦

(33)
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where M1 = (1 − ξ2), M2 = (1 − η2) and M3 = (1 − ζ 2) are chosen as quadratic
polynomials. This choice is made to enhance the bending dominated performance [2].
The proposed interpolation should be modified to ensure that the incompatible modes

are not active for constant stress, which guarantees the convergence of the incompatible
mode method in the spirit of the patch test [16]; we impose:

∫
V
ĜdV = 0 (34)

which will in turn eliminate the variable p from the variational equations. For a given
interpolation Ĝ, we can always construct the modified interpolation enforcing (34) as
shown in [17] .

Ĝm = Ĝ − 1
V

∫
V
ĜdV = 0 (35)

Such modified incompatible mode interpolation will in turn eliminate the variable p
from the variational equations. We should thus compute the stress tensor as follows

s = ΛTCe(u,R,d) + ΞTγω(u,R,d) (36)

which further reduces the variational equations in (29) to a set of equilibrium equations,
which can be written as

r(u,R,d) =
∫
V
B̂T s dV −

∫
V
NT f dV = 0

h(u,R,d) =
∫
V
ĜT s dV = 0 (37)

where

B̂ = [B, Ŷ] , B = [B1,B2, . . . ,B8]

Ŷ = [N1
[
Y(u) + D̃

]
, N2

[
Y(u) + D̃

]
, . . . , N8

[
Y(u) + D̃

]] (38)

One possibility to solve the non-linear system in (37) is to linearize the complete system,
as presented in [18] for a two-dimensional case. In present 3D case, the linearization leads
to more complexity and involves the use of the secondary storage. Note however that the
system size is not increased thanks to using the operator split method, which is presented
in detail in Appendix I.

Variational formulations for dynamics
The equations of motion for the transient problem is based upon the variational formu-
lations, by appealing to the Hamilton principle. In fact, the only new term with respect
to the variational formulations in statics concerns the directional derivative of the kinetic
energy, written as

Q(u(x, t)) =
∫
V

1
2
u̇(x, t) · ρ u̇(x, t) dV (39)

The kinetic energy in (39) is chosen as quadratic form only in terms of displacement
fields. The independent rotation field is not involved, for it only serves to introduce the



Boujelben and Ibrahimbegovic Adv. Model. and Simul. in Eng. Sci. (2017) 4:3 Page 9 of 24

Biot strain measures. Thus, the variational equations in dynamics are written as modified
form of these in (29) assuming for inertial effects

δa · r(u,R,d,p) :=
∫
V

δu · ρü dV +
∫
V
{δe · Ce(u,R,d)

+ δω · γω(u,R,d)} −
∫
V

δu.f dV = 0

δd · h(u,R,d,p) :=
∫
V
{δd · ΛT (R)Ce(u,R,d)

+ δd · ΞT (R)γω(u,R,d) − δdTp}dV = 0

δp · g(u,R,d,p) :=
∫
V
{δpTd}dV = 0

(40)

In dynamics, displacement and rotation fields are functions of both space and time.
We use the separation of variables approach in order to construct the finite element
approximations of displacements and rotations

u(x, t) =
8∑

I=1
NI (x)uI (t); w(x, t) =

8∑
I=1

NI (x)wI (t); d(x, t) =
Nim∑
J=1

ĜJ (x)αJ (t) (41)

The variational equations in (40) can now be rewritten as

r(u,R,d) =
∫
V

ρNT ü dV +
∫
V
B̂T s dV −

∫
V
NT f dV = 0

h(u,R,d) =
∫
V
ĜT s dV = 0 (42)

with the accelerations field ü interpolated in the sameway as the compatible displacements
field. It is easy to see that themass matrix will have constant entries and take the following
form

M =
∫
V

[
NTρN 0

0 0

]
dV (43)

We note that the zero masses associated to angular accelerations ẅ can prove trou-
blesome and affect computation stability in dynamic problems. In order to illustrate that
clearly, we consider the linearized form of equations of motion in (42)(1) for free vibration
case: Uexp(i ωt) andWexp(i ωt), which leads to

1
ω2

[
K11 K12
K21 K22

][
U
W

]
=
[
Mu 0
0 0

][
U
W

]
(44)

This clearly shows by choosing: U = 0, W �= 0 that the presence of zero terms in the
massmatrixwould require infinite frequencies, which is the ultimate case of stiff equations
[19] with all difficulties that will impose.
The simplest way to overcome this deficiency is by using the penalty method and intro-

ducing the mass matrix contribution of the rotational degrees of freedom through a kind
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of regularization. This contribution is assigned to be equal to the ones coming from trans-
lational degrees of freedom, multiplied by a regularization parameter η which varies from
0 and 1. Finally, the regularized mass matrix can be written as

Mr =
∫
V

[
NTρN 0

0 ηNTρN

]
dV (45)

Newmark implicit time-stepping scheme
For nonlinear problems, the evolution of state variables is obtained by step-by-step inte-
gration schemes. To that end, the time interval of interest is partitioned into a number of
time steps (0 ≺ t1 ≺ t2 ≺ · · · ≺ tn ≺ tn+1 ≺ · · · ≺ T ). At a typical time tn, the values
of un and Rn are known. The corresponding values at time tn+1 are computed in each
step independently for single-step schemes, such as Newmark. For displacement vector
we have sample additive updates

u(i+1)
n+1 = u(i)n+1 + Δu(i)n+1 (46)

where Δu(i)n+1 is the incremental displacement at each iteration (i). The rotation update
is somewhat more involved in that we have to choose between various possibilities of
parameters for rotation representation (e.g. see [15]). If the spatial representation is used,
we can carry out the rotation update as

R(i+1)
n+1 = Λ̃

(
θ(i)n + Δθ

(i)
n+1

)
Rn (47)

whereΔθ
(i)
n+1 is the incremental rotation vector at each iteration (i) and Λ̃(•) corresponds

to a direct representation of the orthogonal rotation tensor via the rotation vector.
The intrinsic representation of the finite rotations by an orthogonal tensor can be

reduced to a set of four quaternion parameters. The rotational update can be written
as

R(i+1)
n+1 =

(
2q(i+1)2

(n+1)0 − 1
)
I3 + 2q(i+1)

0(n+1)

[
q(i+1)
n+1 × I3

]
+ 2q(i+1)

n+1 ⊗ q(i+1)
n+1 (48)

where

q(i+1)
0(n+1) = q(i)w0(n+1) q

(i)
0(n+1) − q(i)w(n+1).q

(i)
n+1

q(i+1)
n+1 = q(i)w0(n+1)q

(i)
n+1 + q(i)0(n+1).q

(i)
w(n+1) + q(i)w(n+1) × q(i)n+1

(49)

The quaternion parameters of the iterative rotation parameter of the orthogonal tensor
{q(i)w0(n+1),q

(i)
w(n+1)} above are given by

{
q(i)w0(n+1),q

(i)
w(n+1)

}
=

⎧⎪⎪⎨
⎪⎪⎩
cos
(

Δw(i)
n+1
2

)
,
sin
(

Δw(i)
n+1
2

)

Δw(i)
n+1

w(i)
n+1

⎫⎪⎪⎬
⎪⎪⎭

Δw(i)
n+1 =

(
Δw(i)

n+1.Δw(i)
n+1

) 1
2

(50)



Boujelben and Ibrahimbegovic Adv. Model. and Simul. in Eng. Sci. (2017) 4:3 Page 11 of 24

where Δwn+1 is the axial vector of incremental rotation. Note that Δwn+1 and Δθn+1 are
interconnected

Δwn+1 = T̃(θn+1)Δθn+1 (51)

where

T̃(θ) := sinθ

θ
I + 1 − cosθ

θ2
Θ + θ − sinθ

θ3
θ × θ

The scalar θ is the euclidean norm of θ and the tensor Θ is the shew-symmetric matrix
associated to θ.
In dynamics, besides computation of displacements and rotations, one also needs to

provide the values of velocities and accelerations at each time step. In what follows,
the Newmark time integration scheme is used. The linear velocity and acceleration are
advanced from time tn to tn+1 by using the standard Newmark approximations

u̇n+1 = u̇n + Δt((1 − γ )ün + γ ün+1)

ün+1 = 1
βΔt2

(un+1 − un) − 1
βΔt

u̇n − 0.5 − β

β
ün

(52)

where Δt is the time step while β and γ are the Newmark coefficients.
The Newmark implementation for finite rotations is a bit more laborious [20]. Here,

we follow previous works on 3D beams [15] with an extension of the standard Newmark
algorithmvalid only for so-called spatial incremental rotation vector θn+1.We assume that
the angular velocity and acceleration, respectively ẇn+1 = ẇ(tn+1) and ẅn+1 = ẅ(tn+1),
can be provided by the Newmark approximations for finite rotations

ẇn+1 = Λ̃(θn+1)
[

γ

βΔt
Δθn+1 + ω̃n+1

]

ẅn+1 = Λ̃(θn+1)
[

1
βΔt2

Δθn+1 + α̃n+1

] (53)

where ω̃n+1 and α̃n+1 are given by

ω̃n+1 = β − γ

β
ẇn + β − 0.5γ

β
Δtẅn

α̃n+1 = − 1
βΔt

ẇn − 0.5 − β

β
ẅn

(54)

From the proposed form of the Newmark approximations for both displacements and
rotations, we can compute the linearization of velocities and accelerations, providing
corresponding iterative updates. First, we can write for displacements

u̇(i+1)
n+1 = u̇(i)n+1 + γ

βΔt
Δu(i)n+1

ü(i+1)
n+1 = ü(i)n+1 + 1

βΔt2
Δu(i)n+1

(55)
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Similarly, angular velocity and acceleration iterative updates are obtained using the itera-
tive incremental rotation vector

ẇ(i+1)
n+1 = ẇ(i)

n+1 + γ

βΔt
Λ̃(θ(i)n+1)Δθ

(i)
n+1

ẅ(i+1)
n+1 = ẅ(i)

n+1 + 1
βΔt2

Λ̃(θ(i)n+1)Δθ
(i)
n+1

(56)

where Λ̃(•) is given by the exponential mapping formula of Rodrigues [15], written as

Λ̃(θ) = cos θI + sin θ

θ
Θ + 1 − cos θ

θ2
θ × θ

By exploiting the relationship presented in (51), angular velocity and acceleration
updates become

ẇ(i+1)
n+1 = ẇ(i)

n+1 + γ

βΔt
T−T

(
θ
(i)
n+1

)
Δw(i)

n+1

ẅ(i+1)
n+1 = ẅ(i)

n+1 + 1
βΔt2

T−T
(
θ
(i)
n+1

)
Δw(i)

n+1

(57)

where we use the result in [15], T−T (•) = Λ̃(•)T̃−1(•).
It is interesting to note that the rotation updates in terms of incremental rotation vector

canbe easily computed thanks to the additive procedure of updates, θ(i+1)
n+1 = θ

(i)
n+1+Δθ

(i)
n+1.

Moreover, velocity and acceleration updates in (55) and (57) have formally the same
structure for both linear and angular configurations which is the main advantage of the
proposed Newmark algorithm for finite rotation.
The linearized form of the equations of motion in dynamics is given as

1
βΔt2

M
[

Δu(i+1)
n+1

T̃−T (
θ
(i+1)
n+1

)
Δw(i+1)

n+1

]
+ K

[
Δu(i+1)

n+1
Δw(i+1)

n+1

]
+ FTΔα̃

(i+1)
n+1 = −R (58)

where

R = r + 1
βΔt2

M
[

Δu(i+1)
n+1

T̃−T (
θ
(i+1)
n+1

)
Δw(i+1)

n+1

]
+ h̄ (59)

h̄ = M
(

1
βΔt2

[
un
0

]
+ 1

βΔt

[
u̇n

T̃−T (θn+1)ẇn+1

]
+ 0.5 − β

β

[
ün

T̃−T (θn+1)ẅn+1

])

Numerical examples
Several numerical examples are presented in order to demonstrate a very satisfying per-
formance of the enhanced 3D solid element proposed herein. The presented simulation
results concern both static and dynamic problems. All the computations are performed
with a research version of the computer program FEAP, written by Prof. R.L. Taylor at
UC Berkeley [16].
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Short cantilever beam in large compressive deformation: static problem

The first example presents a comparison between the proposed solid element and a stan-
dard solid element, which employs the Green–Lagrange strain measure. A single finite
element cantilever beam is subjected to large compression, by imposing the displacement
at one end while keeping the other end fixed (see Fig. 1). The material properties are
selected as: E = 2000 N/m2 and μ = 0. The imposed displacement (ux = −0.99) is
increased in 10 equal increments until practically reaching maximum possible compres-
sive strains.
The plots of the xx-component of the PiolaKirchhoff stress as function of stretch are

presented in Fig. 1 for both models. We can easily see that the zero stress value accompa-
nying maximum compressive strain for the Saint-Venant–Kirchhoff material cannot be
justified for any real material. In fact, a large compression must logically be accompanied
by a large value of stress which is shown, moreover, by the results of the proposed model.
The deficiency in representing very large compressive strains by the standard solid

element is due to the loss of convexity of the strain energy. However, this drawback of
violating poly-convexity conditions is easily repaired by the proposed element. For this, it
is useless to compare the proposed element to others solid element, which employ Green
Lagrange deformations measures.

Large deflection of a cantilever: static problem

In this second validation example, we consider the cantilever beam of Fig. 2 clamped at
one end and loaded, at the another, with four equal concentrated moments which add to
the total value of m = 0.01π Nm. The beam is modeled with 10 × 1 × 1 enhanced 3D
elements.
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a b

Fig. 1 Short cantilever beam in large compressive deformation; stress as function of stretch: a
Green–Lagrange strain measures, b Biot strain measures
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Fig. 2 A cantilever beam subjected to an end moment modeled with regular mesh 10 × 1 × 1 and his
deformed shape

The exact rotation angle θ can be computed with the classical Euler formula based upon
the classical beam theory [10]: θ = m/EI . For the given value of the moment, geometric
and material proprieties the reference solution of the deformed shape is a semi circle.
The deformed shape is presented in Fig. 2, showing an excellent agreement with the

reference shape. The loading is applied in a single load step, and the solution is obtained
after 7 iterations, with a satisfying rate of convergence (see Table 1).

Circular arch under single load: static instability problem

The next example shows the efficient use of the proposed enhanced 3D solid element to
solve a geometric instability problem, first solved by 3D beam. We consider a circular
arch, hinged at one end and clamped at another, under a vertical point load in the middle.
The selected properties of the arch are given in Fig. 3a. The numerical solution is obtained
by a mesh having thirty 8-node enhanced elements.
The computation is performed with a time step Δt = 0.01 s and needs only 5 iterations

to converge. The corresponding result is also computed with the same number of 2-node
beam elements (see [10]). In Fig. 4, the load/displacement curves for both approximations
are given, indicating a very good agreement for two curves obtained with the different
finite element models.

Beam distortion by a solid plate: static problem

Inorder to show the compatibility of theproposed elementwithbeamelement,wepropose
the following example. We consider a straight beam of length l = 4m, aligned with the
z-axis. The finite element model of the beam consists of five 3D geometrically exact beam
elements. The mechanical properties of the beam are chosen as: EA = 100 N,GA = 50 N

Table 1 Convergence rates for the cantilever

Iter. no. Residual norm Energy norm

0 7.353 × 103 9.922 × 103

1 2.296 × 101 1.427 × 101

2 6.292 × 10−3 9.583 × 10−2

3 3.068 × 10−1 1.651 × 10−5

4 1.575 × 10−5 1.477 × 10−9

5 8.516 × 10−5 1.290 × 10−12

6 1.682 × 10−11 2.229 × 10−23
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a b

Fig. 3 Finite element mesh of a clamped-hinged circular arch: a initial shape, b deformed shape

Fig. 4 Force-display diagram

and EI = 159 Nm2. The finite element model employs 6 two-node beam elements. The
lower end of the beam is fixed, while a square plate is attached at the other end in the
center c as shown in Fig. 5. The plate is composed of four proposed solid elements with
E = 5000 N/m2 and ν = 0. The beam is subjected to a torque through the external forces
applied to the four corners of the plate. The direction of forces is given in Fig. 5. The total
moment at point c, provided by the forces Fi=1,4 is calculated asMτ = 4a× F . The angle
of twist can be found by using the following formula

θ = Mτ l
GI

where G is the shear modulus. For the chosen characteristics (Fi=1,4 = 3.9 N), the value
of the angle of twist is Π/4. The computation is performed in 10 increments of Δt = 0.1
s. The numerical solution corresponds perfectly to the analytical solution: the rotation θ6
at node c is equal to 0.78541 ≈ Π/4.
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Fig. 5 Beam distortion by a solid plate

Free vibration analysis: dynamic problem

For the dynamics part, the first example is proposed for free vibration analysis. For a
cantilever beam fixed at one end, we are concerned with the identification of natural
frequencies andmode shapes. This beam ismodeledwith 10×1×1 enhanced 3D elements
(Fig. 6).
Table 2 gives the natural frequencies of the first ten modes, sorted in increasing order

for both enhanced solid element and standard beam element. The results reveal that solid
element detectsmode shapes of distortionwhich are unseen by the beam element.We can
also see that the natural frequency values of both elements correspond well to each other.
Duplicated frequencies are justified by the fact that each bending mode in y direction has
a similar bending mode in z direction.
The mode shapes obtained with mesh of elements are presented in Fig. 7. Compared

to the standard beam element, the proposed element is capable of taking into account
sectional changes as showing in themode shapes 3 and6. In order to captive that in the case
of beam, one needs higher order geometrically-exact beammodels [21,22], incorporating
in-plane cross sectional changes and out-plane warping by adding supplementary degrees

Fig. 6 10 elements mesh for the cantilever beam fixed at one end

Table2 Natural frequencies of the first tenmodes for the cantilever beam

Mode Natural frequencies

Enhanced solid element Beam element

1 − 2 (bending) 4.97 × 10−2 5.08 × 10−2

3 (torsion) 2.16 × 10−1 –

4 − 5 (bending) 2.75 × 10−1 3.19 × 10−1

6 (torsion) 6.54 × 10−1 –

7 − 8 (bending) 6.71 × 10−1 7.80 × 10−1

9 (axial) 7.90 × 10−1 7.91 × 10−1
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Fig. 7 Mode shapes of the cantilever beam obtained with the proposed solid element

of freedom. Here, the difficulty lies in the choice of distortion and warping functions
which depend on the geometry of the structures and the need for a post-treatment to get
the final results and sketch out the deformed shapes. However, with the proposed solid
element, the result could be obtained directly for any shape.

Cantilever beam subjected to end shear force: dynamic problem

In the second version of the same test, we keep all the data the same as in the first version,
except that we change the loading proprieties. First, the beam is subjected to four vertical
forces at the free end. Each force has a weak amplitude (f = 0.001N) in order to assimilate
linear behavior and a sinusoidal time variation with the frequencyω = 3.12413236×10−1

rad/s, which is the first natural frequency in the initial configuration.
The vertical displacement under force applied at the free end is presented in Fig. 8. The

resonance condition is satisfied and the dynamic response presents rapidly increasing as
expected.
We have proposed two alternatives to define the mass matrix. In order to compare

these possibilities, we examine the bending problem of a cantilever beam under four
concentrated forces applied at its free ends. The proprieties of the beam are maintained
as before (Fig. 6). At each node, the applied force is a triangular pulse, linearly increasing
for 0 ≤ t ≤ 1 to attain the maximum value F = 0.5 N, then decreasing for 1 ≤ t ≤ 3 to
−F and finally increasing again for 3 ≤ t ≤ 4 to return to 0 at t = 6. The computations
are carried out with the time stepΔt = 0.1 s. Time histories for the free end displacement

Fig. 8 Vertical displacement in the free end of the cantilever beam under force: resonance
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components for the different configurations are given in Fig. 9.Wenote that the amplitude
of vibration is of the same order as the total sum of the applied forces.The obtained results
show a good agreement between the geometrically exact beam and 3D enhanced solid
elements. The beam reference response is very close to the response of the 3D solid, with
somewhat greater accuracy in the case of the incomplete mass matrix (neglecting the
rotation inertia) regarding the dominant response frequencies.
Despite better accuracy of computed response, the presence of a zero matrix block

associated with rotation degrees of freedom is the source of major difficulty in the compu-
tational treatment of such problem over a very long interval of time. In order to illustrate
this, we increase the amplitude of the loading to F = 2N andwe perform the computation
of the fields of displacement over a longer interval in time. The time step is selected as
Δt = 0.1 for both configurations. The dynamic response for displacement at the free end
is plotted in Fig. 10. First, we note high oscillations in the computed displacement which
are obtained by the Newmark scheme. Moreover, the configuration using the standard
mass matrix can no longer converge for time exceeding T = 81.3. However, with a regu-
larized mass matrix, the residual remains sufficiently small to ensure the convergence for
substantially longer period.

Fig. 9 Free-end displacement component in the direction of the applied force

Fig. 10 Free-end displacement component in the direction of the applied force over a large time interval
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Adding terms in themassmatrix associated to the rotational degrees of freedom ensures
a satisfying performance of the proposed element in computations over very long time
interval. However, this implies additional computation operations corresponding to the
angular accelerations.

Large scale wind turbine: dynamic problem

For the last example, we consider a dynamic analysis for a model of wind turbine with
flexible blades. We choose to make simpler blade design, since our first objective is to
check the efficiencyof theproposed approach tohandlenumerically the structurebehavior
under large overall motion without getting into too much details of shape optimal design.
The turbine consists of three blades with a length of 50 m. Each blade is modeled

with the proposed enhanced 3D solid. The revolute joint, providing connectivity between
blades, is defined with two rigid bodies [23]. The interaction between flexible and rigid
components doesn’t need any special requirements given that the rotational degrees of
freedom appear in the rigid body formulation for the large displacement in a non-linear
form [23]. The tower, which is 85 meters tall and with circular cross section, is modeled
with geometrically exact beam [24] (see Fig. 11). The wind turbine blades are subjected to
a uniform distributed load using follower pressure approach (see Appendix II). The blades
facets where the loading is applied are defined with 4 nodes two-dimensional elements
that belong to the boundaries of the three-dimensional 8 nodes brick elements of the
blades. We choose an amplitude of the follower pressure p = 360 N/m2, equivalent to an
average wind speed 60 km/h (see Appendix II for special treatment of follower pressure
loads). The pressure function p is presented in Fig. 11.
The chosen material and geometric characteristics are presented in Fig. 11. The com-

putations are carried out with the constant time step Δt = 0.2. The number of iterations
per step doesn’t exceed 20, showing rather robust convergence with regard to multi-finite
elements used in the same structure.
The proposed element describes properly the rotationalmotion of the wind turbine. For

a long time period, we start observing a large deformation related to a combined bending
and twisting motion which causes premature damage of the turbine. This demonstrates
the usefulness of the proposed solid element with respect to the geometrically exact beam
element for this kind of modeling. Namely, beam formulation is based on the rigid cross-
section assumption, which can not captive such damage phenomena.

Fig. 11 Wind turbine model example



Boujelben and Ibrahimbegovic Adv. Model. and Simul. in Eng. Sci. (2017) 4:3 Page 20 of 24

The tower is submitted to large bending, involving harmful effect on the wind turbine
stability which may be even more pronounced for large scale structures in offshore envi-
ronments. Inorder toovercome this problem,we introducepre-stressed cables connecting
the wind tower to the support (see Fig. 12). The finite element approach for computing
cable structure undergoing large displacement is coded for non linear analysis, based on
the previous work [25].
The cross-section area of the cable used here is A = 0.018 m2 and the mass density

is ρ = 0.1 kg/m3. The undeformed cable configuration is straight line, with an initial
pre-tension stress S0 = 800 N/m2. The Saint Venant material model is adopted E =
2 × 107 N/m2. We increase the pressure amplitude to 900.
The time histories of the horizontal displacement at the top of the tower for both con-

figurations, with or without cables, are plotted in Fig. 13. We note that tower’s deflection
is reduced, on average, by half when cables are added. Hence, the proposed solution com-
bines robustness and low weight to improve the stability of the wind turbine without
increasing costs.

Closing remarks
In this paper, we have discussed the regularized variational formulation for 3D solid
elementwith the incompatiblemodemethod to analyze geometrically nonlinear problems
in statics and dynamics. The statics formulation is follow up of our previous works limited

Fig. 12 Cables effect on the bending of the tower: geometry of structure

Fig. 13 Cables effect on the bending of the tower: horizontal displacement of the free end tower
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only to 2D statics [18,26]. Themain novelty is the generalization of the formulation as well
as the finite element implementation to framework of 3D nonlinear dynamic problems.
In particular, the mass matrix is defined from a simple quadratic form of the kinetic

energy as opposed to the co-rotational formulation and the floating frame formulation
used by the others authors. Moreover, a regularized form of the mass matrix is proposed
in order to ensure high computational performance without adding complexity. It is
important that the regularized mass matrix ensures a good performance by being able to
avoid infinite frequencies, and thus facilitating the convergence of the Newmark implicit
scheme. Further gain in computational efficiency, which is worth to note, is brought about
by the operator split methodology reducing the computation of the the final value of the
incompatible mode parameters to a single iteration.
It is interesting to note that the proposed elements with rotational degrees of freedom

can be easily combined with geometrically exact beam models and can also be efficient
in the nonlinear dynamic analysis of thick plates and shells [9]. This enables a smooth
transition between solid and structural elements. Moreover, they are constructed to allow
in plane cross-sectional changes as well as out of plane cross-sectional warping.
In order to reduce the impact of zero masses associated to the rotational degrees of

freedom, besides of a simple regularization of the mass matrix, another alternative seems
more relevant by controlling the dissipation of high frequency modes contribution as
proposed for beam case in [19,27] .
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Appendix I: Incompatible mode operator split
The operator split used for computing incompatible modes for both statics and dynamics
is outlined briefly for present 3D case, for more details in 2D case see [18].
The operator split method [28] can be used to construct a very efficient solution proce-

dure, since the computation of the incompatible mode parameters α is separated from the
solution for large rotations R, being reduced to linear problem. Namely, for fixed values
of u and R, we compute from (37)(2)

HΔα̂ = h; H =
∫
V
ĜT [

ΛTCΛ + ΞTγΞ
]
Ĝ dV (60)

A single iteration is sufficient to recover the final value of the incompatiblemode param-
eters, denoted as α̂.
We then proceed to linearize the system in (37) for the fixed values of α̂,

KΔa + FTΔα̂ = −r

FΔa + HΔα̂ = 0
(61)

where the element stiffness matrix K is

K = Km + Kg

Km =
∫
V
B̂T [

ΛTCΛ + ΞTγΞ
]
B̂ dV; Kg =

∫
V

[
0 BTSTN

NTSB NTAN

]
dV

S = [S1, S2, S3]; Si = Υ (si); sT = [sT1 , s
T
2 , s

T
3 ]

A =
3∑

i=1

[
1
2
{si ⊗ (yi(u) + di) + (yi(u) + di) ⊗ si} − (si · (yi(u) + di))I3

]
(62)

and the coupling matrix F is

F =
∫
V
Ĝ
[
ΛTCΛ + ΞTγΞ

]
B̂ dV +

∫
V
ĜTPTN dV (63)

The operator split procedure remains the same for dynamics, equivalent to static con-
densation [29].

Appendix II: Follower pressure loading
The follower pressure loading is normal loading to a facette of 3D solid element. In the
current configuration, the pressure follows the normal, thus the name follower loads.
The pressure boundary could be written as: t = pn on ϕ(∂Vp), where p is a given

pressure function and n is unit normal field. A new term describing this loading condition
appears only in the variational equation (29)(1)

δa · r(u,R,d) =
∫
V
{δe · Ce(u,R,d) + δω · γω(u,R,d)}

−
∫
V

δu.f dV −
∫

ϕ(∂Vp)
p n · δu ds

︸ ︷︷ ︸
Π

= 0 (64)
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The finite element implementation of the follower pressure loading relies on the finite
element parametrization of the moving surface ϕ(∂ϑp) (see [30] for 2D axisymmetric
case). The correspondingmapping is constructed in two steps, first from the isoparametric
domain Ω to the initial configuration by Γ and then to the deformed configuration by ϕ,
we can write

Π (ϕ, δu) =
∫

Ω

p (γ ,1 × γ ,2) · δu ◦ γ dξ1dξ2 (65)

By using the consistent linearization of Π , we obtain

δΠ (ϕ, δu) =
∫

Ω

p (δu ◦ γ) · ((ς ◦ γ),1 × γ ,2 + γ ,1 × (ς ◦ γ),2) dξ1dξ2 (66)

where ς is an arbitrary admissible variation of ϕ, such as ϕα = ϕ + α ς ◦ ϕ.
The current position of the boundary surface is approximated as follows

γ =
4∑

J=1
NJ (ξ1, ξ2,−1)xJ = N∗x (67)

where xJ is the position of the updated nodes.
With these results on hand, we can compute the modifications to residual and stiffness

matrix for our 3D solid element associated to the follower pressure loading,

rp =
∫

Ω

p N∗[ 4∑
I=1

4∑
J=1

NI (ξ1, ξ2,−1)NJ (ξ1, ξ2,−1)xJ × xJ
]
dξ1dξ2

Kp =
∫

Ω

p N∗qT dξ1dξ2; q(I) =
4∑

J=1

[∂NJ
∂ξ1

∂NI
∂ξ2

− ∂NJ
∂ξ2

∂NI
∂ξ1

]
Υ (xI )

(68)
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