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Abstract – Recent evolutions of computer-aided product development and massive integration of numerical
simulations to the design process require new methodologies to manage the continuously increasing flow
of data and decrease the computational costs of numerical design of experiments. This paper presents a
literature review of Simulation Data Management strategy and adaptive design of experiments methodology
to detect possible links between these two fields and identify potential improvements for simulation process
shortening. Adaptive design of experiments is based on several methods implying a profusion of different
technics. Re-using best practices may help designers to choose relevant methods to reduce computational
cost and simulation process duration.
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Glossary

SDM Simulation Data Management

PLM Product Lifecycle Management

SLM Simulation Lifecycle Management

CAE Computer-Aided Engineering

CAD Computer-Aided Design

DoE Design of Experiments

1 Introduction

Nowadays, competitiveness and efficiency of compa-
nies must be continuously improved to face worldwide
competitors. Their processes and products must be con-
tinuously optimised with quality, cost and time objec-
tives. As simulation is integrated to the product devel-
opment process and is used to reach these objectives, the
simulation process must reach these objectives too.

By means of recent advances in computing, numerical
simulations are required to: (1) understand the product
behavior, (2) optimise the product, (3) explore several so-
lutions, and (4) validate the product. Numerical Design
of Experiments (DoE) is more and more used to fulfil
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these four objectives by planning several runs of a nu-
merical model with different parameters [1]. It can also
increase product robustness and quality by taking into
account product related uncertainties. Nevertheless, the
amount of data produced by these simulations is huge,
difficult and time-consuming to be extracted, stored and
analysed.

This requires an efficient management of product data
along its whole lifecycle, which is also known as Prod-
uct Lifecycle Management (PLM) strategy. It offers to
the company the necessary means to control their prod-
uct along the lifecycle and to improve their processes [2].
In this case, Product data management (PDM) is cru-
cial to reduce times by gathering, classifying and storing
data all along the product lifecycle. Simulation Data Man-
agement (SDM) may be used to manage data related to
Computer-Aided-Engineering (CAE) and computer-aided
design (CAD) [3]. SDM, and more generally Engineering
Data Management, is defined as a process which aims to
organise, structure, store and track produced information,
in order to “create a coherent knowledge”, from process
data and product data [4].

In order to reduce design process cost and time, the
simulation process should be shortened. The paper pro-
poses a research survey which focuses on two subjects:
(1) re-use of simulation data and (2) reduction of com-
putational costs. First, a global simulation process, fo-
cusing on the finite element method used in mechanical
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engineering, is described in Section 2 to identify its main
steps and data sources. Second, after a presentation of
the different simulation data types, SDM methods and
tools are described to analyse the data re-use capabilities
of SDM in Section 3. Section 4 presents DoE and meth-
ods used to reduce cost and time of simulation process,
by re-using data according to different perspectives (e.g.
numerical results and best practices), as adaptive DoE
and surrogate models. To conclude, a possible coupling
between recent DoE methods and SDM strategy is dis-
cussed.

2 Simulation process

Numerical simulation is a set of computations repre-
senting a physical phenomenon and behaviour. It aims
predicting the response of a system subjected to its en-
vironment without any physical experiment. As shown in
Figure 1, it can be sum up to 3 main steps. This rep-
resentation can be found in [5, 6]. Details are available
in [7].

The first step is the modelling or pre-processing: the
physical problem is translated into mathematical equa-
tions. This idealisation can be made by different meth-
ods. The Finite Element method is the most well-known
method and is used for a large range of problems in engi-
neering. The accuracy of the model depends on designer’s
needs and resources. This step is critical because assump-
tions are made [8]. Typically, the complete model involves
a modelling of a phenomenon (mechanics, thermal, etc.),
a system (geometry, materials, parameters, etc.) and its
environment (boundary conditions). Then, the problem
is discretised with respect to its dimensions (spatial, time
and other parameters). Finally, solving algorithm param-
eters are set. It can imply different methods, depending
on the problem, objectives and results expected: itera-
tive methods, DoE, optimisation methods, etc. This step
is carried out with CAE softwares, supported by CAD
softwares for the geometry definition.

The second step is the solving: equations are formu-
lated from the previously discretised model and solved by
the solver program according to chosen algorithms. This
step can be improved by optimising the used methods [9].
Finite Element models may be solved in 1 h, 1 day, 1 week
or even more. Thus, loops on this step (iterations or DoE)
may demand an extremely high computational cost, with-
out certainty about results correctness.

The last step consists in checking results and model
validity (post-processing), and storing relevant data.
There are five sources of error identified by [8, 10] which
must be checked: (1) physical problem interpretation, (2)
physical modeling, (3) numerical modeling, (4) solving
and (5) results interpretation. Then, the model can be
checked and results can be compared to customer’s spec-
ifications for product validation.

These steps are, most of the time, embedded in CAE
systems. Actually, softwares are progressively integrating
different tools, for modelling, simulation and validation
to cover the whole process and simplify it.

Fig. 1. General simulation process step\methods\tools
diagram.

Multiple data types are generated from multiple sys-
tems at different steps. In addition to that, a simulation
may be very expensive (highly nonlinear problem, iter-
ative process, DoE, etc.) and require several softwares,
generate a large amount of data and significantly increase
computational costs. According to targeted objectives,
several improvements can be done on the simulation pro-
cess, as the use of a SDM system to trace, collect and
store information. Regarding to the three steps of simu-
lation process, data can be classified into two groups:

– Long-term data, including user’s choices (hypothe-
sis, methods and parameters), valid results, analyses
and interpretations. These data have to be stored and
archived once the simulation process ends. Collecting
them is crucial for linking results with reality, for cap-
italising best practices and for final validation.

– Short-term data which are used during the solving
step, such as intermediate results in computation
loops. These data, generated by solving programs, are
important to obtain accurate results, but are usually
erased once computations are finished.

3 Simulation data management

3.1 Definition and challenges

SDM, covered by Product Data Management, is de-
fined [11] as a technology which uses database solutions
to enable users to manage structures of simulation data
across the product lifecycle. It can also be defined, as
Engineering Data Management defined by [4], as a pro-
cess which aims to organise, structure, store and track
information produced by simulation, in order to “create
a coherent knowledge”, from process data and product
data. Workflow management and administration support
may also be added [11–13]. SDM can also be considered
as a part of Simulation Lifecycle Management (SLM) [14].
SLM, belonging to PLM, manages the process while SDM
manages data. SLM covers collaborative product develop-
ment, data traceability, decision-support and simulation
systems integration for process automation.
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Applications of SDM strategy in companies were clas-
sified in three maturity levels, defined by [13]:

– Level 1: “Isolated Islands”. Local manual processes
with low data volume stored in scattered and small
databases.

– Level 2: “Archipelago”. Many linked databases with
general rules and governances.

– Level 3: “centralised/cloud”. Automated processes,
managing a very huge amount of high-value data
stored in centralised database, led by a dedicated In-
formation Technologies department in a collaborative
environment.

Benefits of this third level are numerous: fast access to
data from anywhere, and for each stakeholder, enhanced
decision support, data re-using, automated reporting, im-
proved productivity, centralised and secured database,
support for internal policies, etc. [15] assess trends for
input data management, used for modeling, by a survey
(over 86 companies). Their survey reveals a progressive
automation of simulation process, but a complete au-
tomation of the simulation process is still too difficult for
these companies. Manual interactions with the process
are necessary, and a complete automation of the whole
process is unnecessary.

Main challenges for SDM were identified by [11,13], as:

– collect, store and retrieve growing volume, velocity
and variety of simulation data (Big data problematic);

– manage network;
– improve collaboration and communication;
– ensure data security and integrity;
– integrate all data management system in one.

Thus, SDM aims to shorten the lead time of simulation
process. Since simulation process has acquired a strategic
role in product development process and may produce a
“Data deluge”, SDM must support this flow of data in col-
laborative environment along the product life-cycle [3, 16].
So, SDM must involve an efficient data structuration.

3.2 Data models

As previously mentioned, the simulation process is
linked to a large amount of different data sources, as
input data (assembly, geometry, parameter, hypothesis,
etc.), model data (mesh, solving methods, etc.) and out-
put data (results, representations, reports, etc.). Other
kinds of data were added to data models to support
multi-domain, multi-component and multi-model simula-
tion processes [4,11,17–19], simulation workflow manage-
ment [20] and simulation loops management [5]. In addi-
tion to these multiple data types, SDM has to deal with
different data provenance. Four input data sources were
identified by [15]: corporate business systems, project spe-
cific data, collected data (e.g. measurements) and exter-
nal reference systems (e.g. laws, standards) [15] described
also data properties which should be checked to ensure
data quality (e.g. accuracy, timeliness, etc.). Thus, SDM
requires methods to deal with heterogeneous data from
multiple sources and to ensure good properties.

Data models support data collection, filtration, struc-
turing and control. These functions may enhance data
sharing. Data models may also integrate multiple data
sources as systems or different designers [21]. To deal with
a large variety of data from multiple sources, a solution is
the use of a neutral format [4,13]. Hence, standard models
have been specified.

One of the most well-known standard data-model is
ISO 10303-209. It belongs to the Standard for Exchange
of Product data-model family (STEP). The Application
Protocol 209 (AP209), created in 2001, improves design
analysis and manufacturing productivity of composites
and metallic structures. It provides a data model to share
CAE data during the whole product lifecycle [22]. This
standard involves a neutral file format to avoid interop-
erability problems between different systems and, thus,
to drastically reduce analysis costs. It supports simula-
tion data (models, load cases, results. . . ) and configura-
tion management data (versions) [23]. However, several
lacks have been detected by [24]: all of its capabilities are
not yet implemented in commercial systems (e.g. complex
bonded assemblies support) and representation functions
have to be improved.

A new version of AP209 has been released in 2014,
with the contribution of CAE vendors, aeronautic and
space companies and the LOTAR consortium. The stan-
dard ISO 10303 AP 209 edition 2, entitled “Multidis-
ciplinary analysis and design”, integrates entities from
AP242 (Managed Model Based 3D Engineering) and AP
237 (Fluid dynamics) and has a common core with AP233
(System Engineering) and AP239 (Product Lifecycle Sup-
port). This new version provides a data model able to
manage multidisciplinary design processes, to ensure links
between CAD and CAE models (e.g. by supporting ide-
alised geometries) and involves the integration of SDM
systems.

The National Institute of Standards and Technology
developed the Core Product Model. It provides an open,
independent, generic and expandable product model, able
to collect all product data throughout the product’s life-
cycle [21]. Product is represented as a set of artifacts
(components) described by its function, form and be-
havior [25]. Several extensions were developed, as the
Design Analysis Integration Model, which can provide
tighter integration of spatial and functional aspects of
design [26]. This extension meets the objective of STEP
AP209 edition 2 to support the link between CAD and
CAE systems.

Several industrial projects were launched to improve
SDM implementation during the design process. Sim-
PDM project is a framework giving recommendation
concerning CAD/CAE integration [27]. The proposed
SDM system is based on a data model, in order to
manage the steps for modelling, solving and checking
data, as well as configuration and version metadata. It
also provides synchronisation functionality with other
Data Management Systems, such as PDM system, af-
ter checking operations for data consistency. It is also
able to be linked to CAE systems for every simulation
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steps. Collaborative CAD/CAE Integration project en-
hanced these recommendations by adding multi-domain
and multi-enterprise [28]. CRESCENDO project [29] con-
sisted in the creation of the Behavioral Digital Aircraft. It
proposed integration of multi-disciplinary simulations, a
collaborative environment with full data traceability and
reusability. These methods aim to automate manual time-
consuming activities such as modelling steps. It also sup-
ports multi-domain and multi-software models. Surrogate
modelling methods are also included. These methods are
described in the next section. A common language was
built on STEP AP233 and AP239 to support such a col-
laborative process.

3.3 Data re-use for automation of simulation process

Re-using data and best practices from previous anal-
ysis is a challenge for industry [11,17,30]. It may shorten
simulation processes by taking advantage of accumulated
expertise and avoiding long data retrieval operations, re-
work operations, or other operations with no added value.

As presented in [31], Simulation and Analysis gover-
nance strategy, is designed to increase the process effi-
ciency. It recommends re-using models and best practices.
It also includes standardised work processes, integration
with manufacturing operations, and collaborative engi-
neering across the extended enterprise and over the full
product lifecycle. In support of Simulation and Analysis
governance, a SDM system should capture all data re-
quired for each step of the process. SDM strategy should
also support DoE, optimisation and stochastic computa-
tions [13,31]. Thus, a SDM system prevents designers and
analysts from creating data which already exist.

SDM solutions can be provided by PLM softwares and
CAE softwares. PLM softwares offer general solutions to
manage projects and related data, as workflows, CAD
models, versions, results, etc. CAE softwares may embed
DoE and very specific SDM solutions, as automatic report
generation, link between numerical models and material
databases. Both of them may be used to reuse best prac-
tices but it must be enriched to manage the whole DoE
process with accuracy.

In addition to data models, ontologies can be used
to enrich them. An ontology is a system of fundamental
concepts set up to model, represent and describe a spe-
cific domain in terms of axiomatic definitions and taxo-
nomic structures [16]. Ontologies are used in data models
to specify a common language to efficiently share data
between different stakeholders. An ontology covering re-
quirement engineering, mechanical design and numerical
simulation was defined [32]. This ontology, coupled with
visualisation graph techniques, supports data capitalisa-
tion, data re-use and decision-making by representing
dynamically relationship between different engineering
entities (e.g. link between a specific design and its asso-
ciated simulations). In manufacturing environment, the
ontology ONTO-PDM was proposed [33]. It is a product
ontology based on STEP 10303 and International Elec-
trotechnical Commission standards (for manufacturing),
to ensure interoperability between different stakeholders.

Moreover, it enhances the relevancy, clarity and trace-
ability of information of the product development pro-
cess. OntoSTEP-NC, an ontology based on STEP-NC
(AP238) standard data model was proposed [34]. This
standard is designed to ensure bi-directionality exchanges
between CAD systems, Computer Aided Manufacturing
systems and machines. OntoSTEP-NC enriches this stan-
dard and allows a feedback from manufacturing to design
and production engineering. This feedback contributes to
capitalise and re-use the best practices in Manufacturing
Process Management. This feedback also helps the pro-
grammer for decision support.

A Universal SDM System was defined [35] to face up
to data variety. It enhances data re-use by centralising
data storages in one single system. This system aims to
be a common structuring organisation among the simula-
tion data, available for every application and every stake-
holder. However, its main weakness is that users always
need a customised SDM system. According to [36], one
static database for everything and everyone is unrealis-
tic. Then, they propose an adaptive database, to ensure
a heterogeneous data management from different sources
in a collaborative environment.

A method for decision-support related to the mod-
elling step was developed by [8]. It involves re-using pre-
vious studies by comparing their similarity to the current
study. DoE and a metamodel (detailed further) are used
to classify and compare performance of previous studies
according to their different assumptions. Then, optimal
modelling assumptions are proposed to the designer, re-
garding to quality, cost and time objectives.

3.4 Synthesis

SLM can be defined as a strategy to manage and au-
tomate the simulation process and related data. While a
fully automated process is not necessary, this strategy is
more and more demanded to manage a continuously grow-
ing amount of heterogeneous data with various sources.
Data models and ontologies are used to structure these
information and process. They are developed to support
the entire simulation lifecycle and to ensure interoperabil-
ity between systems and applications. They are essential
for data storage and re-use. They also shorten the simula-
tion process by automating manual and time-consuming
tasks. Capitalised designers’ choices, validated results and
synthesis of analysis may help designers by providing an
efficient decision support. However, DoE are not fully sup-
ported by the SLM strategy. They are not integrated in
data models and ontologies. As shown further, DoE ap-
plications increase the need of re-using best practices.

4 Design of experiments for numerical
simulation

4.1 Basic methods of DoE

Numerical DoE is a set of numerical experiments
defined to assess the numerical model for different
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configuration, specification or solution. This method con-
sists in exploring a design space, to improve product ro-
bustness and quality. It is used for sensitivity analysis,
product optimisation or design exploration. A DoE is de-
fined by a number of factors of different types (qualitative,
discrete or continuous) and their levels.

As a numerical DoE is applied to a numerical model,
each experiment involves an evaluation of the model,
and thus computational cost depends on two parameters.
First, a run of a Finite Element model may require a huge
amount of computational resources to be performed. Sec-
ond, a DoE involving a large number of runs (i.e. experi-
ments) will increase drastically the needed resources. An
efficient DoE should minimise the number of runs, with
a distribution adapted to the objective (i.e. significant
space-covering for design exploration). Thus, an optimal
strategy is to choose the most efficient DoE and to use a
method for reducing the computational cost of each run.

DoE were initially used for physical experiments. Clas-
sic DoE are presented by [30, 37–40]. It includes very
expensive Full Factorial design and Fractional Factorial
design, which is a cheaper version as some interactions
between several parameters are neglected. It includes also
Central composite and Box-Behnken design, limited for 3
or 5 levels, and Doehlert design, involving a more uni-
form distribution of experiments. All of these designs
are based on a pre-selected regression model: they are
model-dependent. But, in simulation process, each ex-
periment is made by a deterministic solver. Thus, these
DoE, which may involve repeated experiments to take
into account experimental uncertainties, are inappropri-
ate. More adapted DoE are used in this context. Latin
Hypercube Sampling and orthogonal arrays are largely
used as it is simple to build and to use. Furthermore,
low-discrepancy-sequences-based-design is based on the
minimisation of the discrepancy measure, i.e. the dif-
ference between a uniform sampling and the sampling
of interest. It includes, amongst others, uniform de-
sign, Halton, Faure or Sobol sequences designs. These
deterministic-sequences-based-designs are different from
low-discrepancy design. Low-discrepancy design is based
on stochastic algorithms minimising the discrepancy and
is slower computed. These DoE used for numerical sim-
ulation are model-independent. Maximal entropy design
maximises the amount of information in the distribu-
tion of experiments. Model-oriented designs [41, 42] can
be used to obtain an optimal design. Several optimal de-
signs exist, depending on the optimised criterion used to
define each assessment: D-optimal, A-optimal, I and M-
optimal (adapted for Kriging metamodel) [41], etc. If the
model is linear in its parameters, these optimal designs are
model-independent, otherwise not. However, the choice of
the criterion is objective-dependent [1] proposed also to
develop criteria for optimal design, as combination of a
criterion to “identify the design region in which system
performance is optimised” and design criteria “on the pre-
diction error of the true output”. Other criteria for this
kind of DoE were presented in [43]. The authors give an
assessment of presented criteria for sensitivity analysis.

The selection of a DoE method for a specific problem
depends on the uniformity of the sampling, and the filling
of design space. Moreover, it is also linked on the objec-
tives and the constraints of DoE. DoE types are numer-
ous, related to different applications and properties (see
Ref. [1] for additional details on DoE properties). Thus,
selection of DoE method may be a very time-consuming
process [44] developed a design comparison chart to help
designers in their choices, but it is non-exhaustive. Thus,
there still exists a need for classification and comparison
of DoE methods to support designers’ decisions. In order
to decrease the computational cost, by reducing the num-
ber of runs, several methods have been developed, such
as adaptive DoE and surrogate modelling. Moreover, the
choice of a specific DoE method will depend on the se-
lected surrogate model.

4.2 Metamodels

Metamodeling, or Surrogate modelling, consists in re-
placing the costly Finite Element model by a function
faster to be evaluated, to approximate a specific response
with a lower computational cost. Surrogate models are
used in many fields and a large amount of works was
found related to this method. Applications for structural
mechanics [45], Computed Fluid dynamics [46, 47], elec-
tromagnetics [48, 49], discrete event simulation for man-
ufacturing processes [50] or forming process [51, 52] can
be mentioned. Furthermore, surrogate models are used to
fulfil Finite Element models objectives faster, as model
approximation, design space exploration, sensitivity anal-
ysis [53] and optimisation [30].

Three steps are required to define a metamodel: (1)
the surrogate model type selection, (2) the training and
(3) the validation.

With the variety of existing metamodels, the selection
of the best one may be difficult. A classification of these
methods has been made by [54]. First, statistical learn-
ing methods include Response Surface Methods [55], and
other polynomial approximations, Kriging [56, 57], Sup-
port Machine Vector and Multivariate Adaptive Regres-
sion Splines method [58]. Then, machine learning meth-
ods cover, amongst others, Artificial Neural Networks
and clustering techniques. Finally, instance-based learn-
ing methods cover Radial Basis Functions method, which
consist of a linear combination of functions approximation
to improve polynomial models. This method can be rep-
resented as an Artificial Neural Network. Fitness inheri-
tance methods and decision trees are also presented [54].
More details on these methods can be found in [1,30,59–
61]. Surrogate models are built on some assumptions as
function continuities, shape and smoothness [59]. If these
assumptions are not valid, (e.g. in non-linear problems),
multiple surrogate models can be used together to deal
with function discontinuities. Different couples of DoE
and metamodel were compared and the strong depen-
dency between both of them is highlighted [1]. Further-
more, they showed a need for a DoE and metamodel
classification to help the user regarding the objectives.

611-page 5



G. Blondet et al.: Mechanics & Industry 16, 611 (2015)

Surrogate model selection is problem dependent and a
universal method does not yet exist [54, 59, 62]. How-
ever, the SUrrogate MOdeling Toolbox platform [63] in-
tegrates mathematical methods to select automatically
the best metamodel. This solution replaces time lost in
metamodel selection and tuning by increasing computa-
tional cost. An “automatic surrogate model type selection
framework” exists using the Evolutionary Model Selec-
tion algorithm [64]. This algorithm dynamically selects
the best surrogate model type and parameters. The same
kind of algorithm is developed in [62]. However, as it is
detailed further, it involves evolutionary algorithms draw-
backs. Thus, as the selection is based on stochastic vari-
ables, the algorithm convergence is not guaranteed.

The training step is managed by assessing the Finite
Element model with a DoE (as efficient as possible, see
Sect. 4.1) to determine surrogate model coefficients. Each
metamodel is used with its fitting method, as, for in-
stance, the least-square methods, which link the model
and results obtained from Finite Element model assess-
ment [40]. The training step strongly depends on the num-
ber of assessments: not enough implies a low accuracy,
but too much may lead to an overfitted model (learning
by heart). This phenomenon means an inability to pre-
dict the behaviour beyond these first assessments. The
analyst time spent to tune metamodels parameters (and
also optimisation algorithms) is important to be took into
account [65]. This time may not be negligible for some of
the considered metamodels, and must be taken into ac-
count with metamodeling time (DoE selection and train-
ing step) to obtain a more accurate computational cost.

The validation is done by using another DoE to mea-
sure its predictive performance. The mostly used method
consists in defining a DoE, using a partition (e.g. 20%)
for the training and using the remaining partition (e.g.
80%) for validation.

Metamodel usefulness for optimisation problems was
also discussed by [65]. They compared several metamodel-
based optimisation and optimisation process without
metamodels. They concluded that metamodeling does
not always improve the optimisation efficiency. Meta-
modelling performance decreases with the complexity of
the approximated function and depends also on allocated
computational budget. However, the functions used dur-
ing this test were perfectly known (analytical). It will not
be the case for a real case study. Thus, the metamodel
choice may be more difficult since its performance could
be unpredictable.

The choice of the right metamodel is strongly linked
to the function to approximate and to the available
computational budget. It also depends on the DoE chosen.
Recommendations about selection of some DoE and meta-
models exists [40], but are not complete. Also, a meta-
model considering multiple parameters can be hard and
long to be tuned. However, some algorithms were devel-
oped to automatically select and tune the metamodel. As
metamodeling is not always the most efficient strategy,
the choice of using or not metamodels is also important.
In this way, this method may be enhanced by re-using

long-term data, such as capitalised best practices, for fast
selection and tuning.

4.3 Adaptive design of experiments

This method can be found in the literature with
several names: Adaptive DoE, metamodelling adaptive-
recursive approach [65], sequential design, Variable Fi-
delity Modelling [66] or active learning [63]. Adaptive
DoE is used to create iteratively a dedicated DoE for
a specific problem, in order to maximise DoE efficiency.
This method may fulfill several objectives as metamodel
fitting, optimisation or design-space exploration. This
method is based on two main steps: (1) searching for new
experiments from an initial DoE and (2) selecting the best
experiment to add to the initial DoE. Definition of best
experiment depends on the chosen infill criterion used for
selection, which is linked to the study objective. Then,
these steps are repeated until a convergence criterion or
a maximum number of experiments is reached.

The main issue concerning the development of dy-
namically adaptive DoE is the choice of an infill crite-
rion [59]. Many developments were made for optimisation
problems. A typical framework for Surrogate Based Op-
timisation is described in [46]. Here, the infill criterion is
chosen to increase intensification, in order to find faster
the global optimum of the objective function. The authors
used a combination of an adaptive updating method and
a real-time updating performed by an evolutionary algo-
rithm, to refine the DoE around optima. This method
aims both to optimise the surrogate model for: (1) fit-
ting well with the objective function and (2) to obtain
the optimum of the objective function. The Surrogate
Based Optimisation framework is detailed and discussed
in [59]. In the same approach, a particular Surrogate
Based Optimisation framework, the Efficient Global Op-
timisation, using Kriging metamodel and Genetic Algo-
rithm is used in [67]. Expected Improvement criterion in-
volves a measure of possible improvement. This criterion
is largely used [68–73]. The Particle Swarm Optimisation
Intelligent Sampling method, which combines a Particle
Swarm Optimisation method, used to add new experi-
ments, and adaptive response surface methods metamodel
are used [52]. An algorithm combining Kriging metamodel
and Particle Swarm Optimisation algorithm for optimi-
sation is also presented by [74]. Another application can
be found in [75], with a very specific metamodel and an
elitist Genetic Algorithm for forming applications. A tax-
onomy was presented in [69] to select the infill criteria
related to the metamodel used, but only for polynomial
metamodels.

These adaptive methods are based on metaheuristics,
in order to search for a new experiment. Metaheuristics
are algorithms used to solve complex optimisation prob-
lems. A recent survey presents these methods [76]. Their
main properties are nature-inspired and based on stochas-
tic components. These methods are largely used to cre-
ate an adaptive DoE algorithm [46, 52, 67, 74, 75]. These
methods were divided into two groups [76]: single-solution

611-page 6



G. Blondet et al.: Mechanics & Industry 16, 611 (2015)

based metaheuristics (e.g. simulated annealing, Variable
Neighborhood Search, Tabu Search, etc.) and population-
based metaheuristics. Population-based methods can be
split up into two other sub-classes: evolutionary computa-
tion methods (e.g. Genetic Algorithm, cultural and coevo-
lutionary methods, etc.) and Swarm intelligence methods
(e.g. Ant colony, Particle Swarm Optimisation, artificial
immune systems, etc.) [76–78]. Another assessment of sev-
eral metaheuristics was made by [79]. As for DoE and sur-
rogate models, selection and tuning are difficult. Methods
were developed, as Adaptive metaheuristics and hyper-
heuristics to select and tune automatically metaheuris-
tics [76].

For metamodel fitting, a simple criterion consists in
selecting the experiment related to the estimation which
maximizes an error measurement between the Finite El-
ement model and the metamodel, such as variance of es-
timation provided by a Kriging metamodel [41, 42]. A
class of infill criteria is related to contour approxima-
tion, which is close to metamodel fitting [68] have listed
several criteria of this class, based on the uncertainty of
each experiment (margin uncertainty for a given trust-
region or confidence intervals [80]). A margin indicator
function can be defined to set a trust-region around the
function (contour) to approximate. The goal is to select
the closest experiment from the function. There exist also
the margin probability function, and the expected feasi-
bility function. A sub-class, called One-step-look-ahead
criteria, includes the Weighted Integrated-Mean-Square-
Error criterion [41]. The Expected Improvement-based
criterion for contour estimation was also developed [81].
Reference [38] developed the adaptive Wootton, Sergent,
Phan-Tan-Luu’s algorithm to build a space-filling design
able to deal with high-dimensional problems (number of
parameters > 20).

To be successful, all of these methods used to
search for and select infill experiments have to do as
much design-space exploration as exploitation (intensi-
fication) [59]. The goal is to give accurate results with-
out missing any optimum or falling into a local optimum.
Each algorithm has a particular manner to achieve this
equilibrium.

4.4 Synthesis

Adaptive DoE methods may involve metamodelling
to reduce the computational cost and metaheuristics to
search for new experiments. Many infill criteria exist to
select the most efficient experiment and to sequentially
add it to the DoE. This section has not covered all of
these criteria, since they are very numerous. Although the
Expected Improvement criterion seems to be the most
used, a clear assessment would be valuable to choose
the most efficient criterion. The efficiency of adaptive
DoE method strongly depends on surrogate model, meta-
heuristics and criteria used. While hyper-heuristics and
adaptive metaheuristics are being developed to shorten
the simulation process, none of these methods are based
on best-practices re-using. It could shorten the process

by supporting decision by already known results, instead
of run new computations. There exists a real need to de-
velop methods able to compare, classify and select the
right methods according to a specific problem. Thus, a
capitalisation of successful combination of these elements
could help designers to shorten especially pre-processing
step of numerical simulation.

5 Discussion

In this paper, two opposite ways to shorten the simu-
lation process are presented. Firstly, the amount of data
and data heterogeneity are constantly increasing with
computers and networks capabilities. Thus, a SDM strat-
egy has to be set up to shorten pre-processing and post-
processing steps, by re-using best-practices. Moreover, it
may lead to an automated process by gathering, stor-
ing, classifying, retrieving and re-using data. Neverthe-
less, some manual actions are still mandatory, at least to
check the process. Secondly, mathematical methods can
be used to shorten the solving step, especially for DoE, as
metamodelling and adaptive DoE. These methods re-used
short-term data (e.g. intermediate results).

A challenge for SDM, and SLM, is to efficiently re-use
long-term data (e.g. best practices) to shorten simulation
process. This involves a specific data structure to classify
data, and a strategy to retrieve the most relevant data.
A lot of works were done to manage the big flow of data.
Recent developments support different formats, versions
and sources to guarantee traceability and fast access to
the highest-quality data available. To structure data and
enhance collaborative simulation process, standard data
models, as STEP AP 209 ed2, were developed. These data
models can manage complex simulation process, involv-
ing multi-domain and multi-software project in a collab-
orative environment. However, management of DoE just
begins to be developed, but not for adaptive DoE and
technics described in this paper. In the context of DoE
applications, several methods were developed to reduce:

– the number of runs, by re-using results from previous
runs from a DoE to adapt it dynamically;

– the computational cost of each run, by creating a sur-
rogate model.

Nonetheless, these methods used to shorten the solving
step need a long time to be selected and tuned. Thus, they
actually need long-term data re-use and expertise, and so,
a SDM strategy capitalising best practices. Furthermore,
methods re-using short term data are being developed to
automatically choose best methods and parameters, as
optimisation methods (Evolutionary Model Selection, Ef-
ficient Global Optimisation) and hyper-heuristics. These
methods may increase the computational cost to shorten
the process. So, there is still a need for adaptive strate-
gies suggestion to take advantages from capitalisation and
-classification of long-term data. Finally, these two ways
converge to a SLM strategy need.

This paper aimed also to show lacks in SDM, as
shown in (Fig. 2). Data management is available for Finite
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Fig. 2. State-of-the-art of SDM applied to DoE and adaptive techniques.

Data models metadata management
Re-use data

Short-term Long-term
Finite Element model X X X X

DoE X
Adaptive DoE X

Element models, as data models (e.g. STEP AP203) ex-
ist to deal with its data and metadata (i.e. version, for-
mat, etc.). However, DoE is not included in these models,
neither for Adaptive DoE and all methods involved, as
surrogate models and optimisation methods. Short-term
data re-use is available for each category (e.g. for itera-
tive computations, model convergence analysis, adaptive
DoE, memory based-metaheuristics, automatic method
selection). Best practices re-use is possible for Finite El-
ement models, since all tools needed exist. But, without
any structure to capitalise data, long-term data re-use,
for DoE and related methods, is almost impossible.

Thus, the development of a specific data model, or
ontology, for adaptive DoE will lead to re-use data en-
hancements. It would help designers to choose the best
fitted set of method to a specific study, based on previous
studies and academic knowledge by avoiding tasks with
no added value, like manual data retrieval and compar-
ison, useless runs and tuning operations. It should also
include metadata management, like version, related con-
figuration. Such improvements will also lead the simu-
lation process to be more automated and optimised for
specific applications.

6 Conclusion

The importance of the simulation process is increasing
in the product design process. As companies may have
to manage product lifecycle in a collaborative context,
the Simulation Lifecycle Management strategy was de-
veloped. With the evolution of computers and networks,
the amount of simulation data is continuously increasing.
Design of experiment is a method involving a production
of a huge amount of data. Thus, the possible contributions
of Simulation Data Management on DoE were analysed.

SDM involves a structuration of simulation data. This
structuration is provided by data models. Although re-
cent data models support multi-domain complex simu-
lations integrated with multiple softwares, DoE are not
yet clearly implemented. Moreover, Adaptive DoE and
related technics are not supported too. DoE may involve
a very high computational cost if a large number of exper-
iments on a Finite Element model are demanded. Many
different DoE exist and it implies some difficulties to se-
lect the best DoE. To reduce the computational cost,
many methods were developed, as Adaptive DoE and sur-
rogate modelling. But, these methods may increase the
modelling step time. It may be very difficult to select and
tune each technic used to obtain an adaptive DoE.

A SDM strategy should be set to capitalise best prac-
tices related to DoE. It may avoid useless operations by

using a centralised database. Such a strategy may enhance
decision support for designers.
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[66] Z.-H. Han, S. Görtz, R. Zimmermann, Improving
variable-fidelity surrogate modeling via gradient-
enhanced kriging and a generalized hybrid bridge
function, Aerospace Sci. Technol. 25 (2013) 177–189

[67] I. Couckuyt, F. De Turck, T. Dhaene, D. Gorissen,
Automatic surrogate model type selection during the op-
timization of expensive black-box problems, in: S. Jain,
R. R. Creasey, J. Himmelspach, K. P. White, and M.
Fu (Ed.) Proceedings of Winter Simulation Conference,
IEEE, Phoenix, Arizona, 2011, pp. 4274–4284
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