W. Nowacki, Theory of micropolar elasticity, 1972.

A. C. Eringen, Microcontinuum field theories: I. Foundations and solids, 2012.

E. Cosserat and F. Cosserat, Théorie des corps déformables, 1909.

R. Gauthier and W. E. Jahsman, A quest for micropolar elastic constants, J Appl Mech, vol.42, issue.2, pp.369-74, 1975.

J. Yang and R. S. Lakes, Transient study of couple stress effects in compact bone: torsion, J Biomech Eng, vol.103, issue.4, pp.275-284, 1981.

J. Yang and R. S. Lakes, Experimental study of micropolar and couple stress elasticity in compact bone in bending, J Biomech, vol.15, issue.2, pp.90040-90049, 1982.

R. S. Lakes, S. Nakamura, J. C. Behiri, and W. Bonfield, Fracture mechanics of bone with short cracks, J Biomech, vol.23, issue.10, p.90311, 1990.

W. B. Anderson and R. S. Lakes, Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam, J Mater Sci, vol.29, issue.24, pp.6413-6422, 1994.

Z. Rueger and R. S. Lakes, Cosserat elasticity of negative Poisson's ratio foam: experiment, Smart Mater Struct, vol.25, issue.5, p.54004, 2016.

R. S. Lakes, Size effects and micromechanics of a porous solid, J Mater Sci, vol.18, pp.2572-80, 1983.

R. S. Lakes, Experimental microelasticity of two porous solids, Int J Solids Struct, vol.22, issue.1, pp.90103-90107, 1986.

C. P. Chen and R. S. Lakes, Holographic study of conventional and negative Poisson's ratio metallic foams: elasticity, yield and micro-deformation, J Mater Sci, vol.26, issue.20, pp.5397-402, 1991.

Z. Ba?ant and M. Christensen, Analogy between micropolar continuum and grid frameworks under initial stress, Int J Solids Struct, vol.8, issue.3, pp.90093-90098, 1972.

X. L. Wang and W. J. Stronge, Micropolar theory for two-dimensional stresses in elastic honeycomb, Proc Roy Soc A, Math, Phys Eng Sci, vol.455, pp.2091-116, 1986.

R. J. Mora, A. M. Waas, and A. Arbor, Evaluation of the Micropolar elasticity constants for honeycombs, Acta Mech, vol.192, pp.1-16, 2007.

D. Besdo, Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks, Arch Appl Mech, vol.80, issue.1, pp.25-45, 2010.

A. J. Beveridge, M. A. Wheel, and D. H. Nash, The micropolar elastic behaviour of model macroscopically heterogeneous materials, Int J Solids Struct, vol.50, issue.1, pp.246-55, 2013.

M. Mcgregor and M. A. Wheel, On the coupling number and characteristic length of micropolar media of differing topology, Proc Roy Soc A: Math, vol.470, 2014.

M. A. Wheel, J. C. Frame, and P. E. Riches, Is smaller always stiffer? On size effects in supposedly generalised continua, Int J Solids Struct, pp.67-68, 2015.

S. Nakamura, R. Benedict, and R. Lakes, Finite element method for orthotropic micropolar elasticity, Int J Eng Sci, vol.22, issue.3, pp.90013-90015, 1984.

E. Providas and M. A. Kattis, Finite element method in plane Cosserat elasticity, Comput Struct, vol.80, issue.02, pp.262-268, 2002.

L. Li and S. Xie, Finite element method for linear micropolar elasticity and numerical study of some scale effects phenomena in MEMS, Int J Mech Sci, vol.46, issue.11, pp.1571-87, 2004.

H. Zhang, H. Wang, and G. Liu, Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies, Acta Mech Sin, vol.21, issue.4, pp.388-94, 2005.

V. V. Korepanov, V. P. Matveenko, and I. N. Shardakov, Finite element analysis of twoand three-dimensional static problems in the asymmetric theory of elasticity as a basis for the design of experiments, Acta Mech, vol.223, issue.8, pp.1739-50, 2012.

M. A. Wheel, A control volume-based finite element method for plane micropolar elasticity, Int J Numer Methods Eng, vol.75, issue.8, pp.992-1006, 2008.

E. L. Wilson and . Ibrahimbegovic´aibrahimbegovic´ibrahimbegovic´a, Use of incompatible displacement modes for the calculation of element stiffnesses or stresses, Finite Elem Anal Des, vol.7, issue.3, pp.229-270, 1990.

A. Ibrahimbegovic and E. L. Wilson, A modified method of incompatible modes, Commun Appl Numer Methods, vol.7, pp.187-94, 1991.

E. L. Wilson, The static condensation algorithm, Int J Numer Methods Eng, vol.8, issue.1, pp.198-203, 1974.

. Ibrahimbegovic´aibrahimbegovic´ibrahimbegovic´a, Nonlinear solid mechanics: theoretical formulations and finite element solution methods, 2009.

E. Wilson, R. Taylor, W. Doherty, and J. Ghaboussi, Incompatible displacement models. In: Numerical and computer methods in structural mechanics, pp.43-57, 1973.

O. C. Zienkiewicz and R. L. Taylor, The finite element method volume 1: the basis, 2000.

G. Strang, The mathematical foundations of the finite element method with applications to partial differential equations, pp.689-710, 1972.

N. Benkemon, M. Hautefeuille, J. Colliat, and A. Ibrahimbegovic, Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities, Int J Numer Methods Eng, vol.82, pp.1671-88, 2010.

A. Ibrahimbegovic and S. Melnyk, Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method, Comput Mech, vol.40, issue.1, pp.149-55, 2007.

I. Ko?ar, T. Rukavina, and . Ibrahimbegovic´aibrahimbegovic´ibrahimbegovic´a, Method of incompatible modesoverview and application, Gradevinar, vol.70, pp.19-29, 2018.

F. Huang, Y. , Y. , and Y. , Bending analysis of micropolar elastic beam using a 3-D finite element method, Int J Eng Sci, vol.38, pp.41-46, 2000.

L. E. Malvern, Introduction to the mechanics of a continious medium, 1969.

R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity, Arch Ration Mech Anal, vol.11, issue.1, pp.415-463, 1962.

H. Jeffreys, On isotropic tensors. Math Proc Cambridge Philos Soc, vol.73, issue.1, pp.173-179, 1973.

R. S. Lakes, Physical meaning of elastic constants in cosserat, void, and microstretch elasticity, Mech Mater Struct, vol.11, issue.3, pp.1-13, 2016.

R. A. Toupin, Theories of elasticity with couple-stress, Arch Ration Mech Anal, vol.17, issue.2, pp.85-112, 1964.
URL : https://hal.archives-ouvertes.fr/hal-00853382

R. Taylor, FEAP-Finite Element Analysis Program, 2014.

S. Timoshenko and J. Goodier, Theory of elasticity, 1951.

S. Bauer, M. Schäfer, P. Grammenoudis, and C. Tsakmakis, Three-dimensional finite elements for large deformation micropolar elasticity, Comput Methods Appl Mech Eng, vol.199, pp.2643-54, 2010.

F. Huang and K. Liang, Torsional analysis of micropolar elasticity using the finite element method, Int J Eng Sci, vol.32, issue.2, pp.347-58, 1994.

G. N. Watson, A treatise on the theory of Bessel functions, 1995.