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A three-dimensional micropolar elasticity is cast in terms of the rigorous variational formulation. The dis-
crete approximation is based on hexahedral finite element using the conventional Lagrange interpolation
and enhanced with incompatible modes. The proposed element convergence is checked by performing
patch tests which are derived specifically for micropolar finite elements. The element enhanced perfor-
mance is also demonstrated by modelling two boundary value problems with analytical solutions, both
exhibiting the size-effect. The analyzed problems involve a cylindrical plate bending and pure torsion of
circular cylinders, which were previously used in the experimental determination of the micropolar
material parameters. The numerical results are compared against the analytical solution, and additionally
against existing experiments on a polymeric foam for the pure torsion problem. The enhancement due to
incompatible modes provides the needed improvement of the element performance in the bending test
without negative effects in the pure-torsion test where incompatible modes are not needed. It is con-
cluded that the proposed element is highly suitable for the numerical validation of the experimental
procedure.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Most of the materials are heterogeneous in general, with a
specific microstructure that can be represented at a scale particular
for the material itself. When this scale is very small, these materi-
als are considered as homogeneous. For such materials (e.g. met-
als), any microstructure detail is averaged leading to a
homogeneous continuum theory. Commonly used is Cauchy’s or
classical theory that is able to faithfully describe the material
behavior. However, when the microstructure scale becomes signif-
icantly large compared to the overall scale, assuming the homoge-
nized material, representation based on the classical theory fails.
Many newly developed engineering materials increasingly used
in engineering, such as fiber-reinforced composites, honeycomb
or cellular structured materials or modern polymers belong to
the last category. Due to their heterogeneity, such materials exhibit
a so-called size-effect phenomenon, which manifests in increased
stiffness of smaller specimens made of the same material, which
is not recognized in the classical continuum theory. Moreover, in
regions of high stress gradients, such as the neighborhoods of
holes, notches and cracks, the stress concentration factor as pre-
dicted by the classical theory is higher than that observed experi-
mentally. Even more discrepancies between the classical
continuum theory and the experimental testing may be observed
in dynamics, thermal analysis and fluid mechanics [1]. Due to such
anomalies, an alternative continuum model to accurately describe
the behavior of such materials is highly needed.

One such model, further discussed in this paper, is the so-called
oriented, or Cosserat or micropolar continuum. Namely, different
approaches are developed to study the multi-scale nature of the
material deformation, by taking into account additional effects
consistent with the observed behavior of such heterogeneous
materials. One such development accounting for microstructure
effects within the limits of continuum mechanics is introducing
higher order derivatives or the field gradients, such as the so-
called couple-stress or higher-order strain-gradient theories. An
alternative approach is introducing additional degrees of freedom,
such as micro-stretch or micro-morphic continuum theory [2], to
name only a few. Among such theories introducing additional
degrees of freedom, we further elaborate upon so-calledmicropolar
continuum theory, usually attributed to the Cosserat brothers [3].
They enriched the Cauchy’s theory by adding to the displacement
field an independent microrotation field, representing the local
rotation of a material point. The detailed exposition of the historical
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development of such theory can be found in [2], who named it the
micropolar theory of elasticity. The main goal of this work is to
contribute to the further development of such a more general the-
ory, by performing a detailed analysis of some important micropo-
lar boundary value problems.

The ability to include local rotation extends the modeling capa-
bilities, and allows us to take into account the intrinsic material
length-scale. However, the additional capabilities come at a cost.
In order to describe such a material, even when assumed to be lin-
ear elastic, homogeneous and isotropic, it requires six independent
material constants, in contrast to only two such constants for the
classical continuum. Moreover, the experimental determination
of these materials parameters is much more complex, since the
experimental verification and their corresponding conceptualisa-
tion and interpretation is far from straightforward. The work in
[4] is the first attempt to determine all six micropolar material con-
stants by developing experimental and analytical solutions to the
boundary value problem, but without particular success in the
experimental part since opposite trends between experiments
and analytical predictions have been observed. However, by subse-
quent refinement of Gauthier’s and Jahsman’s proposed procedure
[4], Lakes and his co-workers give the most significant contribution
to devising experimental procedures to determine the micropolar
material parameters in their analysis of bones [5–7], polymeric
foams [8–11] and metal foams [12], based upon measuring the
size-effect. As an alternative to the experiments performed by
Lakes and his co-workers, the micropolar parameter determination
can be based on various homogenization procedures which
replaces a larger-scale composite structure, or assembly of parti-
cles, by an effective micropolar continuum model. By assuming
that a homogeneous Cosserat material is the best approximation
of a heterogeneous Cauchy material, the six material parameters
of the micropolar continuum may be determined more easily
[13–16]. Several recent works of Wheel et al. [17–19] determined
the material parameters of highly heterogeneous materials on a
larger-scale by comparing the results of experiments and the finite
element simulation.

However, the experimental verification of a micropolar material
model still remains a great challenge, since a unified procedure to
determine the material parameters of micropolar continuum is still
lacking. We argue here that the key to understanding and develop-
ing more precise experimental procedures lies in the comprehen-
sive numerical analysis of the solution of the corresponding
boundary value problem. Such a comprehensive numerical analy-
sis should broaden the range of problems which may be solved
and open up new possibilities for the numerical simulation of
experimental set-ups. Therefore, the development of the finite ele-
ments of high quality is important for the future progress and
understanding of the micropolar continuum theory.

An early attempt to model the micropolar constitutive beha-
viour using the finite-element method is presented in [20] with
more authors working on numerical solutions of the micropolar
continuum using different finite elements in the linear analysis
(e.g. [21–24]). Furthermore, in addition to the standard finite-
element procedures, non-standard finite-element methods, such
as the control-volume-based finite-element method [25,17] have
been used to model micropolar finite elements.

The objective of this paper is to present one high quality ele-
ment for 3D simulations. More precisely, we propose a high-
performance three-dimensional micropolar hexahedral finite ele-
ment, using conventional Lagrange interpolation enhanced with
the so-called incompatible modes [26,27]. The proposed element
performance is tested against the analytical boundary value prob-
lems derived by Gauthier and Jahsman [4] and experiments per-
formed by Lakes and co-workers [5–12]. In the framework of the
classical elasticity the incompatible displacement modes are first
added to the isoparametric elements (e.g. see [26–29]). The main
benefit of incompatible modes in the classical continuum frame-
work is to avoid shear locking, as shown already in early 1970s
[30]. In bending of isoparametric 4-node 2D or 8-node 3D finite
elements, the absence of quadratic polynomials in the displace-
ment field approximation predicts the shear strain in pure bending
incorrectly. This is called the shear-locking effect [31]. Even with
higher-order elements producing better results in pure-bending
tests, the maximum possible reduction of computational cost is
always a worthwhile goal. The proposed solution is to enrich the
displacement interpolation of the corresponding element with
quadratic displacement interpolation modes, requiring internal
element degrees of freedom and leading to incompatibility of the
displacement field. When first introduced into 2D quadrilateral
isoparametric finite elements [30], the method was received with
skepticism in the finite element method research community,
since the displacement compatibility between finite elements
was at that time considered to be absolutely mandatory [32]. The
use of the incompatible-mode method for low-order elements in
both two- and three-dimensional problems is nowadays common,
leading to the most impressive performance not only in bending,
but also elsewhere, e.g. when modelling cracking [33,29] and
two-phase materials [34]. A detailed exposition of 1D, 2D and 3D
finite elements with incompatible modes in classical elasticity is
presented in [35].

In the framework of micropolar elasticity, the idea of enhancing
the displacement field of standard finite element is already recog-
nised in [36], where authors analyzed straight and curved beam
problems subject to shear loading. Only 2D problems have been
analyzed in [36] and the numerical results have not always con-
verged to the reference analytical solution. In the present work,
the high performance of the presented finite element is demon-
strated by successful analysis of both 2D and 3D problems. More-
over, our ability to deliver the solution that can converge to
reference values was confirmed for both bending and torsion.

2. Micropolar continuum model formulation

The fundamental relations of linear micropolar elasticity
applied to a homogeneous and isotropic material are outlined in
this section. We consider a continuous body B, of volume V and
boundary surface S in the deformed state under the influence of
external actions consisting of distributed body force pv and body
moment mv and distributed surface force ps and surface moment
ms. By generalising the Cauchy stress principle (see [37]), at an
internal material point X, with the position vector x, with respect
to a chosen spatial frame of reference at time t, we prove the exis-
tence of a second-order Cauchy stress tensor rðx; tÞ and an addi-
tional second-order couple-stress tensor lðx; tÞ .

2.1. Equilibrium equations

By analysing the static equilibrium of a differential volume dV
in the deformed state, we can obtain the force equilibrium
equation

rrþ pv ¼ 0; ð1Þ
where r is the differential operator nabla (e.g. see [29]), and the
moment equilibrium equation

lrþ aþmv ¼ 0: ð2Þ
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In (2) above, a is twice the axial vector of the skew-symmetric part
of the stress tensor ra ¼ 1

2 ðr� rTÞ, i.e.

a ¼ 2axialðraÞ ¼ r32 � r23 �r31 þ r13 r21 � r12f gT; 2ra ¼ ba;
ð3Þ

where a superimposed hat on a vector field ð�Þ denotes a

skew-symmetric cross-product operator such that dð � Þv ¼ ð�Þ � v
for any 3D vector v. Equilibrium equations written using the Ein-
stein summation convention on repeated indices are thus equal to

rij;j þ pvi ¼ 0; lij;j � eijkrjk þmvi ¼ 0; ð4Þ
where the first index denotes the direction of the stress or axis of
the couple stress component with respect to the coordinate base
and the second index denotes the direction of the surface normal.
The comma denotes differentiation with respect to spatial coordi-
nate and eijk denotes the permutation tensor (Levi-Civita tensor).

By analyzing the differential surface dS subject to surface load-
ing, the following natural boundary conditions are obtained:

rn ¼ ps () rijnj ¼ psi; ln ¼ ms () lijnj ¼ msi;

ð5Þ
where n is the outward unit normal to the surface.

2.2. Kinematic equations

In relation to the classical continuum theory, in the micropolar
continuum theory we have a displacement field uðxÞ and an addi-
tional microrotation field uðxÞ, representing the local rotation of
the point X which is completely independent of the displacement
field. Consequently, the microrotation u is also independent from
the rotation part of the displacement gradient, i.e. from the macro-
rotationx of the classical continuum theory (see [37]). Themicrop-
olar strain tensor � is defined as

� ¼ grad u� bu ¼ u�r� bu () �ij ¼ ui;j þ eijkuk; ð6Þ
The normal strains in the micropolar continuum theory

�11; �22; �33 are equal to those in the classical continuum theory,
which means that the microrotation u does not contribute to
stretching or shortening of the generic fibre. The influence of the
microrotation is present only in shear strains �ij; i; j ¼ 1;2;3; i – j,
which are defined to be equal to the difference between the change
of inclination of a generic fibre during deformation and the micro-
rotationu. The independent rotation fieldu also gives rise to a cor-
responding micropolar curvature tensor

j ¼ grad u ¼ u�r () jij ¼ ui;j; ð7Þ
where the diagonal terms represent torsional strains. We note that
the so-called couple-stress theory (see [38]) is a special case of the
micropolar continuum theory where the microrotation vector u is
equal to the macrorotation vector x. Thus, in the couple-stress the-
ory, the curvature tensor involves second derivatives of the displace-
ment field. When these derivatives are neglected, the curvature
tensor also vanishes and the couple-stress theory reduces to the
classical continuum theory.

2.3. Constitutive equations

In a homogeneous isotropic linear elastic micropolar contin-
uum, the second-order stress and strain tensors r and � are related
via a constant isotropic fourth-order constitutive tensor T such that
in the component form we have [39]

rij ¼ Tijpq�pq;
Tijpq ¼ kdijdpq þ lðdipdjq þ diqdjpÞ þ mðdipdjq � diqdjpÞ; ð8Þ
where k and l are the Lamé constants, m is another material con-
stant and dij is the Kronecker symbol. The couple-stress tensor l
is related to the curvature tensor j in a completely analogous
way, i.e.

rij ¼ k�ppdij þ ðlþ mÞ�ij þ ðl� mÞ�ji;
lij ¼ ajppdij þ ðbþ cÞjij þ ðb� cÞjji; ð9Þ
where a;b; c are three additional material parameters. The follow-
ing restrictions on the material parameters should hold in order
to enforce positive definiteness of the constitutive tensors:
3kþ 2l > 0;l > 0; m > 0;3aþ 2b > 0;b > 0 and c > 0. Note that
all the stress and strain tensors are in general non-symmetric.

These material parameters are related to a set of engineering
(measurable) parameters, via [40]:

k ¼ 2nG
1� 2n

; l ¼ G; m ¼ GN2

1� N2 ;

a ¼ 2Gl2t ð1� wÞ
w

; b ¼ Gl2t ; c ¼ G 4l2b � l2t
� �

:

ð10Þ

Parameter G represents the shear modulus, n is Poisson’s ratio, lt
the characteristic length for torsion and lb the characteristic length
for bending. Characteristic length variables quantify the influence
of the microstructure on the macro-behavior of the material and
have the dimension of length. Their values are of an order of mag-
nitude of material particle-, grain- or cell-size, depending on the
material microstructure. Parameter N represents the coupling
number that is a dimensionless measure of the degree of coupling
between the microrotation vector u and the macrorotation vector
x, with the restricted value N 2 h0;1i. Consequently, m quantifies
the degree of coupling between macro- and microrotation effects.
When N tends to the limit N ¼ 1, parameter m tends to infinity,
which is the case of the so-called couple-stress elasticity [41].
Finally, parameter w 2 0; 32

� �
represents the dimensionless polar

ratio of rotation sensitivity (a quantity which relates the torsional
strains in a way analogous to that in which Poisson’s ratio relates
the normal strains).

3. Weak form of the boundary value problem in 3D micropolar
elasticity

For constructing a numerical solution procedure of the bound-
ary value problem, we abandon its strong (or differential) form in
favor of the corresponding weak (or integral) form. The
displacement-type weak formulation is obtained by means of the
principle of virtual work stating that the difference between virtual
works of external and internal forces should vanish, i.e.

Gðu;u;u;uÞ ¼ Gintðu;u;u;uÞ � Gextðu;uÞ ¼ 0: ð11Þ
The virtual work of internal and external forces can be

expressed as

Gintðu;u;u;uÞ ¼
Z
V
ð� : rþ j : lÞdV ;

Gextðu;uÞ ¼
Z
V
ðu � pv þu �mvÞdV þ

Z
S
ðu � ps þu �msÞdS;

ð12Þ

where u and u are the virtual displacements and virtual microrota-
tion vectors and � and j are the corresponding tensors of virtual
micropolar strains and curvatures, respectively. In order to obtain
the numerical solution of the problem, the kinematic fields have
to be approximated using chosen interpolations. In general, the real
and virtual kinematic fields interpolation are chosen the same lead-

ing to uh ¼ Nud
e
;uh ¼ Nud

e
;uh ¼ Nude;uh ¼ Nude. More precisely,

Nu and Nu represent the matrices of interpolation functions for

the displacement and microrotation field, and de and de represent
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the real and virtual vector of element nodal degrees of freedom,
respectively. Superscript h denotes the finite-dimensional approxi-
mation and e the element level. After introducing the chosen inter-
polation of the kinematic fields and their virtual counterparts into
(11) we obtain the interpolated element internal and external vir-
tual works as

Gint;eðde
;deÞ ¼ deTKede

; Gext;eðdeÞ ¼ deTfe; ð13Þ
where Ke and fe represent the element stiffness matrix and external
force vector. The global internal and external virtual works are
obtained by assembly over nelem as the total number of elements
in the mesh, with A as the finite-element assembly operator [29] as

Gintðd;dÞ ¼ A
nelem

e¼1
Gint;eðde

;deÞ � dTKd;

GextðdÞ ¼ A
nelem

e¼1
Gext;eðdeÞ � dTf; ð14Þ

with d and d being the global vectors of real and virtual displace-

ments, K ¼ A
nelem

e¼1
Ke and f ¼ A

nelem

e¼1
fe the global stiffness matrix and

external force vector. For arbitrary values of virtual parameters,

8d, the approximated principle of virtual work leads to the basic
algebraic equations of the finite element method Kd ¼ f.

4. Lagrangian elements with incompatible modes interpolation

In this work two different interpolations are tested. Both inter-
polations are applied on an isoparametric trilinear hexahedral finite
element with eight nodes and six degrees of freedom per node
(three displacements ux;uy;uz and three microrotations ux;uy;uz)
with the numbering convention as shown in Fig. 1. The first type
is the conventional trilinear Lagrange interpolation defined in the
natural coordinate system, chosen for both displacement and
microrotation fields, and the corresponding finite element is called
Hex8. The second interpolation consists of the Lagrange interpola-
tions for displacement and microrotation fields, but with the dis-
placement interpolation additionally enriched by incompatible
modes. The derived finite element is referred to as Hex8IM.

For the element Hex8IM the real and virtual displacement field
interpolations are defined as

uh ¼
X8
i¼1

Niðn;g; fÞue
i þ

X3
i¼1

Miðn;g; fÞae
i ¼ Nud

e þ Nenha
e;

uh ¼
X8
i¼1

Niðn;g; fÞue
i þ

X3
i¼1

Miðn;g; fÞae
i ¼ Nude þ Nenha

e;

ð15Þ

where
Fig. 1. Hexahedral finite ele
Niðn;g; fÞ ¼ 1
8
ð1þ nanÞð1þ gagÞð1þ fafÞ;

na ¼ �1;ga ¼ �1; fa ¼ �1; i ¼ 1; . . . ;8; ð16Þ
represent the Lagrange trilinear isoparametric shape functions [31],
ue
i ¼ huxi uyi uziiT is the vector of element nodal displacements at

node i, and ae
i ¼ ha1i a2i a3iiT is the vector of the element parameters

for the incompatible shape functions chosen as:
M1 ¼ 1� n2;M2 ¼ 1� g2, and M3 ¼ 1� f2. From (15) we can see
that the displacement field interpolation consists of the conven-
tional (compatible) part Nud

e and the enhanced (incompatible) part
Nenhae. In the compatible part, defining the complete displacement
field interpolation of the Hex8 element, the vector of element nodal
degrees of freedom is defined as de ¼ hde

1 d
e
2 � � �de

8i, where

de
i ¼ huxi uyi uzi uxi uyi uziiT; i being the node number, and the matrix

of Lagrange interpolation functions is defined as Nu ¼ ½N1 0 � � �N8 0�,
with explicit form of the sub-matrix of Lagrange interpolation func-
tions as

Ni ¼
Ni 0 0
0 Ni 0
0 0 Ni

264
375; ð17Þ

and 0 as a 3� 3 zero-matrix. Similarly, in the enhanced part with

ae ¼ hae
1 a

e
2 a

e
3iT as the element vector of additional degrees of free-

dom, the matrix of incompatible shape functions is written as

Nenh ¼
M1 0 0 M2 0 0 M3 0 0
0 M1 0 0 M2 0 0 M3 0
0 0 M1 0 0 M2 0 0 M3

264
375: ð18Þ

The virtual fields ue
i ;a

e
i ;d

e and ae are defined analogously.
The real and virtual microrotation fields for both Hex8 and

Hex8IM are interpolated by using only the standard Lagrange
interpolation:

uh ¼
X8
i¼1

Niðn;g; fÞue
i ¼ Nud

e
; uh ¼

X8
i¼1

Niðn;g; fÞue
i ¼ Nude;

ð19Þ
where ue

i ¼ huxi uyi uziiT is the vector of nodal microrotations at
node i and Nu ¼ ½0 N1 . . .0 N8�.

It is important to note that the reference configuration of the
isoparametric element is still defined only with the compatible
shape functions, i.e. the mapping between the natural coordinate
system and the global coordinate system is defined as

xh ¼P8
i¼1Niðn;g; fÞxe

i where xe
i ¼ hxi yi ziiT represents the vector of

element nodal coordinates at node i.
ment with eight nodes.
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By introducing the interpolation into the kinematic equations
we obtain the vector of interpolated micropolar strain field

�h ¼ h�11 �12 �13 �21 �22 �23 �31 �32 �33iT

¼
X8
i¼1

Buid
e
i þ

X8
i¼1

Qui
de
i þ

X3
i¼1

Gia
e
i ; ð20Þ

and the vector of interpolated curvature field

jh ¼ hj11 j12 j13 j21 j22 j23 j31 j32 j33iT ¼
X8
i¼1

Bui
de
i ; ð21Þ

where matrices Bui ¼ ½Bi 0� and Bui
¼ ½0 Bi� represent the matrices

of global derivatives of the compatible shape functions, matrix
Qui ¼ ½0 Q i� is the matrix of compatible shape functions defining
the presence of microrotations in the definition of micropolar
strains, matrix Gi is the matrix of global derivatives of incompatible
shape functions and 0 is a 9� 3 zero matrix, where the sub-
matrices are defined as

Bi¼

@Ni
@x 0 0
@Ni
@y 0 0
@Ni
@z 0 0

0 @Ni
@x 0

0 @Ni
@y 0

0 @Ni
@z 0

0 0 @Ni
@x

0 0 @Ni
@y

0 0 @Ni
@z

2666666666666666666664

3777777777777777777775

; Q i¼

0 0 0
0 0 Ni

0 �Ni 0
0 0 �Ni

0 0 0
Ni 0 0
0 Ni 0

�Ni 0 0
0 0 0

266666666666666664

377777777777777775
; Gi¼

@Mi
@x 0 0
@Mi
@y 0 0
@Mi
@z 0 0

0 @Mi
@x 0

0 @Mi
@y 0

0 @Mi
@z 0

0 0 @Mi
@x

0 0 @Mi
@y

0 0 @Mi
@z

2666666666666666666664

3777777777777777777775

:

ð22Þ
The global derivatives of compatible and incompatible shape

functions are given by the usual chain rule expressions using the
Jacobian matrix J ¼ @ðx;y;zÞ

@ðn;g;fÞ [31], i.e.

@Ni
@x
@Ni
@y

@Ni
@z

8>><>>:
9>>=>>; ¼

@n
@x

@g
@x

@f
@x

@n
@y

@g
@y

@f
@y

@n
@z

@g
@z

@f
@z

2664
3775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
J�1

@Ni
@n

@Ni
@g
@Ni
@f

8>><>>:
9>>=>>;;

@Mi
@x
@Mi
@y

@Mi
@z

8>><>>:
9>>=>>; ¼

@n
@x

@g
@x

@f
@x

@n
@y

@g
@y

@f
@y

@n
@z

@g
@z

@f
@z

2664
3775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
J�1

@Mi
@n

@Mi
@g
@Mi
@f

8>><>>:
9>>=>>;:

ð23Þ
Before proceeding to the derivation of the element stiffness

matrix, we have to take into account the finite element conver-
gence criteria which states that any enhancement beyond the stan-
dard definition of the strain field has to vanish for a state of
constant strain. In other words, any enhanced strain field must sat-
isfy the stress orthogonality condition [29]. When enhancing the
conventional interpolation functions, the condition which has to
be satisfied when performing a patch test of order n, is that all
the enhancement of order ðnþ 1Þ has to vanish. By imposing the
requirement that the strain energy associated with the incompat-
ible modes under the state of constant stress has to vanish we
obtain the following equation [26]:

1
2
rT
Z
Ve
GidVae ¼ 0 )

Z
Ve
GidV ¼ 0; ð24Þ

where Ve is the element volume and r ¼ hr11 r12 r13 r21 r22 r23

r31 r32 r33iT is the element stress vector. This canbe satisfiedby add-
ing a constant correctionmatrix Gc i to thematrix Gi, i.e. ~Gi ¼ Gi þ Gc i

such that
Z
Ve

~GidV ¼
Z
Ve
ðGc i þ GiÞdV ¼ 0; ð25Þ

which, by the fact that Gc i is constant, leads to the following mod-
ification of matrix Gi [26]:

~Gi ¼ Gi � 1
Ve

Z
Ve
GidV : ð26Þ

By introducing the interpolation of the kinematic fields into the
weak formulation we obtain a system of two equations defined at
the element level, i.e.

deT aeT
D E Ke FeT

Fe He

" #
de

ae

( ) !
¼ fe

0

( )
; ð27Þ

where the obtained matrices are equal to

Ke ¼
Z
Ve

BT
u þ Q T

u

� �
C1 Bu þ Qu

� �
þ BT

uC2Bu

� �
dV ; ð28Þ

Fe ¼
Z
Ve

~GTC1 Bu þ Qu

� �
dV ; ð29Þ

He ¼
Z
Ve

~GTC1
~GdV ; ð30Þ

where Bu ¼ ½Bu1 Bu2 . . .Bu8 �T, Qu ¼ ½Qu1
Qu2

. . .Qu8
�, Bu ¼ ½Bu1

Bu2
. . .Bu8

�T, ~G ¼ ½~G1
~G2

~G3�
T
, and C1 and C2 are 9� 9 constitutive

matrices defined as

C1¼

ðkþ2lÞ 0 0 0 k 0 0 0 k

0 ðlþmÞ 0 ðl�mÞ 0 0 0 0 0
0 0 ðlþmÞ 0 0 0 ðl�mÞ 0 0
0 ðl�mÞ 0 ðlþmÞ 0 0 0 0 0
k 0 0 0 ðkþ2lÞ 0 0 0 k

0 0 0 0 0 ðlþmÞ 0 ðl�mÞ 0
0 0 ðl�mÞ 0 0 0 ðlþmÞ 0 0
0 0 0 0 0 ðl�mÞ 0 ðlþmÞ 0
k 0 0 0 k 0 0 0 ðkþ2lÞ

266666666666666664

377777777777777775
;

ð31Þ

with a corresponding result for C2 in which a;b; c replace k;l; m. In
order to eliminate the presence of unknown incompatible-mode
parameters ae, we have to perform the so-called static condensation
[28]. The static condensation is accomplished by first expressing

from the second equation ae ¼ �He�1
Fede and then introducing it

into the first equation. Consequently, we obtain the reduced form
of the element stiffness matrix

eKe ¼ Ke � FeTHe�1
Fe: ð32Þ

From this point on, we can proceed towards the standard finite
element assembly accounting for all element contributions, i.e.

Kd ¼ f ) d; K ¼ A
nelem

e¼1
~Ke; f ¼ A

nelem

e¼1
fe: ð33Þ

Having the nodal displacement values obtained, we can recover
the corresponding element displacements de through the connec-
tivity matrix d ¼ Lede which allows to obtain the incompatible

mode parameters ae ¼ �He�1
Fede and recover the micropolar

strains �h in (20). Stresses rh in Gauss points are then obtained
from the constitutive equations. The curvatures jh are obtained
in a conventional manner, directly from the element displace-
ments, as shown in Eq. (21) and again, using the constitutive equa-
tion, we obtain the couple-stresses in Gauss points lh.



Fig. 3. Finite element mesh for the displacement patch test.
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5. Numerical examples

In this section the performance of the conventional eight-node
hexahedral micropolar finite element Hex8 and the enhanced ele-
ment with incompatible modes Hex8IM is tested in several numer-
ical examples. Both finite elements are coded within the Finite
Element Analysis Program (FEAP) [42]. In the first example (Sec-
tion 5.1), the finite-element verification is performed through the
so-called patch test [31] on a regular mesh, which represents a
standard method for testing the finite element convergence. In
the second example (Section 5.2) a set of displacement patch tests
for a micropolar continuum proposed in [21] are generalised to 3D
and the elements are tested on an irregular mesh. The finite ele-
ments are also tested on two boundary value problems that are
important for the experimental determination of the micropolar
material parameters, showing the size-effect phenomenon. In Sec-
tion 5.3, the cylindrical bending of a cantilever beam (also referred
to as the higher-order patch test) is analyzed and compared to the
analytical solution [4]. Finally, in the last numerical example, pre-
sented in Section 5.4, an axisymmetric boundary-value problem
consisting of a solid cylinder subject to torsion in two different
configurations (two sets of material parameters) is analyzed. In
the second configuration, the obtained numerical results are com-
pared against the experimental results given in [10].
5.1. Force patch test

We perform the force patch test [31] on a cantilever beam sub-
ject to pure tension, as shown in Fig. 2, and check if for an arbitrary
number of finite elements in the mesh the exact solution for the
state of constant stress is returned. The geometry of the cantilever
beam is chosen as L ¼ 5 m, h ¼ 2 m, b ¼ 1 m. The free-end of the
cantilever beam is subjected to constant axial distributed loading
py ¼ 10 N=m2, leading to a constant stress field. The constant dis-
tributed surface loading is applied through corresponding concen-
trated nodal forces obtained by integration, which, for a single-
element mesh gives F ¼ 1

4 pybh, as shown in Fig. 2. At the left-
hand end of the cantilever all the displacements in the longitudinal
direction are fixed, i.e. uyðx;0; zÞ ¼ 0, while uzðx;0;0Þ ¼ 0, and
uxð0;0;0Þ ¼ 0 for x 2 ½0; b�; z 2 ½0;h�. The patch test is performed
on two regular meshes by equally increasing the number of uni-
form elements in the x; y and z direction for the chosen material
parameters l ¼ 1000 N/mm2, k ¼ 1000 N/mm2, m ¼ 500 N/mm2,
a ¼ 20 N, b ¼ 20 N and c ¼ 20 N, where the boundary conditions
and external loading are correspondingly defined.

It is observed that, even without the matrix modification
defined in (26), for a regular mesh the micropolar trilinear hexahe-
dral element with incompatible modes reproduces the analytical
results to the highest computer accuracy, which ensures that the
element will converge to the exact solution when refining the
mesh.
Fig. 2. Cantilever beam subject to constant distributed axial load.
5.2. Displacement patch tests

According to Providas and Kattis [21] the patch test for microp-
olar finite elements should consist of a set of three separate tests. In
this work, the tests given in [21] for 2D are generalized to 3D and
performed on a cuboid domain with length L ¼ 0:24, height
h ¼ 0:12, width b ¼ 0:06 and the internal nodes with the following
co-ordinates: 1 ¼ ð0:04;0:04;0:02Þ;2 ¼ ð0:04;0:18;0:03Þ; 3 ¼
ð0:02;0:18;0:03Þ;4 ¼ ð0:02;0:04;0:02Þ;5 ¼ ð0:04;0:08;0:08Þ; 6 ¼
ð0:04;0:16;0:08Þ; 7 ¼ ð0:02;0:16;0:08Þ and 8 ¼ ð0:02;0:08;0:08Þ.
The domain is discretized with 7 arbitrarily distorted hexahedral
finite-elements as shown in Fig. 3. It is important to note that the
generalization of Providas and Kattis’s tests to 3D is not unique
and, in this work one possible generalization of it is presented.
The material parameters used are the same as defined in the force
patch test.

The patch tests are performed by imposing the displacements
and microrotations on the external nodes, while the volume load-
ing (if any) is imposed in the interior of the domain. The element
passes a patch test if the internal nodes are capable of reproducing
the analytical solution imposed by the boundary conditions.

The first test is the standard patch test of the finite elements in
the classical continuum theory, whereby imposing linearly varying
displacement and constant microrotation fields via appropriate
boundary conditions without any volume and surface loading we
obtain the state of constant symmetric stress and strain. The kine-
matic fields are defined as follows:

ux ¼ 10�3ðxþ 0:5yþ zÞ; uy ¼ 10�3ðxþ yþ 0:5zÞ;
uz ¼ 10�3ð0:5xþ yþ zÞ; ux ¼ uy ¼ uz ¼ 0:25 � 10�3;

ð34Þ

leading to the following theoretical solution:

rxx¼ryy¼rzz¼5:0; rxy¼ryx¼ryz¼rzy¼rxz¼rzx¼1:5;

�xx¼�yy¼�zz¼10�3; �xy¼�yx¼�yz¼�zy¼�xz¼�zx¼0:75 �10�3;

ð35Þ
with all the couple-stress and curvature components equal to zero.

The second test describes the state of constant non-symmetric
shear stresses and strains, for which a constant body moment is
needed in order to preserve equilibrium. The kinematic fields and
body moments are defined as follows:

ux ¼ 10�3ðxþ 0:5yþ zÞ; uy ¼ 10�3ðxþ yþ 0:5zÞ;
uz ¼ 10�3ð0:5xþ yþ zÞ; ux ¼ uy ¼ uz ¼ 0:75 � 10�3;

mvx ¼ mvy ¼ mvz ¼ 1:0;

ð36Þ

giving the following theoretical solution

rxx ¼ ryy ¼ rzz ¼ 5:0; rxz ¼ ryx ¼ rzy ¼ 1:0;

rzx ¼ rxy ¼ ryz ¼ 2:0; �xx ¼ �yy ¼ �zz ¼ 10�3;

�xz ¼ �yx ¼ �zy ¼ 0:25 � 10�3; �zx ¼ �xy ¼ �yz ¼ 1:25 � 10�3;

ð37Þ



Table 1
Results for Patch test 3 [21] using the Hex8IM element.

ux � 10�4 uy � 10�4 uz � 10�4 ux � 10�4 rxx lxx lxy

0.604 0.699 0.698 2.102 5.013 0.019 �0.039
Exact 0.600 0.700 0.700 2.100 5.000 0.020 �0.040
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with all the couple-stress and curvature components again equal to
zero. The third test describes the state of constant curvature,
whereby imposing linearly varying displacement, microrotation
and body-moment fields as well as a constant body-force field we
obtain linearly varying stresses and constant couple-stresses. The
input is defined as:

ux¼10�3ðxþ0:5yþzÞ; uy¼10�3ðxþyþ0:5zÞ;
uz¼10�3ð0:5xþyþzÞ; ux¼uy¼uz¼10�3ð0:25þðx�y�zÞÞ;
pvx¼0; pvy¼2; pvz¼�2; mvx¼mvy¼mvz¼2ðx�y�zÞ:

ð38Þ

giving the following theoretical solution

rxx¼ryy¼rzz¼5:0; rxz¼ryx¼rzy¼1:5�ðx�y�zÞ;
rzx¼rxy¼ryz¼1:5þðx�y�zÞ; �xx¼�yy¼�zz¼10�3;

�xz¼�yx¼�zy¼10�3ð0:75�ðx�y�zÞÞ;
�zx¼�xy¼�yz¼10�3ð0:75þðx�y�zÞÞ;
lxx¼0:02; lyy¼lzz¼�0:06; lxy¼lxz¼lyz¼lzy¼�0:04;

lyx¼lzx¼0:04; jxx¼jyx¼jzx¼10�3;

jyy¼jzz¼jxy¼jxz¼jyz¼jzy¼�10�3:

ð39Þ

Providas and Kattis consider the third patch test to be a neces-
sary condition for finite-element convergence even though in this
test the shear stresses and strains are linearly varying. However,
according to [31], satisfaction of a patch test in which stress distri-
bution is not constant is not considered to be necessary for conver-
gence and, for this reason, we treat this test as a higher-order patch
test, analogous to a pure bending test.

All three tests are first performed using the conventional Hex8
finite element and the obtained results correspond to the analytical
solution to within the computer accuracy. When analyzing the first
two tests using the enhanced finite element Hex8IM it is observed
that, for a distorted mesh analyzed here, the matrix modification as
presented in (26) is necessary for the element to pass the patch
tests. When applying the matrix modification, both tests are satis-
fied to within the computer accuracy. However, the third test is not
satisfied either way and the obtained results are presented in
Table 1. Even though the third patch test is not satisfied, we con-
sider that Hex8IM satisfies the convergence criteria since, as
argued above, the finite element is able to reproduce exactly any
state of constant stress.
Fig. 4. Bending of a plate.
5.3. Pure bending – higher-order patch test

In an attempt to experimentally validate the micropolar mate-
rial parameters, Gauthier and Jahsman [4] provided the analytical
solution for stresses, displacements and microrotations of a
micropolar elastic plate subject to cylindrical bending. Timoshenko
and Goodier [43] showed that in three-dimensional classical elas-
ticity, a plate subject to edge moments Mz acting per unit length
will in general be deformed into an anticlastic shape. When trans-
verse load is applied, the bending deformation occurs not only in
the longitudinal direction, but also in the transverse direction,
due to the Poisson’s effect. This is defined as an anticlastic
deformation.
In the work of Gauthier and Jahsman [4] the plate bending
problem of length L, height h and thickness b, shown in Fig. 4, is
analysed by assuming lateral boundary conditions which prevent
anticlastic distortion, turning it into cylindrical plane-strain bend-
ing problem. In other words, the only admissible displacements are
uxðx; yÞ and uyðx; yÞ and the only admissible microrotation is
uzðx; yÞ. Furthermore, Gauthier and Jahsman imposed the require-
ment that the stresses and couple stresses are functions of y only,
leading to a constant stress distribution in the x direction, and a
linearly varying distribution in the y direction. Thus, the non-
vanishing stresses are rxx;rzz;lzx and lxz.

In the classical elasticity the only way to simulate a concen-
trated moment M is by applying a linearly varying normal surface
traction psx ¼ 2y

h p0x. In the micropolar elasticity it is possible to
model a concentrated moment by using such a traction and/or a
constant surface moment msz. Gauthier and Jahsman have shown
that in the micropolar elasticity, in order to obtain a state of pure
bending, the external momentM has to be applied using both trac-

tions acting on the same side, i.e. M ¼ b
R h

2

�h
2
ðypsx þmszÞdy which are

defined as

psx ¼ rxx ¼ � 1
1þ ð1� nÞd

M
Wz

2y
h
;

msz ¼ lzx ¼
ð1� nÞd

1þ ð1� nÞd
M
A
;

ð40Þ

where n is Poisson’s coefficient and d ¼ 24ðlb=hÞ2. Therefore, a
unique relationship between the external loads is given as

msz

p0x
¼ 1

h
ðkþ 2lÞðbþ cÞ

2lðkþ lÞ � h
6
ð1� nÞd: ð41Þ

Obviously, for a material with vanishing characteristic length
(lb ! 0) the state of pure bending may not be achieved if the sur-
face moment loading is present, while for a general micropolar
material such a state is only possible when msz and p0x are given
in the proportion defined above resulting in M ¼ p0xWz þmszA

with A ¼ bh and Wz ¼ bh2
=6 (this is sometimes misinterpreted in

the literature where the external loading is applied using only
one of the surface tractions, e.g. [44]). The non-vanishing displace-
ment and rotation fields are

uz ¼
1

1þ ð1� nÞd
Mx
bD

; ux ¼ � 1
1þ ð1� nÞd

Mxy
bD

; ð42Þ
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uy ¼ 1
2

1
1þ ð1� nÞd

M
bD

x2 þ n
1� n

y2
� �

; ð43Þ
where D ¼ Eh3

12ð1�n2Þ represents the flexural rigidity. With respect to

the classical-elasticity solution, all results are obviously multiplied
by the factor 1

1þð1�nÞd leading to an increased bending stiffness,

depending on the value of the characteristic length lb. In other
words, compared to the classical solution where the bending resis-
tance is proportional to the height of the specimen squared, the
bending stiffness increases when the value of the material charac-
teristic length lb is increased. The size-effect becomes significant
when the material characteristic length gets close to the beam’s
height, i.e. lb ! h. On the other hand, as lb ! 0, the result tends to
the classical-elasticity solution.

In order to test the accuracy of the hexahedral element
enhanced with incompatible modes, a cantilever beam of length
L ¼ 10 m, height h ¼ 2 m and thickness b ¼ 1 m, shown in Fig. 5
submitted to cylindrical bending is analyzed. The problem is solved

while varying the value of the characteristic length lb ¼
ffiffiffiffiffiffi
bþc
G

q
,

lb 2 ½0:0;1:8� to capture the size-effect. The resultant bending
moment M ¼ 20 N m is applied through a linearly varying surface
loading and a constant surface moment loading in the defined pro-
portion, as defined in Table 2. The distributed loading is applied
through corresponding concentrated nodal forces and moments
obtained by integration as defined by (11)–(13).

The engineering material parameters are taken to be equal to
E ¼ 1500N=m2 and n ¼ 0:25 which give the Lamé constants
l ¼ 600 N/m2 and k ¼ 600 N/m2. The parameter m is chosen to be
equal to m ¼ 200 N/m2, corresponding to N ¼ 0:5, but in this exam-
ple it can have an arbitrary value, since the problem does not
induce any non-symmetry. The remaining engineering parameters
are chosen as w ¼ 0 and lt ¼ 0:1, but, since they do not affect the
solution, they can also have arbitrary values. Along the left-hand
edge of the specimen all the horizontal displacements and
microrotations are restrained, i.e. uxð0; y; zÞ ¼ uxð0; y; zÞ ¼
Table 2
External loading depending on the value of lb .

lb bþ c p0 msz

0 0.0 30.000 000 000 000 000 0.000 000 000 000 000
0.1 24.0 28.708 133 971 291 860 0.430 622 009 569 378
0.3 216.0 21.352 313 167 259 780 2.882 562 277 580 070
0.6 864.0 11.450 381 679 389 320 6.183 206 106 870 228
1.2 3 456.0 4.010 695 187 165 778 8.663 101 604 278 070
1.8 7 776.0 1.925 545 571 245 185 9.358 151 476 251 610

Fig. 5. Cantilever beam su
uyð0; y; zÞ ¼ uzð0; y; zÞ ¼ 0, for y 2 ½0;h� and z 2 ½0; b�. The vertical
displacement at the left-hand edge is restrained only at the can-
tilever axis, i.e. uyð0; h2 ; zÞ ¼ 0 for z 2 ½0; b�. Furthermore, the cylin-
drical bending of the specimen is accomplished by additionally
restraining the displacements in the z direction along the whole
cantilever, i.e. uzðx; y; zÞ ¼ 0 for x 2 ½0; L�; y 2 ½0;h� and z 2 ½0; b�.

The problem is solved using a mesh of two hexahedral elements
as shown in Fig. 5. The results for the vertical displacement and
microrotation uy and uz at node P and the stress rxx at the Gauss
point with coordinates GP ¼ ð7:88675;0:211325;0:788675Þ
obtained by Hex8 and Hex8IM are compared to the analytical solu-
tion and shown in Table 3 and Fig. 6.

From the obtained results we can see that Hex8IM reproduces
the analytical solution to within the computer accuracy, while
the conventional element with Lagrange interpolation Hex8 shows
very poor results, especially for smaller micropolar effects. The
improvement due to the incompatible modes is highly significant.
Even with a very coarse mesh, the analytical solution of this
higher-order patch test is precisely reproduced.

5.4. Micropolar solid cylinder under torsional load

An axisymmetric solid micropolar cylinder subject to pure tor-
sion shown in Fig. 7 is analyzed in this example. Gauthier and Jahs-
man derived the analytical solution for a cylindrical specimen of
height c and cross-section radius a in the cylindrical coordinate
system (r; h; z) subject to torsional load [4]. The stresses and couple
stresses are axisymmetric, and independent of z. Furthermore, all
non-vanishing variables are independent of the angle h. By further
imposing a traction-free surface for r ¼ a, prescribing the appropri-
ate resultant torque T on end surfaces z ¼ 0 and z ¼ c and taking
into account the compatibility conditions, the analytical solution
for stresses, displacements and microrotations are obtained.

The first comprehensive numerical study of the problem is pre-
sented in [45], where linear beam finite elements are tested for a
range of micropolar material parameters and the obtained results
are compared to the analytical solution. Furthermore, in [44]
three-dimensional non-linear finite elements are developed and
their performance is tested by modeling this linear-elastic prob-
lem. A good agreement between the numerical and analytical
results is shown in both references. However, as in the pure-
bending case from Section 5.3, Gauthier and Jahsman have shown
that in the micropolar theory the state of axisymmetric torsion of a
circular cylinder can be achieved only by applying both a normal
surface traction psh and a surface moment traction msz. In other
words, to correctly model the problem in 3D, the external torque
T should be applied as
bject to pure bending.



Fig. 6. Cantilever beam subject to pure bending – results for Hex8 and Hex8IM.

Table 3
Results obtained using two hexahedral elements with eight nodes (Hex8 and Hex8IM), 2� 2� 2 integration points, A = Analytical, N = Numerical.

Element lb bþ c A N A N A N
uy uy uz uz rxx;GP rxx;GP

Hex8 0.0 0.0 0.94063 0.06910 0.18750 0.01260 23.6603 1.9684
Hex8IM 0.94063 0.18750 23.6603

Hex8 0.1 24.0 0.90012 0.06892 0.17943 0.01269 22.6414 1.9503
Hex8IM 0.90012 0.17943 22.6414

Hex8 0.3 216.0 0.66948 0.06740 0.13345 0.01296 21.3523 1.8345
Hex8IM 0.66948 0.13345 21.3523

Hex8 0.6 864.0 0.35902 0.06203 0.07157 0.01261 11.4504 1.5997
Hex8IM 0.35902 0.07157 11.4504

Hex8 1.2 3456.0 0.12575 0.04624 0.02507 0.00977 3.1631 1.1436
Hex8IM 0.12575 0.02507 3.1631

Hex8 1.8 7776.0 0.06037 0.03234 0.01204 0.00691 1.5186 0.7904
Hex8IM 0.06037 0.01204 1.5186

S. Grbčić et al. / Computers and Structures 205 (2018) 1–14 9
Z
A
ðrpsh þmszÞdA ¼ T; ð44Þ

where A ¼ r2p is the cylinder cross-section area, r is the variable in
the radial direction, psh is the tangential surface loading and msz is
the moment surface loading, as presented in [4]. The Neumann
boundary condition is then 2p

R a
0 ðr2rhz þ rlzzÞdr ¼ T where a repre-

sents the cross-section radius and rhz and lzz represent the stress
and couple-stress components, respectively, with the first index
denoting the direction and the second index denoting the surface
normal. According to the analytical solution, both rhz and lzz are
described by the modified Bessel functions of the first kind InðrÞ
[46] depending on r and multiplied by constants of integration C1

and C9, as follows:

rhz ¼ psh ¼ lC1r þ 2mC9I1ðprÞ;
lzz ¼ msz ¼ apC9I0ðprÞ þ 2bC1;

ð45Þ
where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m

aþ 2b

s
;

C9 ¼ T
2pa2

la2

4b
þ 1:5

� 	
aþ 2bð ÞpI0ðpaÞ �

la2

4b
þ 2

� 	
2b
a
I1ðpaÞ


 ��1

and C1 ¼ 2C9
aþ2b
2b pI0ðpaÞ � 1

a I1ðpaÞ
� �

; I0 and I1 being the modified

Bessel functions of the first kind. In other words, the distribution
of the external loading is directly dependent on material parame-
ters. The remaining non-vanishing variables are rzh;lrr;lhh;uh;ur

and uz, where the displacement and rotation fields are defined as

uh ¼ C1rz; ur ¼ �C1r
2

þ C9I1ðprÞ; uz ¼ C1z; ð46Þ

uh being linear in r and z and uz linear in z as in the classical elas-
ticity. Since uz vanishes, no warping of surfaces is predicted.



Fig. 7. Solid cylinder in torsion.
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In order to relate the classical and micropolar torsional prob-
lem, Gauthier and Jahsman introduce a parameter X which defines
the ratio of the micropolar torsional rigidity to the classical tor-
sional rigidity J ¼ Gpa4

2 . The ratio X is given as a function of engi-
neering micropolar material parameters as:

X ¼ 1þ 6
a2

l2t
1� 4

3wv
1� wv ; where v ¼ I1ðpaÞ

paI0ðpaÞ
and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2wN2

l2t ð1� N2Þ

vuut :

ð47Þ
Fig. 8. Distribution of th
It can be seen that for the limiting case lt ! 0 the micropolar
rigidity approaches the classical-elasticity value, since the ratio
X ! 1. On the other hand, for the limiting case w ! 0, the ratio
of micropolar rigidity approaches its maximum value of

X ¼ 1þ 6 lt
a

� 
2
. In general, as the characteristic length approaches

the specimen radius, the micropolar rigidity increases and it can
be as many as seven times bigger than the classical rigidity.

In the first part of this analysis the problem is solved using both
Hex8 and Hex8IM elements and the finite elements are tested by
comparing the numerical results against the analytical solution.
The radius of the cylinder is taken as a ¼ 0:2 mm, its height is
c ¼ 1 mm, and it is subjected to a resultant torque T ¼ 1 Nmm.
The chosen material parameters are l ¼ 10;500 N/mm2,
k ¼ 157;500 N/mm2, m ¼ 3500 N/mm2, a ¼ 0 N, b ¼ 105 N and
c ¼ �105 N, which corresponds to the following engineering mate-
rial parameters: E ¼ 30843:8 N/mm2, n ¼ 0:46875;N ¼ 0:5; lb ¼ 0
mm, lt ¼ 0:1 mm, w ¼ 1:0. Since a ¼ 0, the first term in (45)2 van-
ishes, i.e. msz becomes constant and we obtain the external loading
as shown in Fig. 8.

The surface traction is in general a non-linear function, as shown
in Fig. 8a. By extracting an initial part of that diagram (the detail in
Fig. 8a), we can see that as r gets smaller, the shape of psh

approaches a linear function, as blown up in Fig. 8b. We can thus
say that psh is nearly linear for r 2 ½0; a� and the resultant
torque T is modelled as a linearly varying surface loading psh

where pshð0; h; cÞ ¼ 0 N/mm2, pshðr; h; cÞ ¼ 43:93046972 N/mm2,
h 2 ½0;2p�, along with a constant distributed moment surface load-
ingmsz ¼ 3:636829403 N mm/mm2 shown in Fig. 8c. Along the bot-
tom side of the cylinder (z ¼ 0) all the displacements and
microrotation uz are restrained. The problem is solved for two dif-
ferent mesh densities, with 24 and 144 elements, as shown in
Fig. 9a and b, respectively.

The results obtained by Hex8 and Hex8IM for microrotation uz

along the cylinder axis z for r ¼ a, and microrotation ur and dis-
e external loading.



Fig. 9. Finite element mesh for the axisymmetric problem
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placement uh at the upper edge (z ¼ c) along r are compared
against the analytical solution, as shown in Figs. 10–12.

We can see that both the Lagrange element Hex8 and the
enhanced element Hex8IM follow the analytical solution, and the
numerical results are in good agreement with the analytical solu-
tion even for a coarse mesh. The numerical analysis correctly pre-
dicts the linear distribution of the axial microrotation component
uz and the displacement component uh. The results for the radial
microrotation component ur correctly follow the analytical trend.
Because of the presence of the characteristic length for torsion, the
rigidity of this micropolar cylinder is 2.19 times larger than
expected classically. However, the enhancement due to incompat-
ible modes does not improve the convergence rate.
Fig. 10. Distribution of uz along z – results for He

Fig. 11. Distribution of ur along r – results for He
As in the cylindrical bending example from Section 5.3, it is
important to note that when the resultant moment T is modeled
as a constant distributed moment surface loading T ¼ RA mszdA, or
a linearly varying surface loading T ¼ RA rpshdA only, an axisymmet-
ric torsion state is not obtained. Consequently, such a problem
does not converge to the analytical solution given in [4] but to
another different solution. Such a problem is analyzed in [44].

In the second part of this numerical example the results of the
numerical analysis are compared with the experiments performed
on a micropolar material. The first successful attempt to experi-
mentally validate all six micropolar material parameters is con-
ducted by Lakes [10] who has studied experimentally the size-
effect phenomenon, which is analytically predicted to occur in tor-
x8 and Hex8IM for different mesh densities.

x8 and Hex8IM for different mesh densities.



Fig. 12. Distribution of uh along r for z ¼ c – results for Hex8 and Hex8IM for different mesh densities.
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sion and bending [4]. His study consists of a set of quasi-static tor-
sion and bending tests performed on circular cylinder specimens
and dynamic tests performed on rectangular bars made of low-
density polymeric foam. A characteristic dimension of the speci-
mens is taken to be small enough for the size effect to be observ-
able, approaching the value of the material characteristic length
(diameters 13 mm, 20 mm, 28 mm, 35 mm and 40 mm with the
length-to-diameter ratio c=d ¼ 5). The end-point torsional rotation
h is measured for a given torque value and the resulting torsional

rigidity is computed from J ¼ Tc
h . The results of J

d2
against d2

obtained in this way in [10] are reproduced as dots in Fig. 13. Ana-
lytically, on the other hand, the micropolar torsional rigidity fol-
lows from (46)3 as

J ¼ T
C1

¼ pa2
la2
2b þ 3

� �
a
2 þ b
� 


paI0ðpaÞ � la2
2b þ 4

� �
bI1ðpaÞ

1þ a
2b

� �
paI0ðpaÞ � I1ðpaÞ

; ð48Þ

with a ¼ d
2 and p ¼ 2

ffiffiffiffiffiffiffiffi
m

aþ2b

q
, i.e. it is a function of the micropolar

material parameters l; m;a;b and the cross-section radius a. Lakes
has determined these material parameters [10] by drawing the
best-fit curve to the experimental results, plotted using a solid line
in Fig. 13. The micropolar engineering parameters G; lt;N, and w can
then be obtained from Eq. (10). Lakes refers to this approach as the
method of size effects which makes use of the analytical solution [4]
to describe the dependence of rigidity upon size. For the case of the
Fig. 13. Analytical, experimental and numerical represent
polymeric-foam specimens, the experimental data are fitted well by
G ¼ 0:6 N/mm2, w ¼ 1:5; lt ¼ 3:8 mm and N ¼ 0:3. The remaining
engineering parameters are obtained from the tension and bending
test and are equal to n ¼ 0:07 and lb ¼ 5 mm. The corresponding
continuum material parameters are l ¼ 0:6 N/mm2,
k ¼ 0:0976744 N/mm2, m ¼ 0:0593407 N/mm2, a ¼ �5:776 N,
b ¼ 8:664 N and c ¼ 51:336 N. Let us note that here the restriction
on positive definiteness of the strain energy is not strictly satisfied
since 3aþ 2b ¼ 0. The dashed line in Fig. 13 represents the theoret-

ical solution in the classical-elasticity theory, J
d2
¼ 1

32pGd
2.

In our numerical model proper external loading should be
applied as argued earlier. For the micropolar parameters given
and a unit torque moment T ¼ 1 N mm, the distributed surface
loading is represented by a quasi-linearly varying surface loading
psh and, since w– 0, a non-constant distributed surface moment
loading msz. For the specimen with d ¼ 13 mm, this is shown in
Fig. 14.

By analyzing the definition of the resultant torque T from Eq.
(44), we can see from Fig. 14 that for the specimen with diameter
d ¼ 13 mm the contribution of the distributed surface load msz in
the resultant unit torque moment is 25:15%while the contribution
of psh is 74:85%. Furthermore, the contribution of the constant part
of the surface moment loading, having the value of
msz ¼ 0:001420949939 N mm/mm2 is 18:86% while the contribu-
tion of the non-linear part of the surface moment loading is
6:28%, all computed using the Wolfram Mathematica package.
ation of a size-effect behaviour of a polymeric foam.



Fig. 14. Distribution of the external loading for the specimen with d ¼ 13 mm.
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Thus, the applied moment loading is simplified to a sum of the con-
stant part of the moment surface loading equal to
msz ¼ 0:001420949939 N mm/mm2 and a radially linear distribu-
tion obtaining the value of 0:001094166286 N mm/mm2 for r ¼ 0
and 0:0001634 N mm/mm2 for r ¼ a. This distribution is shown
in Fig. 14c, represented by the straight line such that the areas
under the analytical result (curved line) and the approximated
result (straight line) are the same. Finally, the surface loading is
applied as approximately linearly varying to obtain the value
psh ¼ 0:001745546194 N/mm2 for r ¼ a. The external loading for
the remaining specimens is applied analogously, with the corre-
sponding values obtained from (45). For the remaining specimens,
the contribution of the distributed surface load msz in the resultant
unit torque moment is decreasing by increasing the specimen
diameter.

The problem is solved using Hex8IM elements for a fine mesh of
1536 elements shown in Fig. 9c), and the obtained numerical
results for uh at point Pða;0; cÞ for all specimens are introduced into
the definition of the rigidity J ¼ Tac

uh
and plotted as diamonds in

Fig. 13. Even with the applied external loading simplified as
described, very good agreement with the experiments conducted
in [10] is achieved. Finally, in this example it is observed that,
according to the experiments shown in Fig. 13, the rigidity of the
specimen with d ¼ 13 mm is approximately 60% higher, while
the rigidity of the specimen with d ¼ 20 mm is approximately
16:5% higher than predicted by the classical-elasticity theory,
which is now also numerically proven.
6. Conclusion

In the framework of the micropolar continuum theory, the per-
formance of a 1st order hexahedral finite element enhanced with
incompatible modes is analyzed. The element is tested through
four numerical examples and compared to the conventional hexa-
hedral element interpolated using standard Lagrange interpola-
tion. The motivation for the choice of the numerical examples is
found in the available analytical solutions for various boundary
value problems, which are significant for the experimental verifica-
tion of the micropolar material parameters. After assuring conver-
gence of the enhanced finite element by passing the patch test for
constant stresses, a cylindrical bending test is performed, where it
is shown that the enhancement due to incompatible modes is sig-
nificant. The resulting element is able to correctly reproduce the
analytical solution, while the conventional element gives poor
results. Finally, pure torsion tests on circular cylinders of different
geometry are performed and the numerical analysis is put into the
context of the experimental analysis of a polymeric foam. It is
shown that the finite element correctly describes the size-effect
phenomenon predicted analytically and observed experimentally.
An excellent agreement between theory, experiments and the
numerical analysis is achieved. However, it is observed that the
enhancement due to incompatible modes does not contribute to
a higher convergence rate in the pure torsion tests, compared to
the conventional finite element. The reason is simple, since the
incompatible modes are not needed for pure torsion (contrary to
the pure bending test), given corresponding displacement linear
variation.

It can be concluded that Hex8IM highly reduces the computa-
tional cost in the cylindrical bending problem and correctly pre-
dicts the size-effect phenomenon in bending and torsion. Owing
to that, the use of the presented element as a part of the numerical
validation of the experimental procedure can be considered to be
highly efficient.
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