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Abstract

Prediction of failure mechanisms in concrete is a fairly complex task due to heterogeneous concrete microstructure, localization
process triggered by cracks, multiple crack interactions during their growth and coalescence, and different dissipative mechanisms
in a fracture process zone prior to localized failure and in a localization zone during the failure. None of the currently used
phenomenological models can represent the full set of 3D failure modes. This work presents an attempt to solve this with the
3D meso-scale model based on discrete lattice approach. In particular we show that we can capture such complexities at the
meso-scale, which is able to represent microcracks in fracture process zone along with the localized failure represented in terms
of embedded strong discontinuity and accompanied with softening constitutive law. The model can also successfully simulate
salient features of concrete response, such as order of magnitude of reduction in strength in uniaxial tension versus compression,
strength increase in biaxial loading or hydrostatic tension. Moreover, macro-scale representation of failure surfaces obtained with
presented model for different loading programs confirms the need for failure concrete criterion of multi-surface kind. Part I of this
work presents the proposed meso-scale based on extensive number of numerical simulations with multiple realizations of different
concrete specimens, along as the optimal deterministic fit for several common concrete failure models. The ultimate interest of the
work is to provide detailed data set for different failure modes which can be used for identification of probability distribution of
material parameters for different criteria. Such task is carried in Part II of this work.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The key assumption explored in this work pertains to the role of material heterogeneity in a study of the mechanical
behavior and failure modes in concrete. When a concrete specimen under extreme loading condition enters in the stage
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where localized cracks and displacement discontinuities appear, the most appropriate model changes from continuous
into discrete one. Crack propagation and final crack patterns in concrete are mostly based on accumulated microcracks
of various kinds of initial flaws, defects in aggregate structures, voids or pores inside concrete caused during
fabrication. These processes of accumulation of microcracks lead to a complete set of 3D failure mechanisms, usually
governed by multiple crack interactions, growth and coalescence producing the brittle type failure characteristic for
concrete. In order to provide a reliable predictive model for failure of such heterogeneous materials, we build the
model at meso-scale. The approach we focus upon in this paper relies on spatial beam models [1], as a class of
discrete lattice models [2]. For each random distribution realization of aggregate geometry is built using Delaunay
triangulation. Such approach has an advantage of representing the multi-phase structure of concrete, namely cement
paste and aggregates, and can provide the localized failure mechanisms with respect to heterogeneities. Here, the
Delaunay edges in triangulation can be considered as lattice elements representing cohesive links between the Voronoi
cells, each filled-in with a single phase of heterogeneous material (Fig. 1(a)). Lattice elements are simulated with 3D
Timoshenko beams which allow to represent the complete set of 3D failure modes. The Voronoi cells can guarantee the
exact representation of linear elastic isotropic response, considering the concrete statistically as an isotropic material.
The geometrical properties of the beams can be extracted from the common area between the two neighboring Voronoi
cells (Fig. 1(b)).

Another advantage of the chosen discrete model is the ability to account all failure modes, I, II and III. The only
remaining difficulty in the failure analysis is to provide mesh-independent representation of the post-peak softening
behavior [3]. The main idea in large number of lattice meso-scale models is that lattice elements progressively fail
(leading to softening behavior in failed elements) which eventually results in total macroscopic failure. However, there
is still an ongoing problem of how to represent correctly the post peak softening behavior, which is normally dependent
on the mesh. This pertains to released fracture energy (i.e. area below the softening curve) which is not unique for
different mesh sizes. Avoiding this fact can lead not only to wrong global fracture energy and wrong post peak
response, but it can also underestimate the global fracture limits. Many lattice element models use sequentially linear
algorithms to avoid negative stiffness terms and deals with mesh-dependence by performing additional regularization
procedures with scaling initial strength and ultimate strain on the local element level to obtain correct fracture energy
on a global level [4]. Some other models use incremental (sometimes also iterative) schemes in time, but the problem
of fracture energy depending on mesh still remains, like in standard finite elements. One of the ways to provide mesh
independent response is by using embedded strong discontinuity approach [5,6], which is generalized to include the
fracture process zone [7,8]. The main reason for this mesh independence is that discontinuity, or displacement jump,
always remains localized inside the element. This approach can be interpreted as a localization limiter that enhances
the classical continuum mechanics theoretical formulation by admitting discontinuities in the displacement field. The
numerical implementation of the discontinuity requires a modification of the standard finite element procedure, which
is similar to the method of incompatible modes [9].

Embedded discontinuity formulation is developed here to enhance the 3D Timoshenko beam lattice elements to
provide all three failure modes characteristic for concrete. The model is adopted from our previous works dealing with
failure of rocks [10–12].

The adaptation concerns the microstructure representation being aggregate in agreement with the granulometric
curve. In other words, we recognize that the concrete is highly a heterogeneous composite material. One can
distinguish between the two phases of the material at the observational meso-scale. The meso-scale can capture
fundamental aspects of material heterogeneity without being computationally too expensive [13]. Various models of
concrete failure can be found in the literature [13–22], none of them are comparable to the present model that provides
all failure modes I, II and III in terms of embedded discontinuities in Timoshenko lattice beam elements. By using only
mode I at meso-scale we can successfully represent simple tension test, or even be able to deal with 3 point bending
test when bending failure (not shear) remains the dominant failure mode. However, the failure modes of concrete
composites are more complex, in anything else from simple tension. The model for concrete failure restricted to truss
bars and embedded discontinuities providing only mode I failure could get only 1:5 overall ratio between uniaxial
tension and compression [23,24]. The model concerning mode I at the meso-scale proposed by [25] is positioning the
cohesive links in the direction of stress principal axes, which automatically eliminates the contribution of shear. Lattice
elements in this case are perfectly brittle upon reaching failure criterion, when they are physically removed from mesh.
The algorithm for the solution of equations fitting into this framework is based on sequentially linear analysis, which
does not have the same stringent equilibrium enforcing properties, as the method proposed in this paper, where lattice
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(a) (b)

Fig. 1. (a) Structure of discrete lattice model with Voronoi cells as units of heterogeneous material and cohesive links between them; (b) two
neighboring Voronoi cells.

elements are not removed from mesh after reaching failure criterion, but they go into softening regime in agreement
with defined fracture energy for modes I, II and III. Shear failure mechanisms contribute here mostly through the
presence of aggregate in concrete composite, which makes the crack deviate from shortest (orthogonal) path and
introduces the contribution of modes II and III. Here, the failure criteria include modes II and III, together with Mohr–
Coulomb law on local element level for shear failure under compression. Macroscopic mechanical response depends
strongly on each phase properties, both for cement paste and aggregates, as well as on their spatial distribution. Spatial
distribution of each phase is spread here with random process with the Poisson distribution of the aggregates (phase I)
subsequently filling the voids between them with cement paste (phase II). The distribution of aggregate size is taken
in agreement with one of the two well-known aggregates grading curves in the concrete mixture [26]. The choice is
made that all particles with size less than 2.0 mm be included in cement matrix volume, thus forming cement mortar.
By using this way of distribution we are able to obtain the realistic values of phase volume fraction. The Gaussian
distribution of the material properties heterogeneity in each phase (aggregate and cement paste) is taken into account
with standard deviation restricted to ± 2σ . Such distribution of material properties takes into account the weakening
of concrete through Interface Transition Zone (ITZ), whose properties are considered heterogeneous and represent
weak spots in concrete decided by random process through the distribution of material properties for cement paste,
from where the cracks are then triggered.

Various types of phenomenological constitutive models are widely used in structural scale computations for
prediction of behavior in static or dynamic cases [27,28]. In adopting to the case of a complex loading program, these
models require choice of the elaborate and equally complex criterion. Because of their macroscopic point of view,
these models encounter insurmountable difficulties in describing correctly the fine scale physical mechanisms, such
as fracture or damage. The proposed meso-scale model can improve this and provide different failure mechanisms
leading to macro-scale representation typically given in terms of multi-surface failure criterion for concrete. In order
to identify the most appropriate failure criterion, we carry out large number of numerical tests at fine scale with
different loading programs. In particular, we consider the uniaxial tension and compression, biaxial tests with strength
increase and hydrostatic tension. We thus obtain different values for compression and tension strength as a function
of aggregate volume fraction.

The outline of the paper is as follows: In Section 2 we describe the meso-scale model, with the cohesive links in
terms of Timoshenko beam elements. In Section 3, we present the results of numerical simulations with the ultimate
goal of computing corresponding macro-scale failure surface obtained with meso-scale model computations. Section 4
summarizes the conclusion regarding all the main findings and suggests the perspective studies.

2. Meso-scale model for concrete failure

In this section we give a description of the meso-scale model of concrete constitutive behavior as a two phase
material. First, the 3D Delaunay triangulation [29] is performed in certain volume, representing the specimen. Second,
the Voronoi diagram is extracted from Delaunay triangulation resulting with Voronoi cells that occupy smaller part
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of the volume. The size of the Voronoi cells should correspond to the representative size of heterogeneities, and thus
form the grains in the material (Fig. 1). Voronoi cells should be initially kept together, like grains, with cohesive forces
which are represented by the beam lattice network extracted from Delaunay triangulation edges [30].

Phase I, chosen as the aggregate, is spatially spread across specimen by using the Poisson distribution seeking
to achieve the corresponding grading curves for aggregate [26]. Two well-known grading curves, EMPA and Fuller
(Fig. 2), are defined with relations

p(dFuller ) = 100

√
d

dmax

p(dE M P A) = 50

(
d

dmax
+

√
d

dmax

) (1)

where p(dF ) and p(dE ) are the cumulative percent passing through a sieve with diameter d, white dmax as the
diameter of the coarsest aggregate. We consider here the distribution of aggregate as an arithmetic mean of these
two grading curves where all particles smaller than 2.00 mm are included in cement matrix volume forming cement
mortar. The second, separate study of this phase is not necessary since formation of cement or mortar layer can be
determined based on the distribution of the aggregates. According to the defined grading curve we use in further study,
the aggregate with maximal diameter of 8 mm, 16 mm and 32 mm obtaining, respectively, 30%, 50% and 60% volume
fraction for phase I.

Each phase material properties are assigned to the corresponding beam elements which fall inside the particular
phase. The geometric properties of beams are extracted from the Voronoi diagram. Namely, the common area of the
two neighboring Voronoi cells (Fig. 1(b)) is approximated by circular cross section and is used to compute the single
beam diameter, from which the beam cross-section parameters are obtained [12]. This leads to the lattice of thick
beams which can be represented by Timoshenko beam elements accounting for shear deformation. One can write the
standard kinematics for 3D Timoshenko beam element with length le

ϵ(x) =
du(x)

dx

γy(x) =
dv(x)

dx
− θ (x)

γz(x) =
dw(x)

dx
+ ψ(x)

κx (x) =
dϕ(x)

dx

κy(x) =
dψ(x)

dx

κz(x) =
dθ (x)

dx
.

(2)

By using the matrix notation, the Timoshenko beam strains are placed in a vector that can be written as ϵ =[
ϵ γy γz κx κy κz

]T . Vector u =
[
u v w ϕ ψ θ

]T represents the beam axis displacements and cross-
section notations as shown in Fig. 3.

In order to represent the three failure modes in concrete, we consider the discontinuities in the generalized
displacement field of the 3D Timoshenko beam. Such enhancements of 3D Timoshenko beam can provide mode I
as axial failure mode and modes II and III as shear failure modes between the Voronoi cells (Fig. 4). To that end,
the standard beam displacements are enhanced with the Heaviside function and decomposed into regular and singular
parts in the following way:

u(x) = u(x) + αHxc =

⎡⎢⎢⎢⎢⎢⎢⎣

u(x)
v(x)
w(x)
ϕ(x)
ψ(x)
θ (x)

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
αu

αv
αw
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ Hxc . (3)
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Fig. 2. Grading curves.

Fig. 3. 3D Timoshenko beam displacements.

Fig. 4. Three failure modes in concrete.

Here, Hxc is the Heaviside function defined by Hxc (x) = 0 for x ≤ xc and Hxc (x) = 1 for x > xc and
α = [αu αv αw 0 0 0]T represents the vector of displacement jumps at the point of discontinuity, which is
positioned exactly in the middle of the beam. This is also the point where two neighboring Voronoi cells share the
same side.

One can rewrite Eq. (3) by adding and subtracting a regular differentiable function φ from the Heaviside function,
which will produce the following form of displacement field:

u(x) = u(x) + αφ(x)  
regular part

+ α(Hxc − φ(x))  
localized part

. (4)

In the context of finite elements, the regular part of displacement field is interpolated with standard shape functions.
On the other side, localized part requires additional treatment which can be handled within the framework of
incompatible modes [9], with element modification for localized discontinuity. The enhanced strain field is obtained
through the Dirac delta δxc resulting from the derivative of the Heaviside function multiplying a discontinuous
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displacement field from above.

ϵ(x) = ϵ̃(x) + Gα + αδxc (5)

where ϵ̃ represents the regular part of the strain field obtained from the regular part of the displacement field in Eq. (4).
Operator G is defined as L(−φ(x)), where L is the strain–displacement operator.

The finite element interpolation of the total displacement field from Eq. (3) can be written as

u(x) = N1(x)u1 + N2(x)u2 + αHxc (6)

where the interpolation of the regular part of Timoshenko beam displacements can be performed with linear
polynomials as shape functions, namely N1(x) = 1 −

x
le

, N2(x) =
x
le

. Vectors u1 and u2 are the nodal vectors of
regular displacement part from (3) related to element nodes 1 and 2, respectively. Total displacements for nodes 1
and 2 can be written in terms of displacements of the regular part as

u(x1) = u1 = u1
u(x2) = u2 = u2 + α

(7)

and expression (6) can be rewritten with u2 = u2 − α in terms of total displacements as

u(x) = N1(x)u1 + N2(x)u2 + α (Hxc − N2(x))  
M(x)

. (8)

One can note that function φ(x) from (4) can be taken as φ(x) = N2(x) for the chosen linear interpolation. Second
part in (8), related to incompatible mode, can be denoted as interpolation function M(x) for the discontinuity

M(x) =

⎧⎪⎨⎪⎩
−

x
le

; x ∈ [0, xc⟩

1 −
x
le

; x ∈ ⟨xc, le].
(9)

The interpolation of total displacement field from (8) can thus be re-written in the matrix form as

u = Nua + Mα (10)

with N being 6 × 12 element shape function matrix containing functions N1(x) and N2(x), ua =
[
u1 u2

]T and M
is the 6 × 6 matrix of discontinuity interpolation functions M positioned at the diagonal first three entries related to
translational degrees of freedom.

In order to obtain the interpolated enhanced strain field, one needs to consider the derivatives of shape functions
B1(x) = −

1
le

, B2(x) =
1
le

and the derivative of discontinuity interpolation function, leading to

G(x) = G(x) + δxc , G(x) = −
1
le
. (11)

The function G is split into regular part G and singular part in terms of δxc . With preferred choice of φ, the expression
above reduces to G(x) = −B2(x). The interpolated enhanced strain field can finally be obtained with

ϵ = Bua + Gα + αδxc (12)

where B is the 6×12 beam strain–displacement matrix corresponding to Eq. (2) and G is the 6×6 matrix of derivatives
of discontinuity interpolation function G at the entries related to translational degrees of freedom.

The same kind of interpolations for virtual strain field is used to construct the weak form of equilibrium equations:

δϵ = Bδua + Gvδα + δαδxc (13)

where δua and δα denote the total virtual displacement field and virtual displacement jump, respectively. Enforcement
of orthogonality between the enhanced strain and constant stress is needed within the element by fulfilling the patch
test condition [9]

Gv = G −
1
le

∫ le

0
Gdx . (14)

For this element, where reduced one Gauss point integration is used, it holds that Gv = G.
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The virtual work equation can be written at element level

G int,(e)
− Gext,(e)

= 0 (15)

where G int,(e)
=
∫ le

0 (δϵ)T σdx . By replacing the virtual strain field from (13) into virtual work equation, we end up
with a set of two equations:∫ le

0
(δua)BT σdx = Gext∫ le

0
(δα)(G + δxc )T σdx = 0.

(16)

The standard internal force vector fint,(e) is obtained from the standard part of internal virtual work, while the
enhanced part produces the element residual h(e) at discontinuity. By using the standard finite element assembly
procedure, we get

Anel
e=1

(
fint,(e)

− fext)
= 0

h(e)
=

∫ le

0
GT

σdx + t, ∀e ∈ [1, nel]
(17)

where f int,(e)
=
∫ le

0 BT σdx . The condition h(e)
= 0 needs to be enforced for each element where discontinuity is

activated, which leads to definition of the traction vector at discontinuity

t = −

∫ le

0
Gσdx . (18)

Note that assembly operator in the first equation in (17) considers all elements, while the second equation remains
limited to a particular element due to the character of the interpolation function for discontinuity which takes zero
values at the element boundary.

In order to solve the nonlinear problem in (17), the consistent linearization of both equations has to be performed.
The standard Newton incremental–iterative procedure is used to provide new iterative values of nodal displacements.

Anel
e=1

[
Ke,(i)

n+1∆u(i)
n+1 + Fe,(i)

n+1∆α
(i)
n+1

]
= Anel

e=1

[
fext,e
n+1 − fint,e,(i)

n+1

]
he,(i)

n+1 +

(
Fe,(i)
v,n+1 + K(i)

d,n+1

)
∆u(i)

n+1 +

(
He,(i)

n+1 + K(i)
α,n+1

)
∆α

(i)
n+1 = 0

(19)

where the explicit form of matrices are

Ke,(i)
n+1 =

∫ le

0
BT C(i)

n+1Bdx, Fe,(i)
n+1 =

∫ le

0
BT C(i)

n+1Gdx

Fe,(i)
v,n+1 =

∫ le

0
GT C(i)

n+1Bdx, He,(i)
n+1 =

∫ le

0
GT C(i)

n+1Gdx

(20)

and C(i)
n+1 = diag(E A,G A,G A,G Ip, E I11, E I22) is the tangent stiffness for 3D Timoshenko beam.

Similarly, K(i)
d,n+1 and K(i)

α,n+1 are the consistent tangent stiffness for discontinuity.

∆t(i)
n+1 = K(i)

d,n+1∆u(i)
n+1 + K(i)

α,n+1∆α
(i)
n+1. (21)

Enforcing the local equation in (17), to be equal to zero, allows to use the static condensation (e.g. [3]) of the
system providing elimination of the incompatible mode parameters α from global equations. This leads to the reduced
size of stiffness matrix, which is calculated as follows:

K̂e,(i)
n+1 = Ke,(i)

n+1 − Fe,(i),T
n+1 (He,(i)

n+1 + K (i)
α,n+1)−1(Fe,(i)

v,n+1 + K (i)
d,n+1). (22)

Such a reduced stiffness matrix can be sent to the standard finite element assembly procedure to provide global set of
linearized equilibrium equations. Computed incremental displacements ∆u(i)

n+1 are used to perform the corresponding
displacement vector update

Anel
e=1K̂e

n+1∆u(i)
n+1 = Anel

e=1

[
fext,e
n+1 − fint,e,(i)

n+1

]
H⇒ u(i+1)

n+1 = u(i)
n+1 + ∆u(i)

n+1.

(23)
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The solution of Eq. (23) requires the computation of internal force vector, σ =
[
N V W Mx My Mz

]T , with
the particular values of stress resultants vector. Rotations of 3D Timoshenko beams as lattice elements are kept linear
elastic like in [12], while axial and two shear stress resultants undergo softening plasticity regime upon reaching
failure threshold which corresponds to failure in modes I, II or III. Although the plasticity model is used in the present
study, one can note that the damage model could be used as well. However, as long as we do not go to true cyclic
loading applications, either of them can be successfully applied to obtain the limit load in quasi-static applications.
Softening plasticity constitutive law is enforced by producing plastic deformation in the localized part of the element
at the position of discontinuity. This is guided by singular part of deformation field presented with the Dirac delta
function. The computation of vector σ can be split into scalar equations, where each translational component with
potential discontinuity appears separately. In order to simplify the following presentation, we will give the evolution
of softening plasticity with a scalar variable, knowing that each step is the same for all three directional components
corresponding to three failure modes. Namely, the evolution equations for discontinuity can be written similarly to
standard plasticity with the main difference that in softening the plastic deformation remains localized at the position
of the Dirac function.

α̇ = λ̇
∂Φ

∂σ
= λ̇sign(σ )

ξ̇ = λ̇
∂Φ

∂q
= λ̇

(24)

where λ is the plastic multiplier associated with the softening behavior and α (also corresponding to incompatible
mode parameter) is equivalent to the accumulated plastic strain at the discontinuity. The failure function involves the
stress value at the point of discontinuity δxc where the plastic strain localizes

Φ (t, q) = t − (σu − q) ≤ 0. (25)

Here, t is a traction computed from (18) acting at the discontinuity, σu is a failure threshold and q is the internal
plasticity variable for evolution of softening. When the softening constitutive law is chosen to be exponential, internal
variable for plasticity can be written as

q = σu

(
1 − exp

(
−ξ

σu

G f

))
(26)

with G f as the corresponding value of fracture energy.
In order to compute the internal variables related to discontinuity and perform the corresponding stress updates,

element-wise algorithm should be performed for each directional component. Such algorithm is similar to return
mapping algorithm of standard plasticity, except for the trial state computation. Computing the internal variables
locally, the global solution procedure with Newton incremental/iterative procedure can be performed to give the best
iterative value of displacements u(i)

n+1, for which we can obtain the trial value of the traction force.

t tr ial
n+1 = −

∫ le

0
G

[
E A

(
2∑

a=1

Bau(i)
a,n+1 + Gαn

)]
dx (27)

where αn represents the accumulated plastic deformation at the previous time step for softening plasticity. Note that
we computed the trial value of traction force with regular part of strain field from (12) and that singular part (Dirac
function) vanished. This holds because when keeping the stress rate bounded, one needs to ensure that the plastic
multiplier λ be proportional to the Dirac function. This results with localized plastic deformation at the discontinuity
and the softening law reinterpreted in distributional sense [3,5]. Computation of trial values for shear forces in the
beam requires the independent internal variables α for shear directions, shear stiffness G A and strains for shear∑2

a=1 Bav
(i)
a,n+1 − Naθ

(i)
a,n+1 and

∑2
a=1 Baw

(i)
a,n+1 + Naψ

(i)
a,n+1. The trial value of failure functions is calculated as

Φ tr ial
n+1 =

⏐⏐t tr ial
n+1

⏐⏐− (σu − qn) (28)

with qn defined in (26). If the trial values of the failure functions are negative or zero, the elastic trial step is accepted
for final, with no need to modify the plastic strain from the previous time step.

αn+1 = αn; ξn+1 = ξn. (29)



E. Karavelić, M. Nikolić, A. Ibrahimbegovic et al. / Computer Methods in Applied Mechanics and Engineering 344 (2019) 1051–1072 1059

The plastic softening parameters remain intact, while the traction force is changed due to displacement increment. This
step represents the unloading of the discontinuity which is crucial for the case when many cracks star to appear but
some of them become dominant and continue to grow, while the others unload from the discontinuity. The consistent
tangent stiffness for discontinuity is K(i)

d,n+1 = −Fe,(i)
v,n+1 and K(i)

α,n+1 = 0 in this case.
On the other hand, if the trial values of failure functions are positive, the current step is in the softening plasticity and

internal variables should be modified to re-establish the plastic admissibility at discontinuity. The internal softening
plasticity variables are updated by using evolution equations.

αn+1 = αn + λn+1sign
(
t tr ial
n+1

)
(30)

and

ξn+1 = ξn + λn+1 (31)

where λn+1 is the softening plastic multiplier. The value of the plastic multiplier is determined from the condition
Φn+1 ≤ tol

Φn+1 = Φ tr ial
n+1 + (qn+1 − qn)+ E AGλn+1 ≤ tol. (32)

The solution of local nonlinear equation providing the value of plastic multiplier can be obtained iteratively by
using the Newton method. Finally, one can update the stress values by updated internal variables. Traction forces

are produced by a change of discontinuity parameters with discontinuity tangent stiffness K(i)
α,n+1 = K

(i)

α,n+1 and

K(i)
d,n+1 = 0. Here, K

(i)

α,n+1 is obtained as the derivative of exponential softening law (26) with respect to internal
variable ξ .

In order to represent the failure behavior of concrete-like materials, it is necessary to study the crack growth under
mixed modes I, II and III in the presence of heterogeneities. Heterogeneous concrete samples are prepared with
random process with Gaussian distribution to define the limit stress for each phase with restriction to ±2σ , setting
mean value and standard deviation for each limit stress. The heterogeneities also play a crucial role in making the
computational iterative procedure more robust by eliminating the academic case of localized failure of homogeneous
material under homogeneous stress field. The computational model of this kind thus leads to more robust iterative
procedure.

The three trial failure surfaces regarding three directions of local frame are defined in order to detect the softening
behavior in the tension case.

Φ tr ial
u,n+1 = t tr ial

u,n+1 −
(
σu,t − qu,n

)
Φ tr ial
v,n+1 =

⏐⏐t tr ial
v,n+1

⏐⏐− (
τu,v − qv,n

)
Φ tr ial
w,n+1 =

⏐⏐t tr ial
w,n+1

⏐⏐− (
τu,w − qw,n

) (33)

where σu,t , τu,v and τu,w are limit stress values randomly assigned for each element using the Gaussian distribution
with mean value and standard deviation. Moreover, when the softening is detected with only one of these failure
surfaces, the limit stress values of other two failure surfaces are reduced to current stress computational values leading
to simultaneous softening in all three failure modes.

Failure in compression case is detected by

Φ tr ial
u,n+1 =

⏐⏐t tr ial
u,n+1

⏐⏐− (
σu,c − qu,n

)
Φ tr ial
v,n+1 =

⏐⏐t tr ial
v,n+1

⏐⏐− (
τ f,v − qv,n

)
Φ tr ial
w,n+1 =

⏐⏐t tr ial
w,n+1

⏐⏐− (
τ f,w − qw,n

) (34)

where failure in each mode is handled independently of other two failure surfaces. Moreover, the compression force
influences the failure threshold for shear sliding with the Mohr–Coulomb friction law,

τ f,v = τu,v + σ tan(Φ); τ f,w = τu,w + σ tan(Φ) (35)

and it magnifies the shear strength by the internal angle of friction Φ.
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Table 1
Material parameters.

Cement matrix Aggregate

E = 15 GPa E = 70 GPa
ν = 0.25 ν = 0.25

Fracture limits:

Mean value st. dev –
σu,t 4 MPa 0.15 –
σu,c 40 MPa 0.5 –
τu,v 1 MPa 0.1 –
τu,w 1 MPa 0.1 –

Fracture energies:

G f u 6 N/m –
G f v 100 N/m –
G fw 100 N/m –
Φ = 20◦ –

3. Macroscopic response: numerical homogenization

In this section we present the numerical simulations and compute the macroscopic responses for a number of
different concrete specimens and various loading conditions. The computations are performed by a research version
of computer program FEAP, developed by R.L. Taylor at UC Berkeley [31].

3.1. Construction of specimen

As already elaborated in the previous section, the presented approach relies on meso-scale model with cohesive
links in terms of spatial beams. Such beams are generated by computing the 3D Delaunay triangulation which is
performed by using Gmsh [29] over the spatial domain of interest. The edges of the resulting tetrahedral elements are
converted into the beams whose cross sections are computed from the corresponding Voronoi tessellation. Such task
is computed using a code written in Matlab.

3.2. Tension test

3.2.1. Uniaxial tension test
We consider here the specimen given as a cube with 15 cm side length with different volume fractions of aggregates

(phase I), namely 30%, 50% and 60%. Table 1 summarizes the chosen mechanical properties for each phase. The
values for shear strength (cohesion) of Portland cement are determined in agreement with empirical relations [32,33].
One can note that aggregate is much stiffer than the cement matrix and is kept linear elastic. These computations (and
the subsequent ones) are all made under the displacement control with unrestrained lateral displacements for tension
test.

Fig. 5 shows the macroscopic stress (sum of all reactions in the Z direction per cross-sectional area of the concrete
cube) with respect to strain. The macroscopic Young modulus and limit stress which triggers the global softening
change due to volume fraction of phase I for 30%, 50% and 60%. With an increase of phase I volume fraction, the
global modulus of elasticity increases, as well as the elastic limit stress point. It can also be seen that when the volume
fraction ratio of phase II increases, the failure of specimen becomes more ductile with larger fracture process zone
(before reaching the elastic limit point) and more brittle in softening response. The main physical explanation of this
influence lies in total volume of voids in concrete. The structure of cement paste is complex and there exist several
sources of flaws and defects even before the application of external load, up to 50% of the volume of cement paste may
consist of pores (gel pores, capillary pores and accidental or entrapped air). If we ignore all voids in aggregate (for
normal aggregates these are minimal) with increasing aggregate-cement ratio, the cement paste will represent smaller
proportion of specimen volume. Thus the total porosity is lower, and hence the limit stress point is higher [26].
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Fig. 5. Uniaxial tension test: macroscopic response for different aggregate volume fractions.

Fig. 6. Specimen contours at the end of uniaxial tension test. Beam elements in increasing softening are red colored. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6 presents beam elements in the subsequent stages of increasing softening at the end of tension test computation
for three different heterogeneous specimens. Here, macro-crack lies in the direction perpendicular to the imposed
displacement. One dominant macro-crack is present in any specimen inducing the final failure mechanism formed
differently depending on the distribution of weaker phase, which decides the final crack position. Failure due to mode
I is more pronounced in tension test.

Fig. 7 shows the macroscopic stress (sum of all reactions in the X, Y and Z directions per cross-sectional area
of concrete cube) with respect to the strain curve for 50% volume fraction of phase I. The macroscopic limit stress
which triggers the global softening changes mainly due to the beam spatial position of phase II with respect to loading
direction while the macroscopic Young modulus remains unchanged. Fig. 8 presents the beam elements in increasing
the softening at the end of tension test computations with 50% of phase I for each loading direction. Here again, we
can note that one dominant macro-crack is present in each direction inducing the final failure mechanism.

3.2.2. Hydrostatic tension test
For simulation of hydrostatic tension test the chosen material and geometry properties remain the same as for

uniaxial case (see Table 1). This computation is made under simultaneously imposed displacements along the X, Y
and Z axes. Fig. 9(a) shows the macroscopic stress (sum of all reactions in the X, Y and Z directions per cross-sectional
area) with respect to strain curve for 50% volume fraction of phase I. In Fig. 9(b), the comparison in the X direction
between macroscopic stresses for 50% volume fraction of phase I obtained in uniaxial tension test and in hydrostatic
case is given. It can be noted that the hydrostatic response is stiffer and less ductile comparing to the uniaxial response.
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Fig. 7. Uniaxial tension test: macroscopic responses for specimen (phase I-50%) in three loading directions.

Fig. 8. Specimen contours at the end of uniaxial tension test for phase I-50% specimen in all three loading directions. Beam elements in increasing
softening are red colored. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10 presents the beam elements in increasing softening at the end of hydrostatic tension test computations. We can
observe several macro-cracks contrary to a simple tension test where only one macro-crack is observed.

3.3. Compression test

The results of numerical simulations and corresponding macroscopic responses for specimens under uniaxial
(unconfined) compression loading program are given here. Simulations in compression test are conducted with
displacement control, while lateral displacements are restrained which corresponds to the case with higher friction
between the load platen and the specimen. Geometric, material parameters and the distribution of aggregate and
cement paste are the same as for the previously used specimens (see Table 1). Macroscopic responses (Fig. 11(a))
reveal the change in modulus of elasticity and elastic limit stress point due to different volume fractions of aggregate.
With an increase of phase I, the global modulus of elasticity and elastic limit point increase similar to tension test
case. The difference with respect to uniaxial tension test mechanism concerns the ductile phase of the response during
creation of the fracture process zone, which is more pronounced in compression test than in tension test. Thus, not
only the ductile part with fracture process zone is larger, but also its contribution to total dissipation compression
failure. The main reason for this is that more elements are subjected to shear and compression simultaneously, where
crack propagates because of the shear, which leads to mode II or mode III failure. If the crack propagates in mode II
or III, it is still possible to transfer the compression force through the specimen, assuming that two separated blocks
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(a) (b)

Fig. 9. Macroscopic response—phase I-50%: (a) hydrostatic tension test; (b) hydrostatic-uniaxial tension test comparison for the X direction.

Fig. 10. Specimen contour at the end of hydrostatic tension test for phase I-50% specimen. Beam elements in increasing softening are red colored.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 11. Macroscopic response for uniaxial compression test: (a) different aggregate volume fractions; (b) phase I-50%.
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Fig. 12. Complete macroscopic response for different aggregate volume fractions.

formed during cracking in mode II or III, lean on each other. Compression force in this situation increases until the
point where significant damage on the specimen is made, and until cracking is extensive enough that loading capacity
starts to decrease. One can note that the macroscopic response for numerical specimen with 60% of aggregate fits very
well with the experimental results conducted on the concrete cube with similar properties taken from [34].

Fig. 11(b) shows the macroscopic stress (sum of all reactions in the X, Y and Z directions per cross-sectional area)
versus strain curve for 50% volume fraction of phase I. The macroscopic limit stress which triggers the softening
changes mainly due to the beam spatial position of phase II with respect to loading direction while the macroscopic
Young modulus remains unchanged as in the tension case.

In order to compare the macroscopic responses corresponding to uniaxial tension and compression, Fig. 12 presents
the macroscopic curves and reveals that the overall compression–tension ratio is equal to 8.8, 9.37 and 9.50 for,
respectively, 30%, 50% and 60% of phase I.

Fig. 13 (upper row) presents beam elements in increasing softening at the end of compression test computations for
phase I-50% specimen in three loading directions. Contrary to tension test crack patterns, in compression test much
more macro-cracks are needed to drive the specimens to failure and these are influenced more by mode II and mode III
mechanisms, which form the final crack patterns together with mode I. Fig. 13 (lower row) reveals the displacements
in beam elements at the end of compression test computations which correspond to the upper row figures. Here, we
can see clearly that the diagonal orientation failure mode is dominant.

3.4. Failure surfaces for biaxial loading

In this section we show how to obtain the macroscopic multi-surface criterion for concrete-like materials by taking
into account heterogeneities and different processes of cracking using the meso-scale model proposed in the previous
section. The most appropriate combination of multi-surface models for concrete can be considered by combining
Drucker–Prager for compression stress and Rankine for tensile stress with the plasticity model describing the failure
of structure. It can be written in terms of the principal stress values according to

ΦD P
=

√
J2 + µI1/

√
6 − ( fc − q̂c(ξ c)) ≤ 0

ΦR
i = σi − ( ft − q̂ t (ξ t )) ≤ 0

(36)

where ΦD P and ΦR
i are, respectively, the Drucker–Prager and Rankine yield surfaces, σi , J2 and I1 are the principal

values, the second and the first invariant of stress tensor, fc and ft are compressive and tensile yield stress values, qc

and q t are the corresponding internal variables that control the plasticity threshold evolution resulting with desired
amount of fracture energy for any particular mode of localized failure [24].

In addition to this criterion we can find the coupled plasticity-damage model [35] and the Saint-Venant multisurface
criterion [36]. The coupled plasticity-damage model components are selected in order to provide the representation of
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Fig. 13. Specimen contour at the end of uniaxial compression test for phase I-50% specimen in three loading directions. Beam elements in
increasing softening are red colored (upper row), displacements in the direction perpendicular to loading direction (lower row). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

concrete in compaction where the plastic component is given in terms of the Drucker–Prager criterion and the damage
criterion in terms of the spherical part of the stress tensor:

Φ p(σ ) =

√
J2 + tan(α)

1
3

tr (σ ) −
√

2/3σ p
f

Φd (σ , qd ) = tr (σ ) − (σ d
f − qd )

(37)

where tan(α) is the material parameter which can characterize the internal friction, σ d
f is the elasticity limit point for

damage and qd is the hardening damage variable.
Furthermore, we can express the Saint-Venant multisurface plasticity criterion directly in the stress space, in terms

of principal values of stress tensor:

Φ1(σ ) =
λ̄+ 2µ

2µ
σ1 −

λ̄

2µ
σ2 − σy ≤ 0

Φ2(σ ) = −
λ̄

2µ
σ1 +

λ̄+ 2µ
2µ

σ2 − σy ≤ 0

(38)

where the value of elasticity limit point is obtained from the biaxial tension test.
In order to test the biaxial failure behavior, we choose the plate specimen with the dimensions of 150 mm

× 30 m × 150 mm. The plate is subjected to biaxial imposed displacements, producing the following stress
combinations: tension–tension, compression–compression, compression–tension and tension–compression (Fig. 14).
Uniaxial compressive strength value is taken from the uniaxial compressive test performed on plate concrete specimen
for 6 different distributions of each phase with 50% of aggregates volume (Table A.3).

Fig. 15 shows the macroscopic tension and compression stress (sum of all reactions in the X direction per cross-
sectional area) versus strain curve for 6 realizations with 50% volume fraction of phase I. Macroscopic responses
reveal the changes in the elastic limit point mainly due to the different spatial beam positions of phase II with respect
to loading direction.
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Fig. 14. Specimen for biaxial test: boundary conditions and loading.

(a) (b)

Fig. 15. Uniaxial macroscopic response for 6 realizations in plate specimen: (a) tension test; (b) compression test.

In order to obtain four loading combinations (compression–compression, tension–tension, compression–tension
and tension–compression), we perform a circular loading program based upon the trigonometrical circle cos(α)2 +
sin(α)2

= 1. Thus, couples of imposed displacements (u1 = cos(α), u3 = sin(α)) are parametrized in terms of angle
α. Faces X = 150 mm and Z = 150 mm are, respectively, subjected to imposed displacements u1 and u3, while faces
X = 0 mm and Z = 0 mm are blocked in the X and Z directions (Fig. 14). Compressive and tensile are chosen with
negative and positive values, respectively. Stress in the principal direction 1 (X direction) is labeled as σ 1 and stress
in the principal direction 3 (Z direction) as σ 3. The ultimate strength in the principal direction 1 is written σ1 and the
one in the direction 3, σ3. Tables A.4 and A.5 (see Appendix) contain all the computed data on the ratio of ultimate
strengths σ1 and σ3 with respect to σci under different values of imposed displacements.

Graphical representations of Tables A.4 and A.5 are presented in Fig. 16(a) (1 realization) and (b) (6 realizations),
while Fig. 17 shows the evolution of σ1/σci with respect to σ3/σci during loading until failure for realization 1.
Fig. 16(b) also provides some plots of failure criteria: the Drucker–Prager and the Rankine from Eq. (36), coupled
plasticity-damage from Eq. (37) and the Saint-Venant multisurface from Eq. (38). The results computed with the
proposed model best fits with the multisurface Drucker–Prager Rankine criterion and experimental results on biaxial
specimens taken from [34]. Table 2 contains the computed macroscopic fracture energies under particular couples of
imposed displacements for realization 1 (red dots). Macroscopic differences between uniaxial and biaxial tests on a
plate specimen for tension case can be observed (Fig. 18). It can be noted that in biaxial response strength increase
is observed compared to the uniaxial one. Moreover, specimen is also less ductile in biaxial loading condition than
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(a) (b)

Fig. 16. Failure surfaces: (a) for realization 1; (b) for 6 realizations with the multisurface Drucker–Prager–Rankine surface (red line—Eq. (36)),
coupled plasticity-damage model (black line—Eq. (37)), Saint-Venant (green line—Eq. (38)) and experimental (blue line). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Evolution of σ1/σci with respect to σ3/σci during loading until failure for realization 1 (red dots). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

in uniaxial response either. The same is observed for biaxial compression case. The contours of the plate specimens
can be observed in Fig. 19 with red colored beam elements in increasing softening regime at the end of both tension
(upper row) and compression test (lower row) computations.

Symmetrical failure behavior of concrete in relation with the 45◦ line under biaxial loading is observed in Fig. 16(a)
and (b) as well as in the experimental approaches [37]. As already shown, the ultimate compression strength of
concrete is higher under biaxial compression test than in uniaxial compression. Most likely, this happens due to
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Fig. 18. Biaxial–uniaxial test comparison for realization 1—phase I-50%: macroscopic response in the X direction—tension test.

Table 2
Fracture energy under particular couples of imposed displacements for
realization 1 (red points).

Combined regions u1 (mm), u3 (mm) G f (N/m)

Tension–tension 0.0200,0.0200 6.525
Compression–compression −0.2000,−0.2000 357.351
Tension–compression 0.0224,−0.0380 73.157
Compression–tension −0.0380,0.0224 72.241

Fig. 19. Plate specimen contours at the end of uniaxial and biaxial tension test (upper row) and compression test (lower row). Beam elements in
increasing softening are red colored. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

concrete compaction effect leading to decrease in porosity during biaxial compression test. Increase of ultimate
biaxial compression strength in relation to the corresponding uniaxial compression strength is observed for each
couples of imposed displacement in the compression–compression region. Maximum value of ultimate compression
strength is obtained for imposed displacements u1 = −0.1800 mm, u3 = −0.0872 mm and u1 = −0.0872 mm,
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u3 = −0.1800 mm for σ1 and σ3, respectively, in each realization. In the tension–tension region the value of the
concrete ultimate strength for each couples of imposed displacement is very close to the corresponding uniaxial tensile
strength. Finally, in the tension–compression and compression–tension regions, the concrete compression ultimate
strength increases while the tension decreases.

Fig. 17 shows that in the region compression–compression, the behavior of concrete is linear between σ1/σci
and σ3/σci due to prevented cracks opening. Moreover, biaxial compression loading in the X and Z directions tends
to prevent crack opening, respectively, in the Z and X directions and dominant failure mechanism occurs in the Y
direction (out of plane). For other regions (tension–tension, tension–compression, compression–tension), the linear
relation between σ1/σci and σ3/σci is first observed until cracking is not present, and non-linear relation between
these two ratios, where cracking is more pronounced. In regions tension–compression and compression–tension one
can note that the ultimate tension strength is sooner reached rather than for compression due to the higher ratio of
imposed displacements.

4. Conclusions

In this work we proposed the meso-scale constitutive model for concrete employing a three-dimensional beam
lattice model. We confirmed the model capability to represent the salient features of failure phenomena for concrete-
like materials. The model is able to provide the corresponding variability of material parameters for macro-scale failure
criterion, combining the Drucker–Prager for compression stress and the Rankine for tensile stress. The numerical tests
carried out with a meso-scale model consider different volume fractions of cohesive links or spatial beam elements
representing cement paste and aggregates in agreement with the chosen granulometric curve. The beam element is
represented by 3D Timoshenko beam, embedded with strong discontinuities in the local coordinate system directions,
which provide the capability to simulate the localized failure in modes I, II and III. Failure can occur individually
in any mode or in mixed mode. The failure criteria is different under tension or compression force. In the tension
case, softening is activated simultaneously for all modes as soon as one failure surface becomes active, whereas in
compression the failure modes are handled separately. The compression force influences the shear strength threshold
in the Mohr–Coulomb manner. Another feature of the model is that each material phase parameters are introduced
through the Gaussian distribution representing heterogeneities of each phase. We illustrated here that the model of this
kind can be used successfully to present quite complex macroscopic responses. Three concrete specimens with 30%,
50% and 60% volume fractions of aggregate were subjected to uniaxial tension and compression tests. We confirm
that the resistance to tension is much lower than the one in compression. We can observe one dominant macro-crack
that leads to specimen failure in tension case, whereas for compression case many more macro-cracks are needed
to drive the specimens to failure, with a significant contribution of mode II and mode III mechanisms. We also find
that ultimate strength increases with the increase of volume fraction of aggregates, and also influences the crack path.
Overall compression–tension ratio σc/σt is equal to 8.8, 9.37 and 9.50 for 30%, 50% and 60% of phase I, respectively.
All these points fit well with the typical observations made for concrete-like materials [38,39].

Finally, one of the most significant findings is that this approach can provide the definition of the parameters, such
as the fracture energy, ultimate strength taking into account the heterogeneity and different processes of cracking
governing the final failure mechanism. This approach can also be used for parameters identification of multi-surface
models (e.g. coupled plasticity-damage model [35], Saint-Venant plasticity model [36] or combination of the Rankine
and the Drucker–Prager criteria [40]) providing more predictive results from classical phenomenological models in
the structural analysis. Such task is carried in Part II of this paper.

The proposed meso-scale model provides many enhanced features, but also requires a more refined procedure to
obtain the model parameters, and their distribution typical of material heterogeneities. The subsequent work, presented
in Part II of this paper, describes the solution to inverse identification problem by using coupled nonlinear mechanics–
probability approach to provide not only the parameters, but also their probability distribution. This pertains not
only to elastic model parameters, but also to all different parameters governing the complete failure process. The
latter requires very careful description of the experimental procedure and the ability to provide the corresponding
computational result to any given measurement, as well as the most extensive set of experimental results.
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Table A.3
Uniaxial strength with 50% of aggregates.

Realization j Direction i Tension strength σ j
ti (MPa) Compressive strength σ j

ci (MPa)

1 1(X ) 2.744 −24.767
3(Z ) 2.636 −23.266

2 1(X ) 2.681 −25.477
3(Z ) 2.696 −26.197

3 1(X ) 2.515 −24.520
3(Z ) 2.703 −25.456

4 1(X ) 2.588 −25.739
3(Z ) 2.742 −26.580

5 1(X ) 2.509 −23.033
3(Z ) 2.554 −23.017

6 1(X ) 2.507 −23.946
3(Z ) 2.641 −23.560

Table A.4
Ratios of ultimate strength with respect to σc along the X and Z directions under different couples of imposed displacements for realization 1, 2
and 3.

Combined regions u1 (mm), u3 (mm) σ 1
1 /σ 1

c σ 1
3 /σ 1

c σ 2
1 /σ 2

c σ 2
3 /σ 2

c σ 3
1 /σ 3

c σ 3
3 /σ 3

c

Tension–tension 0.0000,0.0200 0.000 0.112 0.000 0.103 0.000 0.106
0.0173,0.0100 0.113 0.091 0.113 0.083 0.112 0.086
0.0100,0.0173 0.097 0.120 0.100 0.108 0.099 0.113
0.0200,0.0000 0.104 0.000 0.105 0.000 0.103 0.000
0.0056,0.0192 0.065 0.119 0.057 0.108 0.057 0.113
0.0192,0.0056 0.112 0.057 0.113 0.054 0.111 0.078
0.0200,0.0200 0.111 0.117 0.109 0.105 0.110 0.108

Compression–compression 0.0000,−0.2000 0.000 −1.000 0.000 −1.000 0.000 −1.000
−0.1732,−0.1000 −1.220 −0.969 −1.273 −1.028 −1.272 −1.077
−0.1000,−0.1732 −1.040 −1.251 −1.126 −1.197 −1.074 −1.216
−0.2000,0.0000 −1.000 0.000 −1.000 0.000 −1.000 0.000
−0.0872,−0.1800 −0.976 −1.248 −1.052 −1.190 −1.026 −1.214
−0.1800,−0.0872 −1.224 −0.862 −1.280 −0.966 −1.260 −1.017
−0.2000,−0.2000 −1.181 −1.186 −1.211 −1.162 −1.211 −1.190
−0.1990,−0.0200 −1.192 −0.445 −1.210 −0.508 −1.200 −0.466
−0.0200,−0.1990 −0.421 −1.152 −0.432 −1.163 −0.524 −1.118
−0.1950,−0.0444 −1.224 −0.589 −1.253 −0.669 −1.231 −0.685
−0.0444,−0.1950 −0.647 −1.208 −0.654 −1.181 −0.729 −1.172
−0.2000,−0.0020 −1.156 −0.346 −1.167 −0.414 −1.168 −0.330
−0.0020,−0.2000 −0.315 −1.126 −0.309 −1.147 −0.378 −1.085

Tension–compression 0.1732,−0.1000 0.107 −0.639 0.106 −0.583 0.103 −0.634
0.1936,−0.0500 0.106 −0.512 0.115 −0.318 0.111 −0.424
0.0224,−0.0380 0.071 −0.810 0.071 −0.802 0.069 −0.826
0.0173,−0.0200 0.082 −0.707 0.089 −0.686 0.085 −0.728

Compression–tension 0.1732,−0.1000 −0.604 0.130 −0.606 0.101 −0.615 0.106
0.1936,−0.0100 −0.507 0.124 −0.306 0.107 −0.321 0.114
0.0224,−0.0380 −0.801 0.083 −0.809 0.074 −0.817 0.076
0.0173,−0.0200 −0.686 0.100 −0.680 0.087 −0.686 0.090
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Table A.5
Ratios of ultimate strength with respect to σc along the X and Z directions under different couples of imposed displacements for realization 4, 5
and 6.

Combined regions u1 (mm),u3 (mm) σ 4
1 /σ 4

c σ 4
3 /σ 4

c σ 5
1 /σ 5

c σ 5
3 /σ 5

c σ 6
1 /σ 6

c σ 6
3 /σ 6

c

Tension–tension 0.0000,0.0200 0.000 0.103 0.000 0.111 0.000 0.112
0.0173,0.0100 0.113 0.087 0.119 0.095 0.117 0.096
0.0100,0.0173 0.097 0.107 0.100 0.114 0.104 0.110
0.0200,0.0000 0.101 0.000 0.109 0.000 0.105 0.000
0.0056,0.0192 0.058 0.107 0.094 0.114 0.056 0.113
0.0192,0.0056 0.114 0.056 0.117 0.086 0.115 0.059
0.0200,0.0200 0.107 0.106 0.115 0.111 0.114 0.108

Compression–compression 0.0000,−0.2000 0.000 −1.000 0.000 −1.000 0.000 −1.000
−0.1732,−0.1000 −1.316 −1.030 −1.319 −1.152 −1.330 −1.142
−0.1000,−0.1732 −1.124 −1.251 −1.192 −1.295 −1.175 −1.292
−0.2000,0.0000 −1.000 0.000 −1.000 0.000 −1.000 0.000
−0.0872,−0.1800 −1.087 −1.248 −1.161 −1.292 −1.125 −1.300
−0.1800,−0.0872 −1.310 −0.981 −1.319 −1.075 −1.324 −1.101
−0.2000,−0.2000 −1.240 −1.206 −1.279 −1.272 −1.320 −1.244
−0.1990,−0.0200 −1.200 −0.510 −1.270 −0.452 −1.283 −0.514
−0.0200,−0.1990 −0.421 −1.185 −0.467 −1.205 −0.520 −1.194
−0.1950,−0.0444 −1.264 −0.742 −1.305 −0.685 −1.304 −0.779
−0.0444,−0.1950 −0.719 −1.221 −0.709 −1.237 −0.791 −1.231
−0.2000,−0.0020 −1.183 −0.355 −1.244 −0.357 −1.250 −0.367
−0.0020,−0.2000 −0.311 −1.159 −0.328 −1.182 −0.354 −1.180

Tension–compression 0.1732,−0.1000 0.103 −0.604 0.111 −0.669 0.105 −0.630
0.1936,−0.0500 0.112 −0.359 0.119 −0.431 0.113 −0.385
0.0224,−0.0380 0.069 −0.834 0.076 −0.850 0.071 −0.850
0.0173,−0.0200 0.084 −0.735 0.093 −0.749 0.088 −0.749

Compression–tension 0.1732,−0.1000 −0.572 0.104 −0.634 0.113 −0.615 0.113
0.1936,−0.0100 −0.322 0.110 −0.352 0.125 −0.379 0.119
0.0224,−0.0380 −0.785 0.075 −0.817 0.082 −0.825 0.078
0.0173,−0.0200 −0.666 0.088 −0.721 0.096 −0.714 0.092

Appendix. Tables

See Tables A.3–A.5.
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