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Double grid diffuse collocation method
P. Breitkopf, G. Touzot, P. Villon

Abstract In the present paper we propose a new method
for constructing a second order Moving Least Squares
(MLS) approximation. The method leads to shape func-
tions which are then used for solving Partial Differential
Equations (PDE) by a collocation method. This work is an
extension of the Generalized Finite Difference Method
originally proposed by Liszka and Orkisz (GFDM). How-
ever it differs from GFDM by using a sequence of two ®rst
order numerical derivations based on linear polynomial
basis instead of a second order derivation based on a
quadratic polynomial basis. This two-stage approach leads
to continuous approximation coef®cients using a limited
number of surrounding points and results into quite a
simple program structure, very similar to that of the ®nite
elements. The method is in an early stage of development
so no de®nitive conclusions may be drawn, however ex-
ample problems exhibit good convergence properties.

1
Introduction
The meshless collocation approach was originally intro-
duced by Liszka et al. (1980) under the denomination
``Generalized Finite Difference Method'' (GFDM). The
equilibrium equations of continuum involving second order
derivatives of displacements, their evaluation in two di-
mensions based on nodal displacements, requires a qua-
dratic polynomial basis. Thus, the evaluation of
approximation coef®cients demands a connectivity of at
least 6 nodes. The choice of these supporting nodes is con-
strained as particular patterns lead to degenerated solutions
[Syczewski (1981)]. The selection follows a two steps ap-
proach. First, at an evaluation point x, a set of ``closest
nodes'' is selected inside a radius of in¯uence r�x�. In the
second step, several conditions [Sect. 3.4 in Liszka et al.
(1996)] are applied in order to ensure suf®cient ``star qual-
ity'' by selecting a subset of nodes among those belonging to
r�x� vicinity. This approach presents two drawbacks:

± the domains of de®nition of the shape functions are
complex and correspond to VoronoõÈ diagrams of an

order depending on the number n of points taken into
account, n � 6.

± the selection of nodes spoils the continuity of the
Moving Least Squares approximation.

In the present work we use a different strategy: the radius
of in¯uence r�i� is not evaluated at the evaluation point,
but it is bounded to the node i. Thus the domains of
de®nition of the shape functions obtain straightforward
shapes (circular or rectangular depending on the norm
chosen for the computation of the distance between the
evaluation point and the nodes). In order to fully bene®t
from the MLS properties one has to take into account all
the nodes containing the evaluation point in their domain
of in¯uence. On the other hand, the number of nodes
should be limited in order to keep the global matrix
sparse. In this work we propose a compromise by splitting
the second order differential operator into two parts re-
quiring limited nodal support thus permitting to reduce
the size of the domains of in¯uence.

The main guideline of the present work is to replace the
second order differentiation scheme by a sequence of two
®rst order schemes. We introduce two sets of discretization
points: nodes and evaluation points. Their roles are re-
spectively similar to that of nodes and of integration points
in ®nite elements. Discrete values of the unknown func-
tions (displacements) are attached to the nodes. In a ®rst
step the gradients (strains) of the unknown functions are
computed at the evaluation points by a ®rst order discrete
differential operator applied to nodal unknowns. Then, like
in the ®nite element method, the constitutive relations are
written at the evaluation points, leading to stresses. In
the second step the classical integration of the stiffness
matrix over each individual ®nite element, is replaced by
the direct evaluation of the equilibrium equations at the
nodes, using a ®rst order differential operator applied to
stresses. Both derivation operators being ®rst order ones,
they only require a limited connectivity. The strains are
continuous functions of the coordinates of any point x if 4
or more nodes are connected to that point. In a similar way
a continuous evaluation of the equilibrium equations at
any point x only requires 4 evaluation points to be con-
nected to that point. In practical approaches these numbers
may be higher than 4 but the connectivity is signi®cantly
smaller than when using a simple grid technique.

2
Double grid diffuse approximation and derivation
The governing idea of the ``diffuse'' [Nayroles et al. (1992)]
and ``meshless'' [Belytschko et al. (1994)] methods consists
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in solving partial differential equations (PDE) without
using explicit ®nite element meshes. An unknown function
is represented by its discrete values at a set of nodes. The
in¯uence of the value of the function at a nodes xi on the
value at an evaluation point x close to xi is weighted by
some weight function wi xÿ xik k� �. This function vanishes
outside a domain of in¯uence of the node xi.

In the present paper, we focus on collocation methods.
The discrete equilibrium equations of continuous media
generally involve second order differential operator L ap-
plied to an unknown function u�x� in the interior of the
domain. First order operator P also appears, in particular for
evaluation of stresses and Neumann-type boundary condi-
tions. Let us consider the approximation of second order
derivatives using a two steps and double grid approach.

First, we start from a given set of nodal function values
u�xn

j � at an irregular grid of nodes xn
j , j � 1; . . . ; nn. We

approach the discrete gradients Pu�x� of the function at an

arbitrary set of evaluation points xPE
i , i � 1; . . . ; nPE by a

linear combination of the nodal function values u�xn
j �

whose coef®cients are noted Nj;P�xPE
i �

u;P�xPE
i � � Pu�xPE

i � �
X

j

Nj;P�xPE
i �u�xn

j � �1�

Next, we approach the second derivatives Lu�x� of the
function at a point x by a linear combination of
u;P�xPE

i � � Pu�xPE
i � whose coef®cients are noted Mi;L�x�

Lu�x� �
X

i

Mi;L�x�u;P�xPE
i � �2�

Figure 2 illustrates the ®rst step in the framework of
continuum mechanics. Displacements are known at
nodes and the strains are approximated at the evaluation
points.

Figure 3 illustrates the second step. The equilibrium
equations are evaluated at the nodes from the stresses
approximated at the evaluation points.

The combination of (1) and (2) gives

Lu�x� �
X

j

X
i

Mi;L�x�Nj;P�xPE
i �u�xn

j � �
X

j

aju�xn
j �

aj �
X

i

Mi;L�x�Nj;P�xPE
i � �3�

We shall now explicit the conditions that have to be sat-
is®ed by the coef®cients aj in order to guarantee the
convergence of Lu�x�. Substituting a Taylor series expan-
sion of u�xn

j � centered at x into (3) we get

Lu�x� �
X

j

aju�x� �
X

j

aj�xn
j ÿ x�u;x�x�

�
X

j

aj�yn
j ÿ y�u;y�x� � 1

2

X
j

aj�xn
j ÿ x�2u;xx�x�

� 1

2

X
j

aj�yn
j ÿ y�2u;yy�x�

�
X

j

aj�xn
j ÿ x��yn

j ÿ y�u;xy�x� � � � �

It may be conveniently written as

Lu�x� � �Pa�T

u
u;x
u;y
u;xx

u;yy

u;xy

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
�4�

where P is the matrix of consistency constraints (not to be
confused with the differential operator P from Eq. (1) and
has the following form

nodes evaluation point

uni unj

unl
unk

Fig. 1. An evaluation point located in the intersection of the
domains of in¯uence of a set of four nodes
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Fig. 2. First step: strains and stresses at an evaluation point
computed from the nodal displacements at nodes
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Fig. 3. Second step: equilibrium equations are obtained at the
nodes from the stress values known at the evaluation points2
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P �

1
xn

j ÿ x
yn

j ÿ y

� � � 1
2�xn

j ÿ x�2 � � �
1
2�yn

j ÿ y�2
�xn

j ÿ x��yn
j ÿ y�

266666664

377777775; a �
..
.

aj

..

.

8>><>>:
9>>=>>;

When the conditions

Pa � ei �5�
with

ei �
..
.

dij

..

.

8>><>>:
9>>=>>;;

dij � 1 when i � j
dij � 0 when i 6� j

�

are satis®ed for i � 1; 2; 3; 4; 5; 6 then the operator L de-
®ned by (4) converges respectively towards

L � I; L � o
ox
; L � o

oy
; L � o2

ox2
;

L � o2

oy2
; L � o2

ox2
; L � o2

oxoy

Conditions (5) may be rewritten as two independent sets
of constraints acting respectively on vectors N and M
collecting coef®cients Ni and Mi introduced in (1) and (2)

QN � ek �6�
and

RM � el �7�
Developing (3) we see that an interesting choice for the
matrix Q is

Q �
1

� � � xn
j ÿ x � � �

yn
j ÿ y

24 35 �8�

The matrix R becomes in this case

R �

1
1
2

P
j�1;nPE

Nj;P�xPE
j ÿ x�2

� � � 1
2

P
j�1;nPE

Nj;P�yPE
j ÿ y�2 � � �P

j�1;nPE

Nj;P�xPE
j ÿ x��yPE

j ÿ y�

26666664

37777775 �9�

As the number of data points (nodes) taken into account is
generally greater than the number of constraints, the co-
ef®cients N may be obtained by minimizing the following
criteria

min�NTWÿ1
n N� �10�

where Wn is a diagonal matrix containing nodal weight
function values wi�kxPE

i ÿ xn
j k�. The solution of (10) under

the constraints (6) may be obtained from the associated
Lagrangian (Breitkopf et al. (1998)) and gives

NT � ekT�QWnQT�ÿ1QWn

for different choices of k.
The particular case k � 1 produces the vector N cor-

responding to the shape functions of the ®rst order
Moving Least Squares (MLS) approximation while k � 2
and k � 3 yield the MLS diffuse derivatives.

The coef®cients M may be obtained by minimizing

min�MTWÿ1
PE M� �11�

under the constraints (7) where WPE is a diagonal matrix
of weights wi�kxÿ xPE

i k�
MT � elT�RWPERT�ÿ1RWPE

For the particular case of k � 2 the following relations are
readily obtained for different choices of l:

± l � 1 leads to a second order approximation of the x
derivative at the node,

± l � 2 gives approximation coef®cients for the second
derivative,

± l � 4 leads to an approximation of the second order
mixed derivative.

The constraint corresponding to k � 3 may be combined
with:

± l � 1 giving a second order approximation of the y
derivative at the node,

± l � 3 leads to approximation coef®cients for the second
derivative with respect to y,

± l � 4 gives a different approximation of the mixed
derivative.

These results are summarized in the Table 1. One may
note, that the approximation of the mixed derivative u;xy

may be obtained in two different ways, either by choosing
k � 2 and l � 4 or k � 3 and l � 4. The corresponding
numerical values are slightly different.

As mentioned, the choice (8), (9) is not unique and a
particular case consists in taking the matrix Q equal to P

Q � P �12�
in this case the relation (7) reduces to a partition of unity

R � �1 1 � � � 1� �13�
and the double grid is equivalent to second order MLS
used in the GFDM method.

Although the convergence properties of the double grid
are the same as those of second order MLS, the two-steps
approach is interesting for several reasons:

± The continuity of the one-step second order MLS (12),
(13) requires the domains of in¯uence of the nodes to
be de®ned in such a way to ensure an intersection

Table 1. Shape functions obtained from (10) under constraints
(6) for different values of k and from (11) under constraints (7)
for different choices of l

l = 1 l = 2 l = 3 l = 4

k = 1 N, M
k = 2 N,x, M,x N,x, M,xx N,x, M,xy

k = 3 N,y, M,y N,y, M,yy N,y, M,yx

3



of more than 6 domains at each evaluation point. In
the case of highly irregular grids this requirement
leads to big domains of in¯uence. At an evaluation
point this results either in an explosive connectivities
n� 6 or we have to select a subset (node stencils in
Liszka et al. (1996)) of surrounding nodes but in
the latter case we give up the continuity of the
approximation.

± DG requires a limited connectivity to be continuous:
more than 3 nodes for the ®rst grid and at least 4 points
for the second grid.

± In practical application the choice of the primary grid of
nodes may be imposed for instance by CAD. Evaluation
points may be generated in order to obtain better
conditioning of the overall system. This aspect is tho-
roughly discussed by Breitkopf et al. (1998).

± The points where the constitutive relations are evalu-
ated are different from the points where we are looking
for the nodal unknowns (displacements, velocities,...).
This feature may be useful in particular cases like
multiphase or layered media.

3
Double grid diffuse collocation method
Let us consider a few examples of application of the double
grid approximation. We begin with Poisson's equation

kx
o2u

ox2
� ky

o2u

oy2
� f �x; y�;

�x; y� 2 X; X � �ÿ1; 1� � �ÿ1; 1�
�14�

with essential (Dirichlet) and natural (Neumann) boun-
dary conditions

u � û; �x; y� 2 oXD �15�
ou

ox
nx � ou

oy
ny � g�x; y�; �x; y� 2 oXN �16�

We shall use the ®rst grid in order to represent the de-
rivatives ou

ox �xPE� and ou
oy �xPE� based on the nodal values

u�xn�

ou
ox �xPE�
ou
oy �xPE�

( )
� B

..

.

ui

..

.

8>><>>:
9>>=>>; �17�

the B matrix being analogous to that of the ®nite element
method

B � � � � N;x � � �
� � � N;y � � �
� �

�18�

The Laplace's operator may be written at a node as a linear
combination of the gradient values at surrounding evalu-
ation points with coef®cients M;xx and M;yy

kx
o2u

ox2
�xn� � ky

o2u

oy2
�xn�

�
X

i

�
kxMi;xx�xn� kyMi;yy�xn�� ou

ox �xPE
i �

ou
oy �xPE

i �

( ) �19�

This operation performed for all nodes leads to a dis-
cretization of (14) and it may be performed in two loops

± the ®rst loop over the evaluation points in order cal-
culate the matrices B

± the second loop over the nodes writing one discrete
equation for each node.

The operations involved in the second loop may be reor-
dered in such a way to be performed over the evaluation
points. Then the whole process results into a single loop
over evaluation points instead of two independent loops.
In this modi®ed scheme the equations are progressively
built, by assembling the contributions of each individual
evaluation point to the equations bounded to all the nodes
located in its vicinity. The corresponding contribution of
one evaluation point is

BT � D � B
..
.

ui

..

.

8>><>>:
9>>=>>; � kPE

..

.

ui

..

.

8>><>>:
9>>=>>;; D � kx 0

0 ky

� �

�20�
where D is the constitutive matrix and BT is given by

BT �
..
.

Mj;xx Mj;yy

..

.

2664
3775 �21�

and the assembly of the global system may be performed
in the ®nite element like mannerP

evaluation
points

kPE
i

!
u � Ku � f �22�

The BT matrix plays a role similar to the BT matrix used in
®nite elements: it introduces the notion of elementary
matrix ke bound to an evaluation point. The difference
with ®nite elements is that no numerical integration is
performed. BT 6� BT and the elementary matrix ke are not
symmetric. There is a certain analogy between the evalu-
ation point in the double grid method and an integration
(Gauss) point in the ®nite element method. An evaluation
point producing an elementary matrix may be viewed as
a ®nite element on its own. Such a ``diffuse collocation

intermediary pointnodes

1 2
RDG

1

RSG
1

RDG
2

Fig. 4. Coupling of nodes through an evaluation point requires
smaller domains of in¯uence (solid lines, RDG) than a direct
coupling of nodes (dotted lines, RSG)
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element'' may be easily inserted into a general purpose
®nite element code:

± the input data should provide the diffuse rather than
®nite element connectivities,

± the B and BT matrices have to be replaced by their
diffuse equivalents,

± the linear system solver has to deal with nonsymmet-
rical matrices.

4
Boundary conditions
In order to respect the Dirichlet boundary conditions
we use an interpolating version of MLS with singular
weight functions. The essential boundary conditions may
thus be inserted directly into the global system in a usual
way, for instance by zeroing the corresponding line, re-
placing the diagonal term by a unit value and inserting the
known û value to the RHS.

The Neumann boundary conditions are imposed by a
modi®cation of the corresponding lines in BT in such a
way to represent (16) rather than (14)

BT �

..

.

Mj;xnx Mj;yny

..

.

..

.

Mj;xx Mj;yy

..

.

266666666664

377777777775

9>=>;9>=>;

Neumann-type conditions

other nodes

�23�
Liszka et al. (1996) gives a method of enforcing the natural
boundary conditions in GFDM by introducing supple-
mentary ``spectral'' degrees of freedom on the boundary.
This approach may be directly implemented in the double
grid method.

5
Numerical examples
In the equations (14) and (16) we may choose the func-
tions f �x; y� and g�x; y� in such a way that the exact so-
lution of (14) corresponds to a given function uex�x; y�. It
is obvious, considering that double grid is a second order
approximation, that for all constant, linear or quadratic
polynomial functions uex, a numerical solution corre-
sponds to the exact one. Such tests are however useful for
the validation of the computer program and they are sat-
is®ed with a very good accuracy (better than 10ÿ10) for an
arbitrary random mesh.

5.1
Poisson's equation in 2D
As the ®rst example we present the Poisson's equation (14)
in an unit square with the functions f �x; y� and g�x; y�
such that

u�x; y� � y2sin�kpx� �24�

This example was studied using an irregular grid of nodes,
the meshless methods being particularly interesting in
such cases. In order to proceed to convergence tests we
had to adopt a re®nement strategy. We progressively re®ne
a regular grid where the position of each point is perturbed
by a random quantity of the order of magnitude of the grid
step. The original regular grid step is h and the pertur-
bation coef®cient is e. In this way, the position of each
internal point i is modi®ed for random values
rand1; rand2 2 �0; 1�
Dxi � �e � h � rand1; e � h � rand2� �25�
No comparison with a regular grid of nodes is possible
because of the choice of the L1 norm used to compute the
2D weight functions: the double grid approach is a second
order method and it degenerates if the support nodes are
located on a sphere in the sense of the chosen norm
[Syczewski et al. (1981), Breitkopf et al. (1998)]. Figure 5
shows a double grid of 18 � 18 nodes and 17 � 17 evalua-
tion points for e � 0:5.

The following ®gures show the rates of convergence
obtained for different numbers of nodes connected to
an evaluation point and vice-versa. Excepted the
``under-connected'' case of MLS based on four neigh-
bors, the quadratic norm of the solution u converges at
the rate of 2.15±2.82. The theoretical cubic rate of
convergence of u is con®rmed when performing MLS
approximation on irregular grid but this rate is not
attained when solving equations. This fact may be
related to the method of de®ning the domains of
in¯uence of collocation points. In fact, when the
domains of in¯uence are too small (the 4-points curves
on Fig. 6 and on Fig. 7), the global matrix is badly
conditioned as the domain is not suf®ciently connected.
On the other hand, when increasing the size of the
elementary domains, the matrix becomes too ``stiff'' as
it exhibits coupling terms for the nodes located far
away from each other (the 7-points curve in Fig. 7).
Further work is needed in order to improve the strat-
egy for the de®nition of domains of in¯uence. This

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. A regular, randomly perturbed grid of nodes (stars) and
of evaluation points (circles)
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issue is crucial both for the collocation methods and
for meshless weak formulations based on variational
approaches [Orkisz (1998)].

The collocation methods are known to be sensitive
to the way of imposing the boundary conditions of
Neumann type [Liszka et al. (1996) and previous work
by the same author]. We ®nd this sensitivity when
analyzing the Fig. 7 as compared to Fig. 6. This feature
is more conspicuous in the case of equations of elas-
ticity (next examples). In the present example the
convergence rates are even slightly higher for the
Neumann case but the corresponding solutions are less
accurate.

5.2
Cantilever beam
In the second example we apply the double grid method
for solving the equations of linear elasticity. This is illus-
trated here by a cantilever beam problem (Fig. 8).

The analytical solution given by Timoshenko et al.
(1987) corresponds to a cubic ®eld of displacements:

u � ÿPy

EI
Lxÿ x2

2

� �
� P

I

t
E
ÿ 1

G

� �
y3

6

m � P

EI
Lÿ x

3

� � x2

2
� t�Lÿ x� y2

2

� �
� PH2x

8GI

G � E

2�1� t�

rx � ÿPy�Lÿ x�
I

; ry � 0; s � P

2I

H2

4
ÿ y2

� �
�26�

The mesh is re®ned by the same technique as in the pre-
vious example. Figure 9 illustrates the case of a 25-node
and 36-evaluation points model of a square beam for
L � H � 1 loaded by an unit force P. The Young modulus
E � 1 and the Poisson's ratio is 0.3. The Dirichlet boun

dary conditions are imposed for x � 0 with the Neumann
conditions on the rest of the boundary.

Figures 10 and 11 give the distribution of displacements
and their derivatives along the axis of symmetry y � 0 (the
grid of points and of evaluation points are not symmet-

Double grid with varying connectivity, Neumann BC

Rate = 2.82

Rate = 2.87

Rate = 2.30

5 points
6 points
7 points

10−2 10−1 100

h=1/sqrt(nnt)

102

101

10−1

10−2

100

||u
−u

ex
|| 

/ |
|u

ex
||

Fig. 7. Rates of convergence for the same example but with
Dirichlet boundary conditions for x � 0 and with Neumann
boundary conditions on the rest of boundary

H P

L

Fig. 8. The cantilever beam problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2
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0.3

0.4

0.5

Fig. 9. Grid of nodes and of evaluation points obtained from a
regular grid with step h and perturbed by a random quantity
e 2 0; 01hh i for the nodes (circles) and e 2 0; 05hh i for the eval-
uation points (stars)
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Double grid convergence with varying connectivity on random grid

Rate = 1.29
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Rate = 2.45

Rate = 2.32
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Fig. 6. Rates of convergence for different connectivities for a case
with homogeneous Dirichlet boundary conditions
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rical). The plots are given for two cases: a coarse grid
(Fig. 10) and a re®ned grid (Fig. 11). The quadratic norms
of the following quantities are represented:
u; v; ��o2u�=�ox2��; ��o2u�=�oxoy��; ��o2u�=�oy2�� and
they are denoted on the graphs respectively: u, v, uxx, uxy,

uyy. The continuous lines in the ®gures represent the exact
quantities and the points correspond to the numerical
solution.

One may observe good convergence of displacements.
The second derivatives exhibit oscillations even for a
re®ned mesh. This may explain the fact that the rate of
convergence of displacements in this example is 1.79 and
is signi®cantly slower than that of the Poisson's case. The
error on the second derivative approximation at the
border nodes is inherent to the method as the pattern of
points taken into account lies by de®nition on one side of
the node. This lack of precision of the second derivatives
may be observed in Fig. 11 at x � 0 and x � L. It does not
present any computational dif®culties as the equations of
equilibrium are replaced by the boundary conditions at
these points.

6
Conclusion
The double grid approach is proposed as an alternative
to the GFDM. The obtained rates of convergence are
similar to those observed by Liszka et al. (1996) in
GFDM. The main difference between the methods lies in
the strategy of choosing the nodal connectivities. The
selection of ``stars'' or ``stencils'' in GFDM results in an
arbitrary selection of points taken into account when
evaluating the approximating coef®cients. Therefore the
resulting GFDM shape functions are not continuous. The
reason not for taking into account all the nodes be-
longing to a domain of in¯uence are twofold: the nu-
merical conditioning and the density of the resulting
global matrix. In the double grid method we limit the
required connectivity by splitting the second order
operator into the two ®rst order operators. The resulting
domains of in¯uence being smaller, the sparsity of the
global matrix is enforced. Excepting the well known
degenerate patterns we did not encounter conditioning
problems.

On the other hand, the double grid leads to an inter-
esting structure of the computer code, similar to that of the
®nite elements. In some sense, the operation BT � D � B
resembles to that of integrating the ®nite element stiffness
matrix with the integration of the BT � D � B terms. It is
therefore straightforward to include the double grid and a
meshless variational method (Diffuse Elements or EFG) in
the same program.

The double grid method is however still in an early
phase of its development and further work is needed in
order to decrease the oscillations of the second derivative.
An interesting study would consist in an adaptation of the
method to highly irregular grids with strong variations of
the density of nodes resulting for instance from auto-
adaptive computations.
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