, 3D: three dimensions; QTL: quantitative trait loci; TMAH: tétraméthyl ammonium hydroxide; RIL: recombinant inbred ines, dimensions

, ANOVA: analysis of variance; GC-FID: gaz chromatography-flame ionization detector; RIL: Recombinant inbred lines; mm: millimeter

B. Gebruder, B. Grubert, and M. , Studies on the distribution of myxospermy among seeds and fruits of Angiospermae and its ecological importance, Acta Biol Venez, vol.8, pp.315-551, 1974.

W. Frey-wyssling-a-;-zimmermann, P. Ozenda, S. Carlquist, and H. D. Wulff, The plant cell wall, Handbuch der Pflanzenanatomie, pp.243-260, 1976.

A. Fahn, Plant anatomy, 1982.

F. D. Boesewinkel and F. Bouman, The seed: structure, Embryology of angiosperms, pp.567-610, 1984.

T. L. Western, D. J. Skinner, and G. W. Haughn, Differentiation of mucilage secretory cells of the Arabidopsis seed coat, Plant Physiol, vol.122, pp.345-55, 2000.

A. Macquet, M. C. Ralet, J. Kronenberger, A. Marion-poll, and H. M. North, In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage, Plant Cell Physiol, vol.48, pp.984-99, 2007.

R. Naran, G. Chen, and N. C. Carpita, Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage, Plant Physiol, vol.148, pp.132-173, 2008.

X. Yang, C. Baskin, and Z. Huang, More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage, Perspect Plant Ecol Evol Syst, vol.14, pp.434-476, 2012.

H. M. North, A. Berger, S. Saez-aguayo, and M. C. Ralet, Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants, Ann Bot, vol.114, pp.1251-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204136

E. Francoz, P. Ranocha, V. Burlat, and C. Dunand, Arabidopsis seed mucilage secretory cells: regulation and dynamics, Trends Plant Sci, vol.20, issue.8, pp.515-539, 2015.

C. Voiciniuc, B. Yang, M. Schmidt, M. Günl, and B. Usadel, Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls, Int J Mol Sci, vol.16, pp.3452-73, 2015.

A. A. Arsovski, T. M. Popma, G. W. Haughn, N. C. Carpita, M. C. Mccann et al., AtBXL1 encodes a bifunctional b-d-xylosidase/a-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells, Plant Physiol, vol.150, pp.1219-1253, 2009.

J. Stork, D. Harris, J. Griffiths, B. Williams, F. Beisson et al., CELLU-LOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells, Plant Physiol, vol.153, pp.580-589, 2010.

V. Mendu, J. Griffiths, S. Persson, J. Stork, B. Downie et al., Subfunctionalization of cellulose synthases in seed coat epidermal cells mediate secondary radial wall synthesis and mucilage attachment, Plant Physiol, vol.157, pp.441-53, 2011.

T. L. Western, The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal, Seed Sci Res, vol.22, pp.1-25, 2012.

A. Macquet, M. C. Ralet, O. Loudet, J. Kronenberger, G. Mouille et al., A naturally occurring mutation in an Arabidopsis accession affects a b-Dgalactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage, Plant Cell, vol.19, pp.3990-4006, 2007.

S. Sullivan, M. C. Ralet, A. Berger, E. Diatloff, V. Bischoff et al., CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds, Plant Physiol, vol.156, pp.1725-1764, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001308

F. Paynel, A. Pavlov, and G. Ancelin, Polysaccharide hydrolases are released with mucilages after water hydration of flax seeds, Plant Physiol Biochem, vol.62, pp.54-62, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01866752

K. Bailey, Cress seed mucilage, Biochem J, vol.29, pp.2477-85, 1935.

E. Anderson and H. J. Lowe, The composition of flaxseed mucilage, J Biol Chem, vol.168, pp.289-97, 1947.

C. Sterling, Crystal-structure of ruthenium red and stereochemistry of its pectin stain, Am J Bot, vol.57, pp.172-177, 1970.

D. E. Hanke and D. H. Northcote, Molecular visualization of pectin and DNA by ruthenium red, Biopolymers, vol.14, pp.1-17, 1975.

S. Penfield, R. C. Meissner, D. A. Shoue, N. C. Carpita, and M. W. Bevan, MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat, Plant Cell, vol.13, pp.2777-91, 2001.

W. Willats, L. Mccartney, W. Mackie, and J. P. Know, Pectin: cell biology and prospects for functional analysis, Plant Mol Biol, vol.47, pp.9-27, 2001.

J. A. Bergeron and M. Singer, Metachromasy: an experimental and theoretical reevaluation, J Biophys Biochem CytoI, vol.4, pp.433-57, 1958.

T. P. O'brien, N. Feder, and M. E. Mccully, Polychromatic staining of plant cell walls by toluidine blue O, Protoplasma, vol.59, pp.367-73, 1964.

T. Beeckman, R. De-rycke, R. Viane, and D. Inzé, Histological study of seed coat development in Arabidopsis thaliana, J Plant Res, vol.113, pp.139-187, 2000.

G. Mazza and C. G. Biliaderis, Functional properties of flax seed mucilage, J Food Sci, vol.54, pp.1302-1307, 1989.

R. W. Fedeniuk and C. G. Biliaderis, Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage, J Agric Food Chem, vol.42, pp.240-247, 1994.

B. Usadel, A. M. Kuschinsky, M. G. Rosso, N. Eckermann, and M. Pauly, RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis, Plant Physiol, vol.134, pp.286-95, 2004.

C. Rautengarten, B. Usadel, L. Neumetzler, J. Hartmann, D. Büssis et al., A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats, Plant J, vol.54, pp.466-80, 2008.

J. Huang, D. Bowles, E. Esfandiari, G. Dean, N. C. Carpita et al., The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage, Plant Physiol, vol.156, pp.491-502, 2011.

M. Walker, M. Tehseen, M. S. Doblin, F. A. Pettolino, S. M. Wilson et al., The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa, Plant Physiol, vol.156, pp.46-60, 2011.

A. Ziolkovska, Laws of flaxseed mucilage extraction, Food Hydrocoll, vol.26, pp.197-204, 2012.

C. Voiniciuc, G. H. Dean, and J. S. Griffiths, FLYINGSAUCER1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage, Plant Cell, vol.25, pp.944-59, 2013.

W. Cui, G. Mazza, B. D. Oomah, and C. G. Biliaderis, Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. Lebensmittel-Wissenschaft und Technologie, vol.27, pp.363-372, 1994.

M. Kadivar, Studies on integrated processes for the recovery of mucilage, hull, oil and protein from solin (low linolenic acid flax). Doctoral dissertation, 2001.

R. S. Bhatty, Further compositional analysis of flax: mucilage, trypsin inhibitors and hydrocyanic acid, J Am Oil Chem Soc, vol.70, pp.899-904, 1993.

A. Diederichsen, J. P. Raney, and S. D. Duguid, Variation of mucilage in flax seed and its relationship with other seed characters, Crop Sci, vol.46, p.365, 2006.

H. Peng, Bioimage informatics: a new area of engineering biology, Bioinformatics, vol.24, pp.1827-1863, 2008.

L. Shamir, J. D. Delaney, N. Orlov, D. M. Eckley, and I. G. Goldberg, Pattern recognition software and techniques for biological image analysis, PLoS Comput Biol, vol.6, p.1000974, 2010.

J. C. Russ, The image processing handbook, 2011.

W. Dana and W. Ivo, Computer image analysis of seed shape and seed colour for flax cultivar description, Comput Electr Agric, vol.61, pp.126-161, 2008.

R. P. Herridge, R. C. Day, S. Baldwin, and R. C. Macknight, Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery, Plant Methods, vol.7, issue.3, 2011.

T. Tanabata, T. Shibaya, K. Hori, K. Ebana, and M. Yano, SmartGrain: highthroughput phenotyping software for measuring seed shape through image analysis, Plant Physiol, vol.160, pp.1871-80, 2012.

S. Iva, G. Osczr, B. Marie, and V. Gianfranco, Phenotypic evaluation of flax seeds by image analysis, Ind Crops Prod, vol.47, pp.232-238, 2013.

C. R. Moore, L. S. Johnson, I. Y. Kwak, M. Livny, K. W. Broman et al., Highthroughput computer vision introduces the time axis to a quantitative trait map of a plant growth response, Genetics, vol.195, pp.1077-86, 2013.

C. Voiniciuc, M. Heinrich-wilhelm, A. Berger, B. Yang, B. Ebert et al., MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architechture in arabidopsis seed mucilage, Plant Physiol, vol.169, pp.403-423, 2015.

D. Verbeken, S. Dierckx, and K. Dewettinck, Exudates gums: occurrence, productions and applications, Appl Microbiol Biotechnol, vol.63, issue.1, pp.10-21, 2003.

C. Hall, M. C. Tulbek, Y. Xu, and . Flaxseed, Adv Food Nutr Res, vol.51, pp.1-97, 2006.

A. Touré and X. Xueming, Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits, Compr Rev Food Sci Food Saf, vol.9, pp.261-270, 2010.

W. Herchi, D. Arraez-roman, H. Trabelsi, I. Bouali, S. Boukhchina et al., Phenolic compounds in flaxseed: a review of their properties and analytical methods. An overview of the last decade, J Oleo Sci, vol.63, issue.1, pp.7-14, 2014.

B. J. Soto-cerda, S. Duguid, H. Booker, G. Rowland, A. Diederichsen et al., Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection, Theor Appl Genet, vol.127, pp.881-96, 2014.

A. French, S. Ubeda-tomás, T. J. Holman, M. J. Bennett, and T. Pridmore, Highthroughput quantification of root growth using a novel image analysis tool, Plant Physiol, vol.150, pp.1784-95, 2009.

A. Naeem, A. P. French, D. M. Wells, and T. P. Pridmore, High-throughput feature counting and measurement of roots, Bioinformatics, vol.27, pp.1337-1345, 2011.

, US National Institutes of Health, 2018.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-82, 2012.

J. Hemming, Computer vision for identifying weeds in crops. Gartenbautechnische Informationen, Heft 50, 2000.

A. Ford and A. Roberts, Colour space conversions. London: Westminster University, pp.1-31, 1998.

M. K. Agoston, Computer graphics and geometric modeling: implementation and algorithms, 2005.

A. Walter, H. Scharr, F. Gilmer, R. Zierer, K. A. Nagel et al., Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species, New Phytol, vol.174, pp.447-55, 2007.

T. T. Lin, T. M. Lai, S. Chen, and D. S. Fon, Gray-scale and colour machine vision systems for seedling detection. Computers in agriculture, Proceedings of the 5th international conference, pp.105-110, 1994.

I. Philipp and T. Rath, Improving plant discrimination in image processing by use of different colour space transformations, Comput Electron Agric, vol.35, pp.1-15, 2002.

D. Vylder, J. Vandenbussche, F. Hu, Y. Philips, W. Van-der-straeten et al., Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects, Plant Physiol, vol.160, pp.1149-59, 2012.

R. M. Haralick and L. G. Shapiro, Image segmentation techniques. Comput Vis Graph Image Process, vol.29, pp.100-132, 1985.

M. J. Jaffe, A. H. Wakefield, F. Telewski, E. Gulley, and R. Biro, Computer assisted image analysis of plant growth, thigmomorphogenesis and gravitropism, Plant Physiol, vol.77, pp.722-752, 1985.

D. Leister, C. Varotto, P. Pesaresi, A. Niwergall, and F. Salamini, Largescale evaluation of plant growth in Arabidopsis thaliana by noninvasive image analysis, Plant Physiol Biochem, vol.37, pp.671-679, 1999.

S. Arvidsson, P. Pérez-rodríguez, and B. Mueller-roeber, A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects, New Phytol, vol.191, pp.895-907, 2011.

M. P. Pound, A. P. French, J. A. Atkinson, D. M. Wells, M. J. Bennett et al., RootNav: navigating images of complex root architectures, Plant Physiol, vol.162, pp.1802-1816, 2013.

T. Pridmore, A. French, and M. Pound, What lies beneath: underlying assumptions in bioimage analysis, Trends Plant Sci, vol.17, pp.688-92, 2012.

H. Shimizu and R. D. Heins, Computer-vision-based system for plant growth analysis, Trans ASABE, vol.38, pp.959-64, 1995.

A. Clément and B. Vigouroux, Unsupervised segmentation of scenes containing vegetation (Forsythia) and soil by hierarchical analysis of bidimensional histograms, Pattern Recognit Lett, vol.24, pp.1951-1958, 2003.

C. Klukas, D. Chen, and J. M. Pape, Integrated analysis platform: an open-source information system for high-throughput plant phenotyping, Plant Physiol, vol.165, pp.506-524, 2014.

W. Chan, N. Jaitly, L. Quoc, V. Vinyals, and O. , Attend and spell: a neural network for large vocabulary conversational speech recognition, IEEE international conference on acoustics, speech and signal processing, pp.4960-4964, 2016.

M. P. Pound, J. A. Atkinson, A. J. Townsend, M. H. Wilson, M. Griffiths et al., Deep machine learning provides state-of-the-art performance in imagebased plant phenotyping, Gigascience, vol.6, pp.1-10, 2017.

J. Zhou and O. G. Troyanskaya, Predicting effects of noncoding variants with deep learning-based sequence model, Nat Methods, vol.12, pp.931-935, 2015.

A. Esteva, B. Kuprel, and R. A. Novoa, Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.542, pp.115-123, 2017.

R. Girshick, J. Donahue, T. Darell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp.580-587, 2013.

S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: towards real-time object detection with region proposal networks, Advances in neural information processing systems, pp.91-99, 2015.

?. Fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year

, Ready to submit your research ? Choose BMC and benefit from

J. Dai, T. Y. Li, K. He, and J. Sun, R-FCN: Object detection via region-based fully convolutional networks, Advances in neural information processing systems, pp.379-387, 2016.

K. Golhani, S. K. Balusundram, G. Vadamalai, and B. Pradhan, A review of neural networks in plant disease detection using hyperspectral data, Inf Process Agric, vol.5, pp.354-71, 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with Deep Convolutional Neural Networks, Advances in neural information processing systems, pp.1097-1105, 2012.

A. Pavlov, F. Paynel, C. Rihouey, E. Porokhovinova, N. Brutch et al., Variability of seed traits and properties of soluble mucilages in lines of the flax genetic collection of Vavilov Institute, Plant Physiol Biochem, vol.80, pp.348-61, 2014.

M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, Image processing with ImageJ, Biophotonics Int, vol.11, issue.36, p.42, 2004.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-676, 2012.

L. Shi, V. Katavic, Y. Yu, L. Kunst, and G. Haughn, Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil, Plant J, vol.69, pp.37-46, 2012.

Z. Wang, T. Chen, X. L. Li, Z. Du, X. Zhou et al., TRANSPAR-ENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds, Plant J, vol.77, pp.757-69, 2014.

B. D. Oomah, E. O. Kenaschuk, W. Cui, and G. Mazza, Variation in the composition of water-soluble polysaccharides in flaxseed, J Agri Food Chem, vol.43, pp.1484-1492, 1995.

S. B. Eaton, S. B. Eaton, . Iii, A. J. Sinclair, L. Cordain et al., Dietary intake of longchain polyunsaturated fatty acids during the Paleolithic, The return of ?3 fatty acids into the food supply. I

, Land-based animal food products and their health effects, Basel: World Rev Nutr Diet, vol.83, pp.12-23, 1998.

A. P. Simopoulos, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomed Pharmacother, vol.56, pp.365-79, 2002.

J. L. Bowman and M. Koornneef, Arabidopsis: an atlas of morphology and development, pp.398-401, 1994.

I. Debeaujon, K. M. Léon-kloosterziel, and M. Koornneef, Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis, Plant Physiol, vol.122, pp.403-417, 2000.

T. L. Western, J. Burn, W. L. Tan, D. J. Skinner, L. Martin-mccaffrey et al., Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis, Plant Physiol, vol.127, pp.998-1011, 2001.

T. Kunieda, N. Mitsuda, and M. Ohme-takagi, NAC family proteins NARS1/ NAC2and NARS2/NAMin the outer integument regulate embryogenesis in Arabidopsis, Plant Cell, vol.20, pp.2631-2673, 2008.

I. Molina, J. B. Ohlrogge, and M. Pollard, Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana, Plant J, vol.53, pp.437-486, 2008.

S. Cloutier, R. Ragupathy, Z. Niu, and S. Duguid, SSR-based link-age map of flax (Linum usitatissium L.) and mapping of QTLs underlying fatty acid composition traits, Mol Breed, vol.28, pp.437-51, 2011.

S. Kumar, F. M. You, S. Duguid, H. Booker, G. Rowland et al., QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.), Theor Appl Genet, vol.128, issue.5, pp.965-84, 2015.