G. Fraenkel, Studies on the distribution of vitamin BT (carnitine), Biol. Bull, vol.104, pp.359-371, 1953.

W. Gulewitsch and R. Krimberg, Zur kenntnis der extraktivstoffe der muskeln. II. Mitteilung. Über das carnitin, Physiol. Chem, vol.45, pp.326-330, 1905.

F. Kutscher, Uber liebig's fleischextrakt, Zeitschr. F. Untersuchung, pp.528-537, 1905.

N. Van-vlies, Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse, Biochem. J, vol.387, pp.185-193, 2005.

J. Bremer, Carnitine-metabolism and functions, Physiol. Rev, vol.63, pp.1420-1480, 1983.

R. R. Ramsay, R. D. Gandour, and F. R. Van-der-leij, Molecular enzymology of carnitine transfer and transport, Biochim. Biophys. Acta, vol.1546, pp.21-43, 2001.

M. A. Markwell, E. J. Mcgroarty, L. L. Bieber, and N. E. Tolbert, The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney, J. Biol. Chem, vol.248, pp.3426-3432, 1973.

P. R. Clarke and L. L. Bieber, Isolation and purification of mitochondrial carnitine octanoyltransferase activities from beef heart, J. Biol. Chem, vol.256, pp.9861-9868, 1981.

S. Ferdinandusse, Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal ?-oxidation of branched-chain fatty acids, Biochem. Biophys. Res. Commun, vol.263, pp.213-218, 1999.

S. J. Choi, D. H. Oh, C. S. Song, A. K. Roy, and B. Chatterjee, Molecular cloning and sequence analysis of the rat liver carnitine octanoyltransferase cDNA, its natural gene and the gene promoter, Biochim. Biophys. Acta, vol.1264, pp.215-222, 1995.

C. N. Cronin, cDNA cloning, recombinant expression, and site-directed mutagenesis of bovine liver carnitine octanoyltransferase. Arg505 binds the carboxylate group of carnitine, Eur. J. Biochem, vol.247, pp.1029-1037, 1997.

R. R. Ramsay, G. Mancinelli, and A. Arduini, Carnitine palmitoyltransferase in human erythrocyte membrane. Properties and malonyl-CoA sensitivity, Biochem. J, vol.275, pp.685-688, 1991.

J. P. Derrick and R. R. Ramsay, L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA, Biochem. J, vol.262, pp.801-806, 1989.

M. S. Murthy and S. V. Pande, Malonyl-CoA-sensitive and-insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins, J. Biol. Chem, vol.269, pp.18283-18286, 1994.

Y. Elgersma, C. W. Van-roermund, R. J. Wanders, and H. F. Tabak, Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene, EMBO J, vol.14, pp.3472-3479, 1995.

W. Schmalix and W. Bandlow, The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase, J. Biol. Chem, vol.268, pp.27428-27439, 1993.

C. J. Stemple, M. A. Davis, J. Michael, and M. J. Hynes, The facC gene of Aspergillus nidulans encodes an acetate-inducible carnitine acetyltransferase, J. Bacteriol, vol.180, pp.6242-6251, 1998.

Y. Pagot and J. Belin, Involvement of carnitine acyltransferases in peroxisomal fatty acid metabolism by the yeast Pichia guilliermondii, Appl. Environ. Microbiol, vol.62, pp.3864-3867, 1996.

L. Console, N. Giangregorio, C. Indiveri, and A. Tonazzi, Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 form a complex in the inner mitochondrial membrane, Mol. Cell. Biochem, vol.394, pp.307-314, 2014.

N. Longo, M. Frigeni, and M. Pasquali, Carnitine transport and fatty acid oxidation, vol.1863, pp.2422-2435, 2016.

S. O. Farrell and L. L. Bieber, Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs, Arch. Biochem. Biophys, vol.222, pp.123-132, 1983.

N. M. Verhoeven, Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts, J. Lipid Res, vol.39, pp.66-74, 1998.

F. Fraser and V. A. Zammit, Submitochondrial and subcellular distributions of the carnitine-acylcarnitine carrier, FEBS Lett, vol.445, pp.41-44, 1999.

G. Fraenkel, Effect and distribution of vitamin BT, Arch. Biochem. Biophys, vol.34, pp.457-467, 1951.

R. A. Panter and J. B. Mudd, Carnitine levels in some higher plants, FEBS Lett, vol.5, pp.169-170, 1969.

P. H. Mcneil and D. R. Thomas, Carnitine content of pea seedling cotyledons, Phytochemistry, vol.14, pp.2335-2336, 1975.

A. Ariffin, P. H. Mcneil, R. J. Cooke, C. Wood, and D. R. Thomas, Carnitine content of greening barley leaves, vol.21, pp.1431-1432, 1982.

B. Bourdin, H. Adenier, and Y. Perrin, Carnitine is associated with fatty acid metabolism in plants, Plant Physiol. Biochem, vol.45, pp.926-931, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00192559

P. Nguyen, S. Rippa, Y. Rossez, and Y. Perrin, Acylcarnitines participate in developmental processes associated to lipid metabolism in plants, Planta, vol.243, pp.1011-1022, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01501921

C. Wood, M. Noh-hj-jalil, A. Ariffin, B. C. Yong, and D. R. Thomas, Carnitine shortchain acyltransferase in pea mitochondria, Planta, vol.158, pp.175-178, 1983.

N. Burgess and D. R. Thomas, Carnitine acetyltransferase in pea cotyledon mitochondria, Planta, vol.167, pp.58-65, 1986.

H. Gerbling and B. Gerhardt, Carnitine-acyltransferase activity of mitochondria from mung-bean hypocotyls, Planta, vol.174, pp.90-93, 1988.

C. Wood, Carnitine long-chain acyltransferase and oxidation of palmitate, palmitoyl coenzyme A and palmitoylcarnitine by pea mitochondria preparations, Planta, vol.161, pp.255-260, 1984.

D. R. Thomas and C. Wood, The two ?-oxidation sites in pea cotyledons-Carnitine palmitoyltransferase: location and function in pea mitochondria, Planta, vol.168, pp.261-266, 1986.

C. Masterson and C. Wood, Influence of mitochondrial ?-oxidation on early pea seedling development, New Phytol, vol.181, pp.832-842, 2009.

H. Schwabedissen-gerbling and B. Gerhardt, Purification and characterization of carnitine acyltransferase from higher plant mitochondria, Phytochemistry, vol.39, pp.39-43, 1995.

I. Mclaren, C. Wood, M. N. Jalil, B. C. Yong, and D. R. Thomas, Carnitine acyltransferases in chloroplasts of Pisum sativum L, vol.163, pp.197-200, 1985.

C. Masterson and C. Wood, Pea chloroplast carnitine acetyltransferase, Proc. Biol. Sci, vol.267, pp.1-6, 2000.

Y. Poirier, V. D. Antonenkov, T. Glumoff, and J. K. Hiltunen, Peroxisomal ?-oxidation A metabolic pathway with multiple functions, Biochim. Biophys. Acta, vol.1763, pp.1413-1426, 2006.

P. J. Eastmond and I. A. Graham, Re-examining the role of the glyoxylate cycle in oilseeds, Trends Plant Sci, vol.6, pp.72-77, 2001.

E. H. Hettema, The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae, EMBO J, vol.15, pp.3813-3822, 1996.

C. W. Van-roermund, The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters, FASEB J, vol.22, pp.4201-4208, 2008.

S. Footitt, The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis, Plant Physiol, vol.144, pp.1467-1480, 2007.

C. W. Van-roermund, E. H. Hettema, M. Van-den, H. F. Berg, R. J. Tabak et al., Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, EMBO J, vol.18, pp.5843-5852, 1999.

L. Palmieri, Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae, FEBS Lett, vol.462, pp.472-476, 1999.

P. K. Stumpf and G. A. Barber, Fat metabolism in higher plants. VII. ?-oxidation of fatty acids by peanut mitochondria, Plant Physiol, vol.31, pp.304-308, 1956.

M. Dieuaide, R. Brouquisse, A. Pradet, and P. Raymond, Increased fatty acid ?-oxidation after glucose starvation in maize root tips, Plant Physiol, vol.99, pp.595-600, 1992.

C. Masterson and C. Wood, Mitochondrial ?-oxidation of fatty acids in higher plants, Physiol. Plant, vol.109, pp.217-224, 2000.

Z. Yang and J. B. Ohlrogge, Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis ?-oxidation mutants, Plant Physiol, vol.150, pp.1981-1989, 2009.

S. Lawand, Arabidopsis A BOUT DE SOUFFLE, which is homologous with mammalian carnitine acyl carrier, is required for postembryonic growth in the light, Plant Cell, vol.14, pp.2161-2173, 2002.

M. Eisenhut, Arabidopsis A BOUT de SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels, Plant J, vol.73, pp.836-849, 2013.

J. Ohlrogge and J. Browse, Lipid biosynthesis, Plant Cell, vol.7, pp.957-970, 1995.

D. R. Thomas, Effect of carnitine on greening barley leaves, Phytochemistry, vol.20, pp.1241-1244, 1981.

C. Masterson, C. Wood, and D. R. Thomas, L-acetylcarnitine, a substrate for chloroplast fatty acid synthesis, Plant Cell Environ, vol.13, pp.755-765, 1990.

G. Roughan, D. Post-beittenmiller, J. Ohlrogge, and J. Browse, Is acetylcarnitine a substrate for fatty acid synthesis in plants?, Plant Physiol, vol.101, pp.1157-1162, 1993.

M. L. Johnston, M. H. Luethy, J. A. Miernyk, and D. D. Randall, Cloning and molecular analyses of the Arabidopsis thaliana plastid pyruvate dehydrogenase subunits, Biochim. Biophys. Acta, vol.1321, pp.200-206, 1997.

Y. Li-beisson, Acyl-lipid metabolism, Arab. B, vol.11, p.161, 2013.

C. Benning, Mechanisms of lipid transport involved in organelle biogenesis in plant cells, Annu. Rev. Cell Dev. Biol, vol.25, pp.71-91, 2009.

Z. Wang and C. Benning, Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites, Biochem. Soc. Trans, vol.40, pp.457-463, 2012.

P. D. Bates, S. Stymne, and J. Ohlrogge, Biochemical pathways in seed oil synthesis, Curr. Opin. Plant Biol, vol.16, pp.358-364, 2013.

N. Li, FAX1, a novel membrane protein mediating plastid fatty acid export, PLoS Biol, vol.13, pp.1-37, 2015.

J. J. Salas and J. B. Ohlrogge, Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases, Arch. Biochem. Biophys, vol.403, pp.25-34, 2002.

A. Arduini, Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes, J. Biol. Chem, vol.267, pp.12673-12681, 1992.

A. Y. Sierra, CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity, J. Biol. Chem, vol.283, pp.6878-6885, 2008.

J. M. Gooding, M. Shayeghi, and E. D. Saggerson, Membrane transport of fatty acylcarnitine and free L-carnitine by rat liver microsomes, Eur. J. Biochem, vol.271, pp.954-961, 2004.

A. Tonazzi, M. Galluccio, F. Oppedisano, and C. Indiveri, Functional reconstitution into liposomes and characterization of the carnitine transporter from rat liver microsomes, Biochim. Biophys. Acta, vol.1758, pp.124-131, 2006.

S. Kim, AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum, Proc. Natl. Acad. Sci, vol.110, pp.773-778, 2013.

D. J. Lacey and M. J. Hills, Purification and analysis of a low density membrane fraction from developing seeds of Brassica napus, Phytochemistry, vol.50, pp.915-917, 1999.

R. R. Ramsay and A. Arduini, The carnitine acyltransferases and their role in modulating acyl-CoA pools, Arch. Biochem. Biophys, vol.302, pp.307-314, 1993.

F. B. Stephens, D. Constantin-teodosiu, and P. L. Greenhaff, New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle, J. Physiol, vol.581, pp.431-444, 2007.

M. A. Schroeder, The cycling of acetyl-CoA through acetylcarnitine buffers cardiac substrate supply: a hyperpolarised 13C magnetic resonance study, Circ. Cardiovasc. Imaging, vol.5, pp.201-209, 2012.

F. Veld, S. Primassin, L. Hoffmann, E. Mayatepek, U. Spiekerkoetter et al., Plant Science, vol.274, pp.432-440, 2018.

, Corresponding increase in long-chain acyl-CoA and acylcarnitine after exercise in muscle from VLCAD mice, J. Lipid Res, vol.50, pp.1556-1562, 2009.

P. H. Yancey, Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses, J. Exp. Biol, vol.208, pp.2819-2830, 2005.

G. Peluso, Carnitine: an osmolyte that plays a metabolic role, J. Cell. Biochem, vol.80, pp.1-10, 2000.

M. Cánovas, V. Bernal, A. Sevilla, and J. L. Iborra, Salt stress effects on the central and carnitine metabolisms of Escherichia coli, Biotechnol. Bioeng, vol.96, pp.722-737, 2006.

A. S. Angelidis and G. M. Smith, Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium, Appl. Environ. Microbiol, vol.69, pp.7492-7498, 2003.

L. M. Cotton, C. M. Rodriguez, K. Suzuki, M. C. Orgebin-crist, and B. T. Hinton, Organic cation/carnitine transporter, OCTN2, transcriptional activity is regulated by osmotic stress in epididymal cells, Mol. Reprod. Dev, vol.77, pp.114-125, 2010.

D. Rhodes and A. D. Hanson, Quaternary ammonium and tertiary sulfonium compounds in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.44, pp.357-384, 1993.

M. Ashraf and M. R. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot, vol.59, pp.206-216, 2007.

R. Munns and M. Tester, Mechanisms of Salinity Tolerance, Annu. Rev. Plant Biol, vol.59, pp.651-681, 2008.

A. Charrier, The effect of carnitine on Arabidopsis development and recovery in salt stress conditions, Planta, vol.235, pp.123-135, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658531

T. H. Chen and N. Murata, Glycinebetaine: an effective protectant against abiotic stress in plants, Trends Plant Sci, vol.13, pp.499-505, 2008.

A. S. Angelidis, L. T. Smith, L. M. Hoffman, and G. M. Smith, Identification of OpuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes, Appl. Environ. Microbiol, vol.68, pp.2644-2650, 2002.

I. Tamai, Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney, Biochim. Biophys. Acta, vol.1512, pp.273-284, 2001.

C. Lelandais-brière, Disruption of AtOCT1, an organic cation transporter gene, affects root development and carnitine-related responses in Arabidopsis, Plant J, vol.51, pp.154-164, 2007.

J. Franken, S. Kroppenstedt, J. H. Swiegers, and F. F. Bauer, Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection, Curr. Genet, vol.53, pp.347-360, 2008.

T. Kalaiselvi and C. Panneerselvam, Effect of L-carnitine on the status of lipid peroxidation and antioxidants in aging rats, J. Nutr. Biochem, vol.9, pp.575-581, 1998.

G. ?ener, L-carnitine ameliorates oxidative damage due to chronic renal failure in rats, J. Cardiovasc. Pharmacol, vol.43, pp.698-705, 2004.

L. Gómez-amores, L-carnitine attenuates oxidative stress in hypertensive rats, J. Nutr. Biochem, vol.18, pp.533-540, 2007.

D. Silva-adaya, Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of Lcarnitine, J. Neurochem, vol.105, pp.677-689, 2008.

A. Augustyniak and E. Skrzydlewska, L-carnitine in the lipid and protein protection against ethanol-induced oxidative stress, Alcohol, vol.43, pp.217-223, 2009.

A. Vanella, L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector, Cell Biol. Toxicol, vol.16, pp.99-104, 2000.

I. Gülçin, Antioxidant and antiradical activities of L-carnitine, Life Sci, vol.78, pp.803-811, 2006.

A. Z. Reznick, Antiradical effects in L-propionyl carnitine protection of the heart against ischemia-reperfusion injury: the possible role of iron chelation, Arch. Biochem. Biophys, vol.296, pp.394-401, 1992.

J. N. Hathcock and A. Shao, Risk assessment for carnitine, Regul. Toxicol. Pharmacol, vol.46, pp.23-28, 2006.

L. Liu, The adverse effects of long-term L-carnitine supplementation on liver and kidney function in rats, Hum. Exp. Toxicol, vol.34, pp.1148-1161, 2015.

H. Erbas, N. Aydogdu, U. Usta, and O. Erten, Protective role of carnitine in breast cancer via decreasing arginase activity and increasing nitric oxide, Cell Biol. Int, vol.31, pp.1414-1419, 2007.

S. Neill, Nitric oxide, stomatal closure, and abiotic stress, J. Exp. Bot, vol.59, pp.165-176, 2008.

S. Benvenga, A. Amato, M. Calvani, and F. Trimarchi, Effects of carnitine on thyroid hormone action, Ann. N. Y. Acad. Sci, vol.1033, pp.158-167, 2004.

I. Manoli, M. U. De-martino, T. Kino, and S. Alesci, Modulatory effects of L-carnitine on glucocorticoid receptor activity, Ann. N. Y. Acad. Sci, vol.1033, pp.147-157, 2004.

I. D. Smet, An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis, Plant J, vol.33, pp.543-555, 2003.

K. A. Na??cz, D. Szczepankowska, M. Czeredys, N. Kulikova, and S. Grze?kiewicz, Palmitoylcarnitine regulates estrification of lipids and promotes palmitoylation of GAP-43, FEBS Lett, vol.581, pp.3950-3954, 2007.

M. C. Mutomba, Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine, FEBS Lett, vol.478, pp.19-25, 2000.

K. Muraki and Y. Imaizumi, A novel action of palmitoyl-L-carnitine in human vascular endothelial cells, J. Pharmacol. Sci, vol.92, pp.252-258, 2003.

J. Sobiesiak-mirska and K. A. Na?ecz, Palmitoylcarnitine modulates interaction between protein kinase C ?II and its receptor RACK1, FEBS J, vol.273, pp.1300-1311, 2006.

R. Ewald, Lipoate-protein ligase and octanoyltransferase are essential for protein lipoylation in mitochondria of Arabidopsis, Plant Physiol, vol.165, pp.978-990, 2014.

M. P. Running, The role of lipid post-translational modification in plant developmental processes, Front. Plant Sci, vol.5, pp.1-9, 2014.

I. Tein, S. W. Bukovac, and Z. Xie, Characterization of the human plasmalemmal carnitine transporter in cultured skin fibroblasts, Arch. Biochem. Biophys, vol.329, pp.145-155, 1996.

F. M. Vaz and R. J. Wanders, Carnitine biosynthesis in mammals, Biochem. J, vol.361, pp.417-429, 2002.

L. L. Bieber and C. , Annu. Rev. Biochem, vol.57, pp.261-283, 1988.

A. L. Carter, T. O. Abney, and D. F. Lapp, Biosynthesis and metabolism of carnitine, J. Child. Neurol, vol.10, pp.253-257, 1995.

F. M. Vaz, S. W. Fouchier, R. Ofman, M. Sommer, and R. J. Wanders, Molecular and biochemical characterization of rat ?-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis, J. Biol. Chem, vol.275, pp.7390-7394, 2000.

L. Servillo, A. Giovane, D. Cautela, D. Castaldo, and M. L. Balestrieri, Where does n(?)trimethyllysine for the carnitine biosynthesis in mammals come from?, PLoS One, vol.9, p.84589, 2014.

R. A. Kaufman and H. P. Broquist, Biosynthesis of carnitine in neurospora crassa, J. Biol. Chem, vol.252, pp.7437-7439, 1977.

K. Strijbis, Identification and characterization of a complete carnitine biosynthesis pathway in Candida albicans, FASEB J, vol.23, pp.2349-2359, 2009.

K. Strijbis, F. M. Vaz, and B. Distel, Enzymology of the carnitine biosynthesis pathway, IUBMB Life, vol.62, pp.357-362, 2010.

S. Rippa, Y. Zhao, F. Merlier, A. Charrier, and Y. Perrin, The carnitine biosynthetic pathway in Arabidopsis thaliana shares similar features with the pathway of mammals and fungi, Plant Physiol. Biochem, vol.60, pp.109-114, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737756

L. M. Voll, The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1, Plant Physiol, vol.140, pp.59-66, 2006.

M. Tylichová, Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes, J. Mol. Biol, vol.396, pp.870-882, 2010.

T. D. Missihoun, J. Schmitz, R. Klug, H. H. Kirch, and D. Bartels, Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses, Planta, vol.233, pp.369-382, 2011.

G. Cassin-ross and J. Hu, Systematic phenotypic screen of Arabidopsis peroxisomal mutants identifies proteins involved in ?-oxidation, Plant Physiol, vol.166, pp.1546-1559, 2014.

T. D. Missihoun, Overexpression of ALDH10A8 and ALDH10A9 genes provides insight into their role in glycine betaine synthesis and affects primary metabolism in Arabidopsis thaliana, Plant Cell Physiol, vol.56, pp.1798-1807, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01188224