K. The,

, Ionic liquids, 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO 2 ], were acquired from Solvionic SA (Veniole, France), with purity higher than 98%. The other chemicals used were previously described, vol.17

, 8, eventually solidified by agar 20 g/L, and sterilized at 121 ? C for 20 min. The medium Yeast-Malt (YM) was identical to YMD without glucose. The preculture and culture conditions were identical to those already described, Strain and Culture Conditions The yeast strain was K. marxianus UMIP 2234.94 from the Centre de Ressources Biologiques de l, vol.17

, Industrial sawdusts of oak (Quercus petra) and spruce (Picea abies) were kindly provided by the industry SARL Husson Paul (Bathelémont, Lignocellulosic Biomasses (LCBs) The model cellulose was the high-purity long fiber cellulose from Sigma-Aldrich

, Morphology Observations Microscopic preparations were performed according to a protocol described in Mehmood et al, vol.17

, The yeast morphology was observed on a Philips ESEM-FEG XL30 Scanning Electron Microscope (SEM) (FEI

, Glucose and Ethanol Quantification Glucose and ethanol concentrations were determined by high-performance liquid chromatography in an Ultimate 3000 chromatograph equipped with a refractive index detector, HyperREZ XP Carbohydrate H +-Counterion column (300 × 7.7 mm) and pre-column (50 × 7.7 mm), all from ThermoFisher Scientific

, Oxygen Transfer Rate (OTR) and Carbon Dioxide Transfer Rate (CTR) Measurements On-line measurements of the OTR and CTR in shaken flasks were carried out in a Respiratory Activity MOnitoring System (RAMOS) as previously described

, Int. J. Mol. Sci, vol.19, pp.887-899, 2018.

, IL Pretreatment of LCBs Pretreatment of LCBs (long fiber cellulose, spruce sawdust, or oak sawdust) with imidazolium ILs was realized as already described

, Enzymatic Hydrolysis of LCBs The hydrolysis of LCBs pretreated with ILs or not was realized with the cellulase from

?. Sigma-aldrich, After the enzymatic hydrolysis, the reaction medium was centrifuged and the liquid fraction rich in glucose was recovered for ethanolic fermentation

M. Balat, Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review, Energy Convers. Manag, vol.52, pp.858-875, 2011.

M. Valdivia, J. L. Galan, J. Laffarga, and J. Ramos, Biorefineries based on lignocellulosic materials. Microb. Biotechnol, vol.2020, pp.585-594, 2016.

J. L. Ramos, F. García-lorente, M. Valdivia, and E. Duque, Green biofuels and bioproducts: Bases for sustainability analysis, Microb. Biotechnol, vol.10, pp.1111-1113, 2017.
DOI : 10.1111/1751-7915.12768

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/1751-7915.12768

K. C. Badgujar and B. M. Bhanage, Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges, Bioresour. Technol, vol.178, pp.2-18, 2015.

L. J. Jönsson and C. Martín, Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects, Bioresour. Technol, vol.199, pp.103-112, 2016.

Y. Cao, R. Zhang, T. Cheng, J. Guo, M. Xian et al., Imidazolium-based ionic liquids for cellulose pretreatment: Recent progresses and future perspectives, Appl. Microbiol. Biotechnol, vol.101, pp.521-532, 2017.
DOI : 10.1007/s00253-016-8057-8

URL : http://ir.qibebt.ac.cn/bitstream/337004/9890/1/%e6%9b%b9%e7%8e%89%e9%94%a6Imidazolium-based%20ionic%20liquids%20for%20cellulose%20pretreatment%20recent.pdf

I. R. Sitepu, S. Shi, B. A. Simmons, S. W. Singer, K. Boundy-mills et al., Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate, FEMS Yeast Res, vol.14, pp.1286-1294, 2014.
DOI : 10.1111/1567-1364.12224

URL : https://academic.oup.com/femsyr/article-pdf/14/8/1286/17939988/14-8-1286.pdf

Q. Dickinson, S. Bottoms, L. Hinchman, S. Mcilwain, S. Li et al., Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose fermenting strain, Microb. Cell Fact, vol.15, 2016.

M. Ouellet, S. Datta, D. C. Dibble, P. R. Tamrakar, P. I. Benke et al., Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production, Green Chem, vol.13, pp.2743-2749, 2011.

A. G. Santos, B. D. Ribeiro, D. S. Alviano, and M. A. Coelho, Toxicity of ionic liquids toward microorganisms interesting to the food industry, RSC Adv, vol.4, pp.37157-37163, 2014.

M. Isik, H. Sardon, and D. Mecerreyes, Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials, Int. J. Mol. Sci, vol.15, pp.11922-11940, 2014.
DOI : 10.3390/ijms150711922

URL : http://www.mdpi.com/1422-0067/15/7/11922/pdf

H. Olivier-bourbigou, L. Magna, and D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen, vol.373, pp.1-56, 2010.
DOI : 10.1016/j.apcata.2009.10.008

T. Auxenfans, E. Husson, and C. Sarazin, Simultaneous pretreatment and enzymatic saccharification of (ligno)celluloses in aqueous-ionic liquid media: A compromise, Biochem. Eng. J, vol.117, pp.77-86, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01988406

G. G. Fonseca, E. Heinzle, C. Wittmann, and A. K. Gombert, The yeast Kluyveromyces marxianus and its biotechnological potential, Appl. Microbiol. Biotechnol, vol.79, pp.339-354, 2008.
DOI : 10.1007/s00253-008-1458-6

G. G. Fonseca, N. M. De-carvalho, and A. K. Gombert, Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source, Appl. Microbiol. Biotechnol, vol.97, pp.5055-5067, 2013.

D. Radecka, V. Mukherjee, R. Q. Mateo, M. Stojiljkovic, M. R. Foulquié-moreno et al., Looking beyond Saccharomyces: The potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res, vol.15, 2015.

N. Mehmood, E. Husson, C. Jacquard, S. Wewetzer, J. Büchs et al., Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: Metabolic, physiologic, and morphological investigations, Biotechnol. Biofuels, vol.8, 2015.
DOI : 10.1186/s13068-015-0206-2

URL : https://hal.archives-ouvertes.fr/hal-01344743

T. Anderlei and J. Büchs, Device for sterile online measurement of the oxygen transfer rate in shaking flasks, Biochem. Eng. J, vol.7, pp.157-162, 2001.

K. Meier, W. Klöckner, B. Bonhage, E. Antonov, L. Regestein et al., Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media, Biochem. Eng. J, vol.109, pp.228-235, 2016.

, Int. J. Mol. Sci, vol.19, pp.887-901, 2018.

E. Husson, S. Buchoux, C. Avondo, D. Cailleu, K. Djellab et al., Enzymatic hydrolysis of ionic liquid-pretreated celluloses: Contribution of CP-MAS 13C NMR and SEM, Bioresour. Technol, vol.102, pp.7335-7342, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637407

T. Auxenfans, S. Buchoux, D. Larcher, G. Husson, E. Husson et al., Enzymatic saccharification and structural properties of industrial wood sawdust: Recycled ionic liquids pretreatments, Energy Convers. Manag, vol.88, pp.1094-1103, 2014.
DOI : 10.1016/j.enconman.2014.04.027

URL : https://hal.archives-ouvertes.fr/hal-01344403

R. C. Petersen, The chemical composition of wood, The Chemistry of

R. M. Rowell and . Ed, , pp.57-126, 1984.

K. Nakashima, K. Yamaguchi, N. Taniguchi, S. Arai, R. Yamada et al., Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment, Green Chem, vol.13, pp.2948-2953, 2011.

S. E. Blumer-schuette, S. D. Brown, K. B. Sander, E. A. Bayer, I. Kataeva et al., Thermophilic lignocellulose deconstruction, FEMS Microbiol. Rev, vol.38, pp.393-448, 2014.
DOI : 10.1111/1574-6976.12044

URL : https://academic.oup.com/femsre/article-pdf/38/3/393/18146219/38-3-393.pdf

T. Tanaka and A. Kondo, Cell surface engineering of industrial microorganisms for biorefining applications, Biotechnol. Adv, vol.33, pp.1403-1411, 2015.

A. P. Reddy, C. W. Simmons, J. Claypool, L. Jabusch, H. Burd et al., Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate, J. Appl. Microbiol, vol.113, pp.1362-1370, 2012.

M. Frederix, K. Hütter, J. Leu, T. S. Batth, W. J. Turner et al., Development of a native Escherichia coli induction system for ionic liquid tolerance, PLoS ONE, vol.9, 2014.

T. L. Ruegg, E. Kim, B. A. Simmons, J. D. Keasling, S. W. Singer et al., An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production, Nat. Commun, vol.5, 2014.

M. D. Portillo and A. Saadeddin, Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion, Crit. Rev. Biotechnol, vol.35, pp.294-301, 2015.

C. Yu, B. A. Simmons, S. W. Singer, M. P. Thelen, and J. S. Vandergheynst, Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts, Appl. Microbiol. Biotechnol, vol.100, pp.10237-10249, 2016.

G. Lesage and H. Bussey, Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev, vol.70, pp.317-343, 2006.

L. Liu, M. Zong, R. J. Linhardt, W. Lou, N. Li et al., Mechanistic insights into the effect of imidazolium ionic liquid on lipid production by Geotrichum fermentans, Biotechnol. Biofuels, vol.9, 2016.

D. Silva, A. S. Lee, S. Endo, T. Bon, and E. P. , Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate, Bioresour. Technol, vol.102, pp.10505-10509, 2011.

C. Li, B. Knierim, C. Manisseri, R. Arora, H. V. Scheller et al., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification, Bioresour. Technol, vol.101, pp.4900-4906, 2010.

Q. Li, Y. He, M. Xian, G. Jun, X. Xu et al., Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment, Bioresour. Technol, vol.100, pp.3570-3575, 2009.

J. B. Binder and R. T. Raines, Fermentable sugars by chemical hydrolysis of biomass, Proc. Natl. Acad. Sci, vol.107, pp.4516-4521, 2010.

V. P. Soudham, D. G. Raut, I. Anugwom, T. Bradberg, C. Larsson et al., Coupled enzymatic hydrolysis and ethanol fermentation: Ionic liquid pretreatment for enhanced yields, Biotechnol. Biofuels, vol.8, p.135, 2015.

, Int. J. Mol. Sci, vol.19, pp.887-902, 2018.

M. E. Lienqueo, M. C. Ravanal, R. Pezoa-conte, V. Cortínez, L. Martínez et al., Second generation bioethanol from Eucalyptus globulus Labill and Nothofagus pumilio: Ionic liquid pretreatment boosts the yields, Ind. Crops Prod, vol.80, pp.148-155, 2016.

T. Anderlei, W. Zang, M. Papaspyrou, and J. Büchs, Online respiration activity measurement (OTR, CTR, RQ) in shake flasks, Biochem. Eng. J, vol.17, pp.187-194, 2004.