E. Vandermarliere, M. Mueller, and L. Martens, Getting intimate with trypsin, the leading protease in proteomics, Mass Spectrom. Rev, vol.32, pp.453-465, 2013.

M. Kondo, T. Fukao, S. Shinoda, N. Kawamoto, H. Kaneko et al., Lymphocyte responses to chymotrypsin-or trypsin V-digested beta-lactoglobulin in patients with cow's milk allergy, Allergy Asthma Clin. Immunol, vol.3, pp.1-9, 2007.

M. Hirota, M. Ohmuraya, and H. Baba, The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis, J. Gastroenterol, vol.41, pp.832-836, 2006.

W. A. See and J. L. Smith, Urinary levels of activated trypsin in whole-organ pancreas transplant patients with duodenocystostomies, Transplantation, vol.52, pp.630-633, 1991.

L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang et al., Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters, Biosens. Bioelectron, vol.32, pp.297-299, 2011.

M. Stoytchevaa, R. Zlateva, S. Cosnierb, and M. Arredondoa, Square wave voltammetric determination of trypsin activity, Electrochim. Acta, vol.76, pp.43-47, 2012.

L. Chen, X. Fu, and J. Li, Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases, Nanoscale, vol.5, pp.5905-5911, 2013.

G. Jang, S. Seo, and T. S. Lee, Electrostatically self-assembled microcapsule composed of conjugated polyelectrolytes and polypeptides for an emission color-changeable assay for trypsin, Sens. Actuators B, vol.221, pp.1229-1235, 2015.

X. A. Ton, B. Tse-sum, M. Bui, P. Resmini, I. Bonomi et al., A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ, Angew. Chem. Int. Ed, vol.52, pp.8317-8321, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866486

J. Wackerlig and P. A. Lieberzeit, Molecularly imprinted polymer nanoparticles in chemical sensing ? Synthesis, characterisation and application, Sens. Actuators B, vol.207, pp.144-157, 2015.

M. J. Whitcombe, N. Kirsch, and I. A. Nicholls, Molecular imprinting science and technology: a survey of the literature for the years, J. Mol. Recognit, vol.27, pp.297-401, 2004.

M. Cieplak and W. Kutner, Artificial biosensors: how can molecular imprinting mimic biorecognition?, Trends Biotechnol, vol.34, pp.922-941, 2016.

O. Hayden, C. Haderspöck, S. Krassnig, X. Chen, and F. L. Dickert, Surface imprinting strategies for the detection of trypsin, Analyst, vol.131, pp.1044-1050, 2006.

G. Ertürk, M. Hedström, and B. Mattiasson, A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor, Biosens. Bioelectron, vol.86, pp.557-565, 2016.

R. Wagner, W. Wan, M. Biyikal, E. Benito-pen?a, M. C. Moreno-bondi et al., Synthesis spectroscopic, and analyte-responsive behavior of a polymerizable naphthalimide-based carboxylate probe and molecularly imprinted polymers prepared thereof, J. Org. Chem, vol.78, pp.1377-1389, 2013.

S. Rouhani and F. Nahavandifard, Molecular imprinting-based fluorescent optosensor using a polymerizable 1,8-naphthalimide dye as a florescence functional monomer, Sens. Actuators B, vol.197, pp.185-192, 2014.

J. Matsui, H. Kubo, and T. Takeuchi, Molecularly imprinted fluorescent-shift receptors prepared with 2-(trifluoromethyl)acrylic acid, Anal. Chem, vol.72, pp.3286-3290, 2000.

H. Kubo, H. Nariai, and T. Takeuchi, Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2, 6-bis(acrylamido)pyridine, Chem. Commun, vol.0, pp.2792-2793, 2003.

X. A. Ton, V. Acha, P. Bonomi, B. Tse-sum, K. Bui et al., A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe, Biosens. Bioelectron, vol.64, pp.359-366, 2015.

S. A. Evans, S. T. Olson, and J. D. Shore, P-aminobenzamidine as a fluorescent probe for the active site of serine proteases, J. Biol. Chem, vol.257, pp.3014-3017, 1982.

A. Cutivet, C. Schembri, J. Kovensky, and K. Haupt, Molecularly imprinted microgels as enzyme inhibitors, J. Am. Chem. Soc, vol.131, pp.14699-14702, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00429186

H. Zhang, J. Jiang, H. Zhang, Y. Zhang, and P. Sun, Efficient synthesis of molecularly imprinted polymers with enzyme inhibition potency by the controlled surface imprinting approach, ACS Macro Lett, vol.2, pp.566-570, 2013.

J. Xu, S. Ambrosini, E. Tamahkar, C. Rossi, K. Haupt et al., Toward a universal method for preparing molecularly imprinted polymer nanoparticles with antibody-like affinity for proteins, Biomacromolecules, vol.17, pp.345-353, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01501876

H. Sunayama, T. Ooya, and T. Takeuchi, Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification, Chem. Commun, vol.50, pp.1347-1349, 2014.

S. Nestora, F. Merlier, S. Beyazit, E. Prost, L. Duma et al., Plastic antibodies for cosmetics: Molecularly imprinted polymers scavenge precursors of malodors, Angew. Chem. Int. Ed, vol.55, pp.6252-6256, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301316

X. Bi and Z. Liu, Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting, Anal. Chem, vol.86, pp.959-966, 2014.

E. Gök and S. Olgaz, Binding of fluorescein isothiocyanate to insulin: a fluorimetric labeling study, J. Fluoresc, vol.14, pp.203-206, 2004.

S. Ambrosini, S. Beyazit, K. Haupt, B. Tse-sum, and . Bui, Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition, Chem. Commun, vol.49, pp.6746-6748, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866386

A. Poma, A. Guerreiro, S. Caygill, E. Moczko, and S. Piletsky, Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water, vol.4, pp.4203-4206, 2014.

J. Ma, C. Hou, Y. Liang, T. Wang, Z. Liang et al., Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith, Proteomics, vol.11, pp.991-995, 2011.

M. Zvarik, D. Martinicky, L. Hunakova, I. Lajdova, and L. Sikurova, Fluorescence characteristics of human urine from normal individuals and ovarian cancer patients, Neoplasma, vol.60, pp.533-537, 2013.

E. J. Saude, D. Adamko, B. H. Rowe, T. Marrie, and B. D. Sykes, Variation of metabolites in normal human urine, Metabolomics, vol.3, pp.439-451, 2007.