A. R. Shalaby, Significance of biogenic amines to food safety and human health, Food Res. Int, vol.29, p.66, 1996.

, Food and Drug Administration, Fish and Fishery Products Hazards and Controls Guidance, Fish Fish. Prod. Hazard Control Guid. Fourth Ed, p.24, 2011.

. , Commission Regulation (EC) No 2073/2005 of 15 November on microbiological criteria for foodstuffs, p.15, 2017.

, Decomposition and Histamine Raw, Frozen Tuna and Mahi-Mahi; Canned Tuna; and Related Species, Compliance Policy Guid

M. T. Veciana-nogués, A. Mariné-font, and M. C. Vidal-carou, Biogenic amines as hygienic quality indicators of tuna. relationships with microbial counts, ATP-related compounds, volatile amines, and organoleptic changes, J. Agric. Food Chem, vol.45, pp.2036-2041, 1997.

J. L. Mietz and E. Karmas, Chemical quality index of canned tuna as determined by high-pressure liquid chromatography, J. Food Sci, vol.42, pp.155-158, 1977.

G. Duflos, C. Dervin, P. Malle, and S. Bouquelet, Use of biogenic amines to evaluate spoilage in plaice (Pleuronectes platessa) and Whiting (Merlangus merlangus), J. AOAC Int, vol.82, pp.1357-1363, 1999.

V. Ladero, M. Calles-enríquez, M. Fernández, and M. A. Alvarez, Toxicological effects of dietary biogenic amines, Curr. Nutr. Food Sci, vol.6, pp.145-156, 2010.

A. Önal, S. E. Tekkeli, and C. Önal, A review of the liquid chromatographic methods for the determination of biogenic amines in foods, Food Chem, vol.138, pp.509-515, 2013.

K. Kivirand and T. Rinken, Biosensors for biogenic amines: the present state of art minireview, Anal. Lett, vol.44, pp.2821-2833, 2011.

D. Serrar, R. Brebant, S. Bruneau, and G. A. , The development of a monoclonal antibody-based ELISA for the determination of histamine in food: application to fishery products and comparison with the HPLC assay, Food Chem, vol.54, pp.92667-92676, 1995.

A. Marcobal, M. C. Polo, P. J. Martín-Álvarez, and M. V. Moreno-arribas, Biogenic amine content of red Spanish wines: comparison of a direct ELISA and an HPLC method for the determination of histamine in wines, Food Res. Int, vol.38, pp.387-394, 2005.

T. S. Bedwell and M. J. Whitcombe, Analytical applications of MIPs in diagnostic assays: future perspectives, Anal. Bioanal. Chem, vol.408, pp.1735-1751, 2016.

B. Tse-sum, K. Bui, and . Haupt, Preparation and evaluation of a molecularly imprinted polymer for the selective recognition of testosterone-application to molecularly imprinted sorbent assays, J. Mol. Recognit, vol.24, pp.1123-1129, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637418

J. Xu, K. Haupt, B. Tse-sum, and . Bui, Core-shell molecularly imprinted polymer nanoparticles as synthetic antibodies in a sandwich fluoroimmunoassay for trypsin determination in human serum, ACS Appl. Mater. Interfaces, vol.9, pp.24476-24483, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01988828

K. Haupt, A. V. Linares, M. Bompart, and B. T. Bui, Molecularly imprinted polymers, Top. Curr. Chem, vol.325, pp.1-28, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737740

M. J. Whitcombe, N. Kirsch, and I. A. Nicholls, Molecular imprinting science and technology: a survey of the literature for the years, J. Mol. Recognit, vol.27, pp.297-401, 2004.

S. Beyazit, B. Tse-sum, K. Bui, C. Haupt, and . Gonzato, Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization, Prog. Polym. Sci, vol.62, pp.1-21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01501923

E. Bongaers, J. Alenus, F. Horemans, A. Weustenraed, L. Lutsen et al., MIP-based, biomimetic sensor for the impedimetric detection of histamine in different pH environments, Phys. Status Solidi Appl. Mater. Sci, vol.207, pp.837-843, 2010.

F. Horemans, J. Alenus, E. Bongaers, A. Weustenraed, R. Thoelen et al., MIP-based sensor platforms for the detection of histamine in the nano-and micromolar range in aqueous media, Sens. Actuators, B Chem, vol.148, pp.392-398, 2010.

I. Basozabal, A. Guerreiro, A. Gomez-caballero, M. Aranzazu-goicolea, and R. J. Barrio, Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements, Biosens. Bioelectron, vol.58, pp.138-144, 2014.

A. Pietrzyk, S. Suriyanarayanan, W. Kutner, R. Chitta, and F. Souza, Selective histamine piezoelectric chemosensor using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives, Anal. Chem, vol.81, pp.2633-2643, 2009.

J. Dai, Y. Zhang, M. Pan, L. Kong, and S. Wang, Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods, J. Agric. Food Chem, vol.62, pp.5269-5274, 2014.

F. A. Trikka, K. Yoshimatsu, L. Ye, and D. A. Kyriakidis, Molecularly imprinted polymers for histamine recognition in aqueous environment, Amino Acids, vol.43, pp.2113-2124, 2012.

X. N. Zhou, Y. Yu, S. Liu, S. L. Yan, Q. Z. Wang et al., Preparation and recognized characteristic of histamine molecularly imprinted polymers, Adv. Mater. Res, pp.780-786, 2012.

S. Jiang, Y. Peng, B. Ning, J. Bai, Y. Liu et al., Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine, Sens. Actuators, B Chem, vol.221, pp.15-21, 2015.

F. Gao, E. Grant, and X. Lu, Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy, Anal. Chim. Acta, vol.901, pp.68-75, 2015.

I. Basozabal, A. Gomez-caballero, G. Diaz-diaz, A. Guerreiro, S. Gilby et al., Rational design and chromatographic evaluation of histamine imprinted polymers optimised for solid-phase extraction of wine samples, J. Chromatogr. A, vol.1308, pp.45-51, 2013.

A. Sahebnasagh, G. Karimi, and S. A. Mohajeri, Preparation and evaluation of histamine imprinted polymer as a selective sorbent in molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography analysis in canned fish, Food Anal. Methods, vol.7, pp.1-8, 2014.

M. C. Moreno-bondi, M. E. Benito-peña, J. L. Urraca, and G. Orellana, Immuno-like Assays and Biomimetic Microchips, 2010.

J. Wackerlig and P. A. Lieberzeit, Molecularly imprinted polymer nanoparticles in chemical sensing-synthesis, characterisation and application, Sens. Actuators, B Chem, vol.207, pp.144-157, 2015.

X. Ton, V. Acha, K. Haupt, B. Tse-sum, and . Bui, Direct fluorimetric sensing of UVexcited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization, Biosens. Bioelectron, vol.36, pp.22-28, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737866

A. Tong, H. Dong, and L. Li, Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)-protoporphyrin as a functional monomer, Anal. Chim. Acta, vol.466, pp.471-474, 2002.

Y. Kim and J. Y. Chang, Fabrication of a fluorescent sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted organogel nanofibers, Sens. Actuators, B Chem, vol.234, pp.122-129, 2016.

I. Basozabal, A. Gomez-caballero, G. Diaz-diaz, A. Guerreiro, S. Gilby et al., Rational design and chromatographic evaluation of histamine imprinted polymers optimised for solid-phase extraction of wine samples, J. Chromatogr. A, vol.1308, pp.45-51, 2013.

M. Peeters, F. J. Troost, R. H. Mingels, T. Welsch, B. Van-grinsven et al., Impedimetric detection of histamine in bowel fluids using synthetic receptors with pH-optimized binding characteristics, Anal. Chem, vol.85, pp.1475-1483, 2013.

M. Akhoundian, A. Rüter, and S. Shinde, Ultratrace detection of histamine using a molecularly-imprinted polymer-based voltammetric sensor, Sensors, vol.17, 2017.

, AOAC Official Method 977.13 Histamine in Seafood, p.15, 2017.

G. Sagratini, M. Fernández-franzón, F. De-berardinis, G. Font, S. Vittori et al., Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography-tandem mass spectrometry, Food Chem, vol.132, pp.537-543, 2012.

M. Panagiotopoulou, S. Beyazit, S. Nestora, K. Haupt, B. Tse-sum et al., Initiator-free synthesis of molecularly imprinted polymers by polymerization of self-initiated monomers, Polymer, vol.66, pp.43-51, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01344608

E. F. Romano, R. C. So, S. W. Donne, and C. I. Holdsworth, Preparation and binding evaluation of histamine-imprinted microspheres via conventional thermal and RAFTmediated free-radical polymerization, ACS Omega, vol.1, pp.518-531, 2016.

D. A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Adv. Drug Deliv. Rev, vol.57, pp.1779-1794, 2005.

L. I. Andersson, Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol, Anal. Chem, vol.68, pp.111-117, 1996.

B. T. Bui and K. Haupt, Molecularly imprinted polymers: synthetic receptors in bioanalysis, Anal. Bioanal. Chem, vol.398, pp.2481-2492, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535990

F. B. Erim, Recent analytical approaches to the analysis of biogenic amines in food samples, TrAC-Trends Anal. Chem, vol.52, pp.239-247, 2013.

S. Moret and L. S. Conte, High-performance liquid chromatography evaluation of biogenic amines in foods. An analysis of different methods of sample preparation in relation to food characteristics, J. Chromatogr. A, vol.729, pp.961-963, 1996.

B. Tse-sum, F. Bui, K. Merlier, and . Haupt, Toward the use of a molecularly imprinted polymer in doping analysis: selective preconcentration and analysis of testosterone and epitestosterone in human urine, Anal. Chem, vol.82, pp.4420-4427, 2010.

S. Sentellas, Ó. Núñez, and J. Saurina, Recent advances in the determination of biogenic amines in food samples by (U)HPLC, J. Agric. Food Chem, vol.64, pp.7667-7678, 2016.

S. L. Taylor, E. R. Lieber, and M. Leatherwood, A simplified method for histamine analysis of foods, J. Food Sci, vol.43, pp.247-250, 1978.

S. B. Patange, M. K. Mukundan, and K. A. Kumar, A simple and rapid method for colorimetric determination of histamine in fish flesh, Food Control, vol.16, pp.465-472, 2005.

N. García-villar, J. Saurina, and S. Hernández-cassou, High-performance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure, Anal. Chim. Acta, vol.575, pp.97-105, 2006.

S. Köse, N. Kaklikkaya, S. Koral, B. Tufan, K. C. Buruk et al., Commercial test kits and the determination of histamine in traditional (ethnic) fish products-evaluation against an EU accepted HPLC method, Food Chem, vol.125, pp.1490-1497, 2011.