D. Graham-rowe, Agriculture: beyond food versus fuel, Nature, vol.474, pp.6-8, 2011.

R. E. Sims, W. Mabee, J. N. Saddler, and M. Taylor, An overview of second generation biofuel technologies, Bioresour. Technol, vol.101, pp.1570-1580, 2010.

B. Nidetzky, W. Steiner, M. Hayn, and M. Claeyssens, Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction, Biochem. J, vol.298, pp.705-710, 1994.

E. A. Bayer, H. Chanzy, R. Lamed, and Y. Shoham, Cellulose, cellulases and cellulosomes, vol.8, pp.548-557, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00302458

G. Brodeur, E. Yau, K. Badal, J. Collier, K. B. Ramachandran et al., Chemical and physicochemical pretreatment of lignocellulosic biomass: a review, 2011.

R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of cellose with ionic liquids, JACS, vol.124, pp.4974-4975, 2002.

M. Shafiei, H. Zilouei, A. Zamani, M. J. Taherzadeh, and K. Karimi, Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment, Appl. Energy, vol.102, pp.163-169, 2013.

M. Mora-pale, L. Meli, T. V. Doherty, R. J. Linhardt, and J. S. Dordick, Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass, Biotechnol. Bioeng, vol.108, pp.1229-1245, 2011.

T. Auxenfans, S. Buchoux, D. Larcher, G. Husson, E. Husson et al., Enzymatic saccharification and structural properties of industrial wood sawdust: recycled ionic liquids pretreatments, Energy Convers. Manage, vol.88, pp.1094-1103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344403

T. Auxenfans, S. Buchoux, E. Husson, and C. Sarazin, Efficient enzymatic saccharification of Miscanthus: energy-saving by combining dilute acid and ionic liquid pretreatments, Biomass Bioenergy, vol.62, pp.82-92, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01988324

A. A. Elgharbawy, M. Z. Alam, M. Moniruzzaman, and M. Goto, Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass, Biochem. Eng. J, vol.109, pp.252-267, 2016.

W. Gao, F. Zhang, G. Zhang, and C. Zhou, Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis, Biochem. Eng. J, vol.99, pp.67-84, 2015.

Y. Fukaya, K. Hayashi, M. Wada, and H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions, Green Chem, vol.10, pp.44-46, 2008.

A. Brandt, J. Grasvik, J. P. Hallett, and T. Welton, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chem, vol.15, pp.550-583, 2013.

K. S. Egorova and V. P. Ananikov, Toxicity of ionic liquids: eco(cyto)activity as complicated but unavoidable parameter for task-specific optimization, ChemSusChem, vol.7, pp.336-360, 2014.

A. Garcia-lorenzo, E. Tojo, J. Tojo, M. Teijeira, F. J. Rodriguez-berrocal et al., Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study, Green Chem, vol.10, pp.508-516, 2008.

T. Auxenfans, S. Buchoux, K. Djellab, C. Avondo, E. Husson et al., Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process, Carbohydr. Polym, vol.90, pp.805-813, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737720

K. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark et al., Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle, Biotechnol. Bioeng, vol.108, pp.511-520, 2011.

N. Mehmood, E. Husson, C. Jacquard, S. Wewetzer, J. Buchs et al., Impact of two ionic liquids 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations, Biotechnol. Biofuels, vol.8, p.17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01344743

S. Ryu, N. Labbé, and C. Trinh, Simultaneous saccharification and fermentation of cellulose in ionic liquid for efficient production of-ketoglutaric acid by Yarrowia lipolytica, Appl. Microbiol. Biotechnol, vol.99, pp.4237-4244, 2015.

H. Liu, K. L. Sale, B. M. Holmes, B. A. Simmons, and S. Singh, Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study, J. Phys. Chem. B, vol.114, pp.4293-4301, 2010.

E. Husson, S. Buchoux, C. Avondo, D. Cailleu, K. Djellab et al., Enzymatic hydrolysis of ionic liquid-pretreated celluloses: contribution of CP-MAS 13C NMR and SEM, Bioresour. Technol, vol.102, pp.7335-7342, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637407

G. Papa, P. Varanasi, L. Sun, G. Cheng, V. Stavila et al., Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants, Bioresour. Technol, vol.117, pp.352-359, 2012.

A. A. Gunny, D. Arbain, R. E. Gumba, B. C. Jong, and P. Jamal, Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses, Bioresour. Technol, vol.155, pp.177-181, 2014.

L. Li, J. Xie, S. Yu, Z. Su, S. Liu et al., RSC Adv, vol.2, pp.11712-11718, 2012.

R. Wahlstrom, S. Rovio, and A. Suurnakki, Partial enzymatic hydrolysis of microcrystalline cellulose in ionic liquids by Trichoderma reesei endoglucanases, RSC Adv, vol.2, pp.4472-4480, 2012.

P. W. Wolski, D. S. Clark, and H. W. Blanch, Green fluorescent protein as a screen for enzymatic activity in ionic liquid-aqueous systems for in situhydrolysis of lignocellulose, Green Chem, vol.13, pp.3107-3110, 2011.

J. Xu, B. He, B. Wu, B. Wang, C. Wang et al., An ionic liquid tolerant cellulase derived from chemically polluted microhabitats and its application in situ saccharification of rice straw, Bioresour. Technol, vol.157, pp.166-173, 2014.

J. Pottkamper, P. Barthen, N. Ilmberger, U. Schwaneberg, A. Schenk et al., Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids, Green Chem, vol.11, pp.957-965, 2009.

P. Jones and P. Vasudevan, Cellulose hydrolysis by immobilized Trichoderma reesei cellulase, Biotechnol. Lett, vol.32, pp.103-106, 2010.

D. Klein-marcuschamer, B. A. Simmons, and H. W. Blanch, Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment, Biofpr, vol.5, pp.562-569, 2011.

N. M. Konda, J. Shi, S. Singh, H. W. Blanch, B. A. Simmons et al., Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production, Biotechnol. Biofuels, vol.7, pp.1-11, 2014.

N. Kamiya, Y. Matsushita, M. Hanaki, K. Nakashima, M. Narita et al., Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media, Biotechnol. Lett, vol.30, pp.1037-1040, 2008.

S. Datta, B. Holmes, J. I. Park, Z. Chen, D. C. Dibble et al., Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis, Green Chem, vol.12, pp.338-345, 2010.

K. Ninomiya, A. Kohori, M. Tatsumi, K. Osawa, T. Endo et al., Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid, Bioresour. Technol, vol.176, pp.169-174, 2015.

J. Xu, X. Liu, J. He, L. Hu, B. Dai et al., Enzymatic in situ saccharification of rice straw in aqueous-ionic liquid media using encapsulated Trichoderma aureoviride cellulase, J. Chem. Technol. Biotechnol, vol.90, pp.57-63, 2015.

A. Sant'ana-da-silva, S. Lee, T. Endo, and E. P. Bon, Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate, Bioresour. Technol, vol.102, pp.10505-10509, 2011.

N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez et al., Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chem, vol.11, pp.646-655, 2009.

T. K. Ghose, Measurement of cellulase activities, Pure Appl. Chem, vol.59, pp.257-268, 1987.

J. Zhang, M. Tang, and L. Viikari, Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases, Bioresour. Technol, vol.121, pp.8-12, 2012.

Y. Qin, X. Wei, X. Liu, T. Wang, and Y. Qu, Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability, Protein Expression Purif, vol.58, pp.162-167, 2008.

T. Raj, M. Kapoor, S. Semwal, S. Sadula, V. Pandey et al., The cellulose structural transformation for higher enzymatic hydrolysis by ionic liquids and predicting their solvating capabilities, J. Cleaner Prod, vol.113, pp.1005-1014, 2016.

L. K. Hauru, M. Hummel, A. W. King, I. Kilpeläinen, and H. Sixta, Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions, Biomacromolecules, vol.13, pp.2896-2905, 2012.

J. Kahlen, K. Masuch, and K. Leonhard, Modelling cellulose solubilities in ionic liquids using COSMO-RS, Green Chem, vol.12, pp.2172-2181, 2010.