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olling of an Elastic Ellipsoid Upon 
n Elastic-Plastic Flat

he paper presents a numerical analysis of the rolling contact between an elastic ellip-
oid and an elastic-plastic flat. Numerical simulations have been performed with the help 
f a contact solver called Plast-Kid®, with an algorithm based on an integral formula-tion 
r semi-analytical method. The application of both the conjugate gradient method and the 
iscrete convolution and fast Fourier transform technique allows keeping the computing 
ime reasonable when performing transient 3D simulations while solving the contact 
roblem and calculating the subsurface stress and strain states. The effects of the 
llipticity ratio k—ranging from 1 to 16—and of the normal load—from 4.2 GPa to 8 GPa

are investigated. The reference simulation corresponds to the rolling of a ceramic ball 
n a steel plate made of an AISI 52100 bearing steel under a load of 5.7 GPa. The results 
hat are presented are, first, the permanent deformation of the surface and, sec-ond, the 
ontact pressure distribution, the von Mises stress field, the hydrostatic pressure, and the 
quivalent plastic strain state within the elastic-plastic body. A comparison with an 
xperimental surface deformation profile is also given to validate the theoretical 
ackground and the numerical procedure.
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rint, semianalytical method
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Introduction
Many structural materials exhibit a strain limit under load be-

ond which full recovery of the initial geometry is not possible
hen the load is removed. A bearing steel loaded in compression
ehaves in a similar manner. Thus, when a ball is normally loaded
n a bearing raceway, an indentation may remain in the raceway
nd the ball may exhibit a flat spot after unloading if the yield
tress is exceeded �1�. These permanent deformations may be at
he origin of unexpected vibrations and/or entail the bearing life
y the accumulation of plastic strain or by stress concentration
ue to the localized change of the surface geometry.
The basic static load rating of a rolling bearing is defined as that

oad applied to a nonrotating bearing that will result in permanent
eformation of 0.0001�D at the weaker of the inner or outer
aceway contact occurring at the position of the maximum loaded
olling element, D being the ball diameter. Empirical formulas are
iven by Harris �1�. This paper presents a numerical analysis of
he permanent print produced by the rolling of an elastic body
pon an elastic-plastic �EP� flat when plastic flow occurs.
The EP contact solver is based on a semianalytical method

SAM�. The original concept and first attempt to solve 3D prob-
ems by a SAM are due to Jacq et al. �2�. Compared to the finite
lement method �FEM�, the SAM shows much shorter computa-
ion times, typically by several orders of magnitude. In this
ethod, analytical formulas are derived using Green’s functions,

ommonly called influence coefficients in the discrete form.
uantities are then obtained by numerical computing using accel-

rating techniques, leading to extremely short computation times.
mong many numerical methods one of the most efficient proce-
ures consists of coupling the conjugate gradient method �CGM�
o solve the contact problem �Polonsky and Keer �3�� and the
iscrete convolution fast Fourier transform �DC-FFT� introduced
y Liu et al. �4� in computing the integrals.
The SAM has already been successfully applied in solving EP
1

contacts, vertically loaded or subjected to a rolling load �2�, with
or without considering the frictional heating at the contact inter-
face �5�, considering also the effect of a Coulomb friction coeffi-
cient �6�, and more recently in a displacement driven formulation
for the tugging between asperities �7�. The method has been suc-
cessfully used to determine the microyield stress profile of a ni-
trided steel from nanoindentation experiments �8�, to investigate
the rolling of a load on a smooth, dented, or rough surface �9,10�,
and to simulate fretting wear �11,12� and the running-in or wear of
initially smooth or rough surfaces �13�. The EP contact has been
also studied with a very similar method by Wang and Keer �14�,
who investigated the effect of the hardening model, and by Pope-
scu et al. �15,16�, who considered an initial stress state.

The way to consider the rolling motion of the contacting bodies
consists of solving the EP contact at each time step while upgrad-
ing the geometries as well as the hardening state along the moving
direction. This paper investigates the effect of an overload on the
permanent deformation of the surface and subsequent subsurface
stress and strain states. The effect of the ellipticity ratio k=c /a is
first studied, with values ranging from 1 to 16 and a semiminor
axis a along the rolling direction. In a second step and for an
ellipticity ratio of 8, the effect of the normal load—from
4.2 GPa to 8 GPa—is also investigated. Results are of prime im-
portance for rolling bearing manufacturers and users.

2 Elastic-Plastic Contact Model

2.1 Theory. The current model is based on the work of Liu et
al. �4� and of Nélias and co-workers �5–13�, who developed an EP
contact solver using an integral formulation with intermediate
analytical solutions, also called SAM. The three-dimensional EP
contact model was initially built to study the vertical or rolling
loading of a smooth body against a dented �2� or rough surface
�10�. This model includes two important modules, the contact
solver that determines the contact area and the pressure distribu-
tion, and the plasticity loop that is used to calculate the plastic
region �where the plastic strain is not nil�. Note that the presence
of a plastic region will modify the geometry of the contacting
surfaces; therefore, it is required to iterate between the contact
solver and the plasticity loop. The CGM is used in the contact

solver to accelerate the computation. Convolution products are
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erformed using the DC-FFT, following the method proposed by
iu et al. in Ref. �3�. In order to simulate the rolling/sliding con-

act, a load-driven formulation was first used by applying a nor-
al load �vertical loading� prior to the tangential displacement of

he load �rolling load�.
The set of equations to be solved simultaneously for the contact

roblem is recalled below:

uij = hij + � �i, j� � Ic �1a�

pij � 0 �i, j� � Ic �1b�

uij � hij + � �i, j� � Ic �1c�

pij = 0 �i, j� � Ic �1d�

axay �
�i,j��Ig

pij = W �1e�

ij being the composite displacement of both bodies at point �i , j�
f the contact area Ic, hij the surface separation, � the rigid body
pproach, pij the pressure, ax and ay the grid spacing in x and y
irections, respectively, and W the total load.
In addition to the main hypothesis of the contact mechanics,

hich is that the contact area is small in comparison to the dimen-
ions of bodies justifying the assumption of half-spaces, displace-
ents and strains are small, alloying the superimposition of in-

lastic and elastic contributions. Plasticity effects are introduced
hrough Betti’s reciprocal theorem, leading to a formulation where
he surface displacements u and the subsurface stresses �ij are
xpressed as the summation of the contribution of the elastic field,
he residual state, and the thermally induced strains �see Eqs. �2�
nd �3��.

u�A� = ue�A� + ur�A� + ut�A� A being a point on the surface

�2�

�ij�B� = �ij
e �B� + �ij

r �B� + �ij
t �B� B being a point in the volume

�3�
Plasticity is an irreversible phenomenon that requires an incre-
ental description. In a general incremental formulation of plas-

icity, a plastic strain increment depends on the stress, the stress
ncrement, and on the hardening parameters. A return mapping
lgorithm with an elastic predictor/plastic corrector scheme was
mplemented in the plasticity loop for the integration of the EP
onstitutive equations �see Fotiu and Nemat-Nasser �17��. The ge-
metry of the contacting bodies can also evolve during the loading
istory due to the occurrence of a permanent deformation of the
urface when the yield stress is exceeded, which will indeed
odify the contact pressure distribution. Therefore, the relation

etween plastic strain and contact pressure must also be incremen-
al. A two-stage incremental formulation of the EP contact is then
sed.
To complete this incremental formulation, the loading history
ust be defined. Two types of load increments are considered.
he first one is a vertical loading or unloading without a rolling
ovement. The only change is an increase or a decrease of the

pplied external load W. The second type of load increment cor-
esponds to a rolling movement of the load. The applied external
oad does not change. Considering a mark attached to the contact,
he plastic strain, hardening state, and contact pressure must be
hifted from one iteration to the next one.

2.2 Reference Simulation and Method of Analysis. The ref-
rence simulation corresponds to the rolling of a ceramic ball of
iameter 9.525 mm on a steel plate made of an AISI 52100 bear-
ng steel under a load of 5.7 GPa. The Young modulus and the
oisson ratio of the ceramic body are 310 GPa and 0.29, respec-
ively; those of the steel plate are 210 GPa and 0.3, respectively.

2

The contact radius for the reference simulation is a=310 �m, and
the mesh grid is here equal to 25 �m in both rolling and trans-
verse directions.

An isotropic hardening model along with the von Mises crite-
rion has been chosen for the representation of the yield surface.
The hardening law of the EP body is described by Swift’s law �Eq.
�4��, which presents the numerical advantage of being continu-
ously derivable. Parameters describing the hardening of the AISI
52100 bearing steel are B=945 MPa, C=20, and n=0.121, with
�p as the equivalent plastic strain,

�eq = B�C + 106 � �p�n �4�
The first step consists in determining the subsurface stress and
strain states found under load or after unloading, as well as the
shape of the permanent print found on the surface of the EP flat.

Figure 1 shows the longitudinal profile �permanent� found after
one loading cycle and after unloading with and without the rolling
of the ball under a contact pressure of 5.7 GPa �Hertz pressure,
i.e., elastic�. The curve with square symbols corresponds to the
axisymmetrical print found after unloading and without rolling.
The curve with small dots presents the permanent print after a
vertical loading, rolling of 4 mm from left to right, maintaining
the normal load constant, and unloading �vertical�. Results are
presented in a dimensionless form with the abscissa and ordinate
normalized by the contact radius a.

It should be noted that the maximum depth is higher for the
rolling load compared to the purely vertical loading/unloading.
One may observe a decrease of the print depth after a transient
period when the load is rolling, as previously observed by Jacq
et al. �2�. This depth reaches an asymptotic value when rolling a
few times the contact radius, which corresponds to a steady-state
regime. Finally, a plastically deformed shoulder higher at the un-
loading position than at the initially loaded area can be observed.

A comparison of the surface displacement found at the center of
the rolling track after unloading for the three first cycles and a
rolling distance of 2 mm is shown in Fig. 2 for the longitudinal
profile and in Fig. 3 for the transverse profile in the steady-state
region. It can be observed that the permanent print reaches
quickly a stabilized value after very few cycles, i.e., two or three
rolling loading cycles, which is due to the isotropic hardening
model used in this study. The evolution between the first and
second cycles is explained by the change of the surface confor-
mity due to the plastic print that occurs mostly after one loading
cycle.

An experimental profile in the stationary region is also given in
Fig. 3, and a very good agreement is found. Note that starting

Fig. 1 Comparison of a vertical loading/unloading with and
without rolling „k=1−PHertz=5.7 GPa, ceramic ball „elastic…/flat
52100 „elastic-plastic… surface, after a single cycle, rolling dis-
tance of 4 mm…
from Fig. 3, all results presented in the transversal direction will
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e presented in the stationary region.
Figures 4 and 5 show a cross-section view of the von Mises

tress field under load and after unloading, respectively, in a plane
erpendicular to the rolling motion and in the steady-state region.
he stress values, which are normalized by the elastic contact
ressure PHertz, are given after two loading cycles. The loaded
ase �Fig. 4� exhibits a maximum stress that is lower than the
lastic solution due to plasticity. More interesting is the distribu-
ion of the residual stress �see Fig. 5�. Three areas with high
esidual stress coexist, in fact, three bands along the rolling direc-
ion, one at the Hertzian depth and two others at the surface near
he border of the contact but slightly inside the permanent print
lotted in Fig. 3. The residual stress distribution in the plane of
ymmetry �y=0� is also given in Fig. 6.

It is not possible to know whether a region is in a tensile or a
ompressive state when using the von Mises equivalent stress. It
s why the hydrostatic stress, also called the mean stress, is now
sed to describe the residual stress. A positive value indicates that
region is in a tensile state, while a negative value corresponds to
ompression. It becomes clear from Fig. 7 that the near surface
rea is in a tensile state after unloading, while subsurface plastic-
ty induces compressive stresses at the Hertzian depth. This result
s of prime interest for fatigue applications.

A cross-section view of the residual hydrostatic pressure is pre-
ented in Fig. 7. Conversely to Fig. 5, which corresponds to the
on Mises stress, a tensile zone lying on the surface is now ob-
erved, with two local maxima on both sides of the rolling track.

ig. 2 Surface displacement at the center of the rolling track
fter unloading „k=1−PHertz=5.7 GPa, ceramic ball „elastic…/flat
2100 „elastic-plastic… surface, after one, two, and three cycles,
olling distance of 2 mm…

ig. 3 Transverse surface profile after unloading „k=1−PHertz
5.7 GPa, ceramic ball „elastic…/flat 52100 „elastic-plastic… sur-
ace, after one, two, and three cycles…

3

This peculiar feature is of prime interest for a rolling contact
fatigue since these tensile areas may favor the initiation and
propagation of surface or near surface cracks due to surface
inhomogeneities—such as embedded inclusions—or geometrical
defects—such as grinding furrows or debris denting.

The distribution of the equivalent plastic strain in the plane y
=0 is given in Fig. 8 for a rolling of 4 mm from the left to the
right and after two loading cycles. One may notice a maximum
value of approximately 0.9% at the Hertzian depth.

3 Effect of the Ellipticity Ratio
Some trends when the ellipticity ratio k increases up to 16 are

now presented to give more realistic results for rolling bearing
applications. As in ball bearings the elliptical contact is elongated
in the direction perpendicular to the rolling movement. In all
simulations, the grid size is kept equal to 25 �m along the rolling
direction but is multiplied by the ellipticity ratio in the transversal
direction �i.e., �y=k�25 �m�. The distance of rolling is 4 mm,

Fig. 4 Cross-section view of the von Mises stress under load
in the steady-state region „k=1−PHertz=5.7 GPa, ceramic ball
„elastic…/flat 52100 „elastic-plastic… surface, after the second
loading cycle…

Fig. 5 Cross-section view of the von Mises stress after un-
loading „residual stress… in the steady-state region „k=1
−PHertz=5.7 GPa, ceramic ball „elastic…/flat 52100 „elastic-

plastic… surface, after the second loading cycle…
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.e., 12.9 times the semiminor axis of the contact, which is re-
uired to reach the steady-state regime for high ellipticity ratios.
As in the previous section, all results will be given in a dimen-

ionless form, except for the equivalent plastic strain which is
iven in percent, i.e. the coordinates are normalized by the contact
adius of the reference test �a=310 �m�, and the stresses by the
ertzian pressure �5.7 GPa�. Again the cross-section views corre-

pond to a transversal cut at an abscissa in the steady-state region,
.e., far from the loading and unloading points.

The geometry of the elastic body leading to an elliptical contact
f various ellipticity ratios is summarized in Table 1. It could be
bserved that the radius ratio Ry /Rx=77.88 produces a semimajor
xis of the contact ellipse 16 times greater than the semiminor
xis. In the meantime, the normal load should be multiplied by the
llipticity ratio to keep the Hertzian contact pressure constant.
ote that the contact dimensions and normal load indicated in
able 1 correspond to a contact pressure of 5.7 GPa as an elastic
olution �Hertz�, which indeed differs from the EP solution.

Figures 9 and 10 present a longitudinal and a transversal view
f the permanent print found after the first and the second cycles

ig. 6 Distribution of the residual stress in the plane y=0 „k
1−PHertz=5.7 GPa, ceramic ball „elastic…/flat 52100 „elastic-
lastic… surface, after the second loading cycle…

ig. 7 Cross-section view of the hydrostatic pressure after un-
oading „residual stress… in the steady-state region „k=1
PHertz=5.7 GPa, ceramic ball „elastic…/flat 52100 „elastic-

lastic… surface, after the second loading cycle…

4

for different ellipticity ratios. It is interesting to note that despite
the same maximum contact pressure of 5.7 GPa, the print depth
decreases when the ellipticity ratio increases �Fig. 9� whereas its
width increases �Fig. 10�. Another interesting feature is the forma-
tion of a material pileup in front of the unloading point and on
each side of the rolling track. For k=1, the maximum height is
found on each side of the rolling track, the shoulder ahead of the
track at the unloading position �Fig. 9� being slightly lower than
on the lateral sides. Conversely, at higher ellipticity ratios, one
may observe that the height of the shoulder found in front of the
rolling track increases significantly �Fig. 10�, whereas it decreases
besides the rolling track. It should be also noted that the longitu-
dinal print found for k=16 is close to the line contact solution.

The effect of the ellipticity ratio on the steady-state contact
pressure distribution is given in Fig. 11. A comparison with the
elastic solution shows a more pronounced decrease of the maxi-
mum EP contact pressure when increasing the ellipticity ratio,
until an asymptotic solution corresponding to the line contact so-
lution. More surprising is the associated profile for the equivalent
plastic strain �see Fig. 12�, which indicates a decrease of the maxi-
mum of the equivalent plastic strain found at the Hertzian depth
when the ellipticity ratio increases. The depth at which this maxi-
mum is located also increases with the k ratio, which is in agree-
ment with the elastic theory, i.e., 0.48a for a circular point contact
and 0.8a for a line contact. Finally, the flattening of the contact
pressure distribution when increasing the ellipticity ratio could be
attributed to the extension of the plastic zone in depth, as seen in
Fig. 12, despite a lower plasticity level �denoted by the maximum
value of the equivalent plastic strain�.

Figures 13–15 describe the stress profiles found below a point
located at the center of the rolling track and in the steady-state
region. The von Mises stress distribution is first given under load
in Fig. 13, then after unloading in Fig. 14. One may observe in

Fig. 8 Isovalues of the equivalent plastic strain „in %… in the
plane y=0 „k=1−PHertz=5.7 GPa, ceramic ball „elastic…/flat
52100 „elastic-plastic… surface, after the second loading cycle…

Table 1 Effect of the ellipticity ratio k=c /a on the radius of the
elastic body and, subsequently, on the normal load to keep the
Hertzian contact pressure equal to 5.7 GPa

k=c /a Ry /Rx Ry �mm� c �mm� W �N�

1 1 4.7625 0.310763 1152.9
2 2.97069 14.1479 0.621526 2305.8
4 8.82498 42.0290 1.243052 4611.6
8 26.21624 124.8549 2.486104 9223.2

16 77.88023 370.9046 4.972208 18446.4
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ig. 13 a decrease with the ellipticity ratio of the maximum stress
ound under loading, along with an increase of the depth at which
he maximum value is found, in agreement with the trends for the
quivalent plastic strain �Fig. 12�. The residual von Mises stress
lotted in Fig. 14 shows a high level of residual stress, up to 10%
f the Hertz pressure for k=1, i.e., 570 MPa. It can also be ob-
erved that there is almost no difference between the stress state
fter the first and the second cycles. A convenient way to state
hether a region is in a tensile or a compressive state is to plot the
ydrostatic pressure, as in Fig. 15. It becomes clear that the stress
tate within the depth is a succession of tensile, compressive, and

Fig. 9 Surface displacement at the center of
ticity ratios and after one and two cycles „PHe
„elastic-plastic… surface…. Loading, rolling, and

Fig. 10 Transverse surface profile after unlo
and two cycles. Profiles taken in the steady

„elastic…/flat 52100 „elastic-plastic… surface…

5

tensile regions, i.e., compressive at the Hertzian depth and tensile
elsewhere, including at the surface. It should be noted that, com-
ing back to Fig. 7, the highest level of tensile stress found at the
surface is located on each side of the rolling track and not in the
plane of symmetry.

4 Effect of the Normal Load
The effect of the maximum contact pressure—ranging from

4.2 GPa to 8 GPa—is now investigated. The corresponding nor-
mal load is given in Table 2. In the present simulations, the ellip-

rolling track after unloading for various ellip-
5.7 GPa, ceramic ellipsoid „elastic…/flat 52100
loading are represented by the thick arrows

ng for various ellipticity ratios and after one
te region „PHertz=5.7 GPa, ceramic ellipsoid
the
rtz=

un
adi
-sta



t
v
p
a
m

a
t
p
v
s

icity ratio k has been chosen to be equal to 8, which is a close
alue to what is found in ball bearings. In this section, results are
resented with engineering values, i.e., distances in micrometers
nd stress in mega pascals, since both the contact ellipse and the
aximum pressure are varying.
All results presented in this section correspond to a profile

long a vertical line from a surface point located at the center of
he rolling track and in the steady-state region. The equivalent
lastic strain profile is first given �see Fig. 16�, then the residual
on Mises stress �after unloading� Fig. 17, and finally the hydro-
tatic pressure found after unloading �see Fig. 18�. It is clear from

Fig. 11 Contact pressure distribution found
ratios and after the second cycle „PHertz=5.7 G
plastic… surface…

Fig. 12 Profile of the equivalent plastic stra
steady-state region for various ellipticity ratio

ceramic ellipsoid „elastic…/flat 52100 „elastic-plas

6

Fig. 16 that the maximum strain found at 4.2 GPa, i.e., 0.05% is
far below the conventional yield strain defined at 0.2%. Higher
contact pressures result in a significant level of plasticity corre-
sponding to 0.4%, 0.8%, and 2.1% of plastic strain at 5.7 GPa,
6.5 GPa, and 8 GPa, respectively. The depth at which these
maxima are found increases with the load level, as predicted by
the conventional elastic theory. Note that the plastic volume in-
creases significantly with the load. Here, the von Mises stress
profile under loading is close to the elastic solution since the plas-
tic strain remains lower than 2.1% at the highest �for 8 GPa�.

the steady-state region for various ellipticity
ceramic ellipsoid „elastic…/flat 52100 „elastic-

found at the center of the track and in the
nd after one and two cycles „PHertz=5.7 GPa,
in
Pa,
in
s a
tic… surface…



M
M
e
a
5
t
c
o
c
s
f
v

las
ore interesting is the level of residual stress, either the von
ises stress �Fig. 17� or the hydrostatic pressure �Fig. 18�, which

xhibits a high level of stress, i.e., 40 MPa, 253 MPa, 445 MPa,
nd 935 MPa for the equivalent von Mises stress at 4.2 GPa,
.7 GPa, 6.5 GPa, and 8 GPa, respectively. Figure 18 indicates
hat the combination of a high ellipticity ratio �k=8� with a high
ontact pressure �6.5 GPa or higher� results in the disappearance
f the tensile zone found at the surface for the circular point
ontact. It leads to only two zones, one in compression from the
urface to a depth approximately two times the Hertzian depth,
ollowed by a tensile zone at a higher depth. This mean stress
aries from −390 MPa to 180 MPa at 8 GPa.

Fig. 13 Profile of the von Mises stress found
steady-state region for various ellipticity ratio
ceramic ellipsoid „elastic…/flat 52100 „elastic-p

Fig. 14 Profile of the residual von Mises stres
and in the steady-state region for various

„PHertz=5.7 GPa, ceramic ellipsoid „elastic…/flat 52

7

Finally, Fig. 19 presents the permanent print found at the center
of the track along the rolling direction for different normal loads.
Note that coordinates x and z are given in a dimensionless form,
i.e., divided by the semiminor axis a found at 4.2 GPa �i.e.,
310 �m�. Note that the maximum depth is found for the maxi-
mum load �8 GPa� and corresponds to 6.93 �m near the starting
point and to 2.96 �m in the stationary region.

5 Conclusion
Mechanical components of the high level of reliability are usu-

ally designed to operate with a low level of stress, ideally below

er loading at the center of the track and in the
nd after one and two cycles „PHertz=5.7 GPa,
tic… surface…

ound after unloading at the center of the track
ticity ratios and after one and two cycles
und
s a
s f
ellip
100 „elastic-plastic… surface…
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the yield stress. A contact overload may, however, be encountered
accidentally or may be the result of a transient operation regime.
In other components operating under severe or extreme condi-
tions, the yield stress is often exceeded during the normal running
conditions.

Prior to studying the effect of the material hardening on the
fatigue life, it is interesting to describe the effects of such an
overload on the contact behavior and residual state. The EP re-
sponse of a half-space normally loaded by a rolling elastic sphere

ng at the center of the track and in the steady-
one and two cycles „PHertz=5.7 GPa, ceramic
ce…

found at the center of the track and in the
after one and two cycles „k=8, ceramic ellip-
able 2 Value of the normal load versus the Hertzian contact
ressure for k=8

k=c /a W �N� P0 �GPa� a ��m�

8 3689.8 4.2 229.0
8 9223.2 5.7 310.8
8 13677.2 6.5 354.4
8 25499 8.0 436.2
Fig. 15 Hydrostatic pressure found after unloadi
state region for various ellipticity ratios and after
Fig. 16 Profile of the equivalent plastic strain
steady-state region for various normal loads and
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r ellipsoid has been investigated, and results are presented. The
ffect of the ellipticity ratio and contact pressure on the surface
ermanent deformation and subsurface stress and strain states has
een analyzed.
For a circular point contact, it has been shown that the perma-

ent surface print is deeper for a rolling load than for a point
xperiencing vertical loading and unloading. The steady-state re-
ime is reached after a very few number of cycles when using an
sotropic hardening model, typically 2 or 3. Moreover, a tensile
one lying on the surface of the EP body on both sides of the
olling track is found.

For an elongated contact with a semimajor axis perpendicular
o the rolling direction, a shallower but wider surface print and a

Fig. 17 Profile of the von Mises stress found
the steady-state region for various normal loa
ellipsoid „elastic…/flat 52100 „elastic-plastic… su

Fig. 18 Profile of the hydrostatic pressure fou
in the steady-state region for various normal l

ellipsoid „elastic…/flat 52100 „elastic-plastic… surfa
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lower level of residual stress and strain is found when increasing
the ellipticity ratio while maintaining the maximum Hertz pres-
sure constant. This point should be carefully considered when
extrapolating experimental fatigue life data obtained on any ana-
lytical ball on a flat test apparatus to real rolling bearings.

Less surprising is the effect of the contact pressure on the sur-
face and subsurface stress and strain for an elastic-plastic contact
with an ellipticity ratio of 8. Residual stress and strain are found
to increase with the normal load, up to 2.1% for the equivalent
plastic strain and 935 MPa for the equivalent von Mises stress for
the AISI 52100 bearing steel with a frictionless rolling load of
8 GPa.

er unloading at the center of the track and in
and after one and two cycles „k=8, ceramic
ce…

after unloading at the center of the track and
s and after one and two cycles „k=8, ceramic
aft
ds
nd
oad
ce…
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omenclature
a � semiminor axis of the contact ellipse �along

the rolling direction�, m
ax � grid size along x, m
ay � grid size along y, m
B � first parameter of the Swift law, MPa
c � semimajor axis of the contact ellipse �perpen-

dicular to the rolling direction�, m
C � second parameter of the Swift law
h � surface separation, m
Ic � set of grid nodes in contact
k � c /a ellipticity ratio of the contact ellipse
n � third parameter of the Swift law
p � pressure, Pa

PHertz � Hertz contact pressure, Pa
Rx � radius of the ellipsoid along the x axis, m
Ry � radius of the ellipsoid along the y axis, m
u � normal displacement, m

W � normal load, N
x � coordinate along the rolling direction, m
y � coordinate along the perpendicular to the roll-

ing direction, m
z � coordinate along depth, m
� � interference, m
� � strain tensor

�p � equivalent plastic strain
� � stress tensor, Pa

�eq � equivalent stress �von Mises�, Pa

xponent
e � elastic
r � residual

Fig. 19 Displacement at the center of the rolli
and after one and two cycles „k=8—ceram
surface…
t � thermal
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