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Abstract— In a recent paper [Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance
modeling of a compressible hydrodynamics solver on multicore CPU®4drallel Computing: on

the road to Exascald, we have achieved the performance analysis of staggered Lagrange-remap
schemes, a class of solvers widely used for hydrodynamics applications. This paper is devoted to the
rethinking and redesign of the Lagrange-remap process for achieving better performance using
todays computing architectures. As an unintended outcome, the analysis has lead us to the discovery
of a new family of solvers the so-called Lagrangeux schemes that appear to be promising for

the CFD community.

Résumé— Schémas Lagrange-ux : reformuler les schémas Lagrange-Projection’drdre deux

pour améliorer la performance HPC au niveau maud de calcul— Dans un article récent [Poncet

R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance modeling of a compressible
hydrodynamics solver on multicore CPUs,“iarallel Computing: on the road to Exasthleous

avons effectué’&nalyse de la performanceud schéma de type Lagrange+projection & variables
décalées ; cette classe de solveurs est trés utilisée pour les applicatyoingsdynamique. Dans cet
article, on &ntéresse a la reformulation des solveurs Lagrange-projectiondaméliorer leur
performance globale sur architectures de calculs standards. De maniére inattenalyseInous a
conduit vers la découvertéuhe nouvelle famille de solveursappelés schémas Lagrange<— qui
apparaissent comme trés prometteurs dans la communauté CFD.

MOTIVATION AND INTRODUCTION robustness, some spatial remapping on a regular mesh may
be added. A particular case is the family of the so-called
For complex compressibleows involving multiphysics Lagrange+remap schemed-3], also referred to as
phenomena like.g. high-speed elastoplasticity, multimate- remapped Lagrange solvers that apply a remap step on a ref-
rial interaction, plasma, gas-particles, etc., a Lagrangiarence (Eulerian) mesh after each Lagrangian time advance.
description of the ow is generally preferred. To achieve Legacy codes implementing remapped Lagrange solvers

This is an Open Access article distributed under the terms of the Creative Commons Attribution Lic#pséieativecommons.org/licenses/by}4.0
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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The paper is organized as follows. In Section 1, wat
formulate the requirements for the design of better
Lagrange-remap schemes. In Section 2 we give a descrip-
tion of the Lagrange step and formulate it undernite
volume form. In Section 3 we focus on the remap step
which is reformulated as anite volume scheme with pure
convective uxes. This interpretation is applied in Section 4
to build the so-called Lagrangesx schemes. We also
discuss the important issue of achieving second order
accuracy (in both space and time). Performance compar-
isons between the reference Lagrange-remap and the
proposed Lagrangeux scheme are presented in Section 5.
In Section 6 we comment the possible extension to
multimaterial ow with the use of low-diffusive and
accurate interface-capturing methods. We will close the
usually de ne thermodynamical variables at cell centers angaper by some concluding remarks, work in progress and
velocity at cell nodesHig. 1). In Poncett al.[4], we have perspectives.
achieved a multicore node-based performance analysis of a
reference Lagrange-remap hydrodynamics solver used in
industry. By analyzing each kernek( elementary comput- ¢ REQUIREMENTS
ing function) of the whole algorithm, using rdoe-type
models ] on one side and rened Execution Cache Starting from‘legacy Lagrange-remap solvers and related
Memory (ECM) models§, 7] on the other side, we have observed performance measurements, we want to improve
been able not only to quantitatively predict the performancthe performance of these solvers by modifying some of their
of the whole algorithm- with relative errors in the single features but under some constraints and requirements:

Figure 1

“Legacy staggered Lagrange-remap scheme: thermodynami-
cal variables are located at cell centers (circles) whereas veloc-
ity variables are located at cell nodes (squares). a) Eulerian cell,
b) Lagrange step, c) Remapping step.

digit range— but also to identify a set of features that limit 1.
the whole performance. This can be roughly summarized
into three points: 2.
1. For typical mesh sizes of real applications, spatially
staggered variables involve a rather big amount of con8.
munication to/from CPU caches and memory with low
arithmetic intensity, thus lowering the whole performance;
2. Usual Alternating Direction (AD) strategies (see the appem.
dix in [8]) or AD remapping procedures also generate too
much communication with a loss of CPU occupancy; 5.
3. For multimaterial ows using VOF-based interface

A Lagrangian solver (or description) must be used
(allowing for multiphysics coupling);

To reduce communication, we prefer using collocated
cell-centered variables rather than a staggered scheme;
To reduce communication, we prefer using a direct
multidimensional remap solver rather than split alternat-
ing direction projections;

The method can be simply extended to second-order
accuracy (in space and time);

The solver must be able to be naturally extended to
multimaterial ows.

reconstruction methods, there is a strong loss of perfor- Before going further, let us comment the above require-
mance due to some array indirections and noncoalescanents. The second requirement should imply the use of a
data in memory. Vectorization of such algorithms is alsaell-centered Lagrange solver. Fairly recently, Després and
not trivial. Mazeran in §] and Maire et al. [10] (with high-order
From these observations and as a result of the analysis, eetension in I1]) have proposed pure cell-centered
decided td‘rethink Lagrange-remap schemes, with possilLagrangian solvers based on the reconstruction of nodal
bly modifying some aspects of the solver in order to improveelocities. In our study, we will examine if it is possible to
node-based performance of the hydrocode. We have lookede approximate and simpler Lagrangian solvers in the
for alternative formulations that reduce communication antdagrange+remap context, in particular for the sake of
improve both arithmetic intensity and SIMD (Single Instrucperformance. The fourth assertion requires a full multidi-
tion—Multiple Data) property of the algorithm. In this paper,mensional remapping step, probably taking into account
we describe the process of redesign of Lagrange-remggometric elements (deformation of cells and edges) if we
schemes leading to higher performance solvers. Actuallwant to ensure high-order accuracy remapping. To summa-
this redesign methodology also gave us ideas of innovatiwéze, our requirements are somewhat contradictory, and we
Eulerian solvers. The emerging methods, named Lagrangeave to nd a good compromise between some sinuali
ux schemes, appear to be promising in the extendetns-approximations and a loss of accuracy (or properties)
computational uid dynamics community. of the numerical solver.
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2 LAGRANGE STEP
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process consists in projecting the reconstructeld on
piecewise-constant functions on the Eulerian mesh,

As examples, let us consider the compressible E“'%{ccording to the integral formula

equations for two-dimensional problems.
g;u¥sdsb; 121,29, p and E the density, velocity,

pressure and sped total energy respectively, the mass,

momentum and energy conservation equations read

oUy pr o uUbpr p %0, | ¥%1;...;4 alb
where U % &;8ub;qER  p1 %0, p, ¥a &;00,
p3 ¥a &; pP andp, ¥4 pu. For the sake of simplicity, we will
use a perfect gas equation of sfaté &c  1IgcE %jujzlrz
c2 EE;L;3. The speed of soundc is given by
c¥s cp=q.

For any volumeV, that moves with the uid, from the
Reynolds transport theorem we have

y4 y4

E U|dX1/4 f@J|bl’ 6UU||ng
dt Vi @ ¢
Z

Ya pi
@

nalr

wheremis the normal unit vector exteriorto;. This leads to
a natural explicit nite volume scheme in the form
JK™PELaU, BP B v jKjaU, R

tn X jAnb%;Ljp,r/_]\p%;L I"Iip%;L

Anp %;L OKnp %;L

&b

In (2), the superscript'L” indicates the Lagrange

evolution of the quantity. Any Eulerian cédl is deformed
into the Lagrangian volum&™z\ at time t"%, and into
the Lagrangian volumi™ 1t at timet"™ *. The pressureux

terms through the edgésare evaluated at tinté? in order

to get second-order accuracy in time. Of course, that mea

that we need a predictor step for the velocigyd u™z" at
time t"°2 (not written here for simplicity).

Notations

To simplify, in all what follows we will use the notation

VA EZATI O

3 RETHINKING THE REMAPPING STEP

The remapping step considers the remappietds U,

de ned at cell centerk™ on the initial (reference)

np ;L

Eulerian mesh with cellK. Let us denotdR a linear

operator that reconstructs piecewise polynomial function'g
from a discrete eld UYL de ned at cell centers of the

Np ;L

Lagrangian mest at time t"1. The remapping

Denoting

z

upt 1/41%_ R 1Ly P L & pdx

K

ap

Practically, there are many ways to consider the projection
operation (3). One can assemble elementary projection
contributions by computing the volume intersections
between the reference mesh and the deformed mesh. But this
procedure requires the computation of all the geometrical
elements. Moreover, the projection needs local tests of
projection with conditional branching (think about the very
different cases of a compression and expansion). Thus the
procedure is not SIMD and potentially leads to a loss of
performance. The incremental remapping can also be
interpreted as a transport/advection algorithm, as empha-
sized by Dukowicz and Baumgardndi2] that appears to
be better suited for SIMD treatments.

Let us now write a different original formulation of the
remapping step. In this step, there is no time evolution of any
guantity, and in some sense we hayé¢ ¥ 0, that we write

oU%oUpr 8 VPUPpr 8vPUP Y0

We decide to split up this equation into two substeps:
(i) Backward convection:

oUpr 8 vPUP Y0 3b
(i) Forward convection:
oUpr 8 vPiUp v0 &b

Each convection problem is well-posed on the time
interval’®; t". Let us now focus into these two steps and

S
e way to solve them.

3.1 Backward Convection in Lagrangian Description

After the Lagrange step, if we solve the backward
convection problen{4) over a time interval t" using a
Lagrangian description, we have

JKjoU " v KLU, B 3P
Actually, from the celK™ Lt we go back to the original

cell K with conservation of the conservative quantities.
orl %1 (conservation of mass), we have

JKi gt va jKmP L g
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showing the variation of density by volume variation.that can also be written
For | ¥2;3;4, it is easy to see that both velocity and !

speci c total energy are kept unchanged in this step: tn X AP 3L 1 1
p ay p g p aJﬁlpl%aJlél m A J jAjz J & Zb;L rﬁ‘béxL
un;H Y, unb 1;L; En;H Y, Enb 1L A oK
tn X 1 1
| | o . — A B alt mp Ao
Thus, this step is clearly computationally inexpensive. L

We recognize irf10) pressure-relateduxes and convec-
3.2 Forward Convection in Eulerian Description tive uxes that dene the whole numericalux.

From the discreteeld8U "', de ned on the Eulerian cells
K, we then solve the forward convection problem over & 4 comments
time step t" under an Eulerian description. A standard
nite volume discretization of the problem will lead to theThe nite volume formulatior{10) is attractive and seems
classical time advance scheme rather simple at rst sight. But we should not forget that
we have to compute a Lagrangian velocity vectetd
VP2 1, Uzl where the variables should be located at cell
nodes to return a well-posed deformation. Moreover, expres-
sion(10) involves geometric elements like the length of the
) b LH deformed edgesA“b%L. Among the rigorous collocated
for some interface valued, ' de ned from the local | agrangian solvers, let us mention the GLACE scheme by
neighbor vaIuei;J{}'H. We nally get the expected Eulerian Després-Mazerar9] and the cell-centered EUCCLHYD
valuesUR* at timet™™. solver by Maireet al [10]. Both are rather computationally
Notice that from(6) and(7) we have also expensive and their second-order accurate extension is not
X easy to achieve.
jKjUTPL 1/ JKP 1L U[}b LL tn iA U;‘\b%?'* a,/’lb% mb Although it is possible to couple these Lagrangian solvers
A oK with the ux-balanced remapping formulation, it is also of
3Bp interest to think about ways to simplify or approximate the
Lagrange step without losing second-order accuracy. One

thus completely dening the remap step under thaite of the dif culty in the analysis of Lagrange-remap schemes

volume scheme forr{8). One can notice that neither meshiS that, in some sense, space and time are coupled by the
intersections nor geometric considerations are required ggformation process. _
achieve this remapping process. Theite volume form Below, we derive a formulation that leads to a clear

(8) is now suitable for a straightforward vectorized SiMpSepParation between space and time, in order to simply
treatment. From(8) it is easy to achieve second-ordercontm' the order of accuracy. The idea is to make the time

accuracy for the remapping step by usuite volume tools step tend to zero in the Lagrange-remap scheme (method

(MUSCL reconstruction + second-order accurate tim&f lines [L3]), then exhibit the instantaneous spatial
advance scheme for example). numerical uxes through the Eulerian cell edges that will

serve for the construction of an explicinite volume
scheme. Because the method needs an approximate Riemann
3.3 Full Lagrange+Remap Time Advance solver in Lagrangian form, we will call it a Lagrangex

scheme.
Let us note that the Lagrange+remap scheme is actually a

conservative nite volume scheme: putting (2) inf®) gives

. n X L 1
ShEEATHA K AUPEH 5P mp g
A ok

foralll:
4 DERIVATION OF A SECOND-ORDER ACCURATE
o X bl nbiL LAGRANGE-FLUX SCHEME
aJI I:?(blj/4a.}| I:E e ]Anpi’LJ a)| I:?A 2 m 2
K . . . . .
: JAnb%;L oK™ 3 From the intermediate conclusions of the discussion 3.4
above, we would like to be free from any rather expensive
tn X nbl'H npl ” . | h .
- jAjau BRI collocated Lagrangian solver. However, such a Lagrangian
IKI o o solver seems necessary to correctly and accuratelyede

®P  the deformation velocityeld v/ at timet™ .
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In what follows, we are trying to deal with time with b 2 %4; 2 for achieving second order accuracy. At this
accuracy in a different manner. Let us come back to thstage, because there is no time discretization, everything is
Lagrange+remap formul@d0). Let us consider dsmall de nedonthe Eulerianmesh arukes are located atthe edges
time stept that ful lls the usual stability CFL condition. of the Eulerian cells. This is one originality of this scheme
We have compared to the legacy staggered Lagrange-remap scheme
that has to use variables ded on the Lagrangian cells.

To get high-order accuracy in time, one can then apply a
standard high-order time advance scheme (Runge-Kutta 2
(RK2), etc.). For the second-order Heun scheme for
example, we have the following algorithm:

1. Compute the time step t" subject to some CFL
condition;

Predictor stepMUSCL reconstruction + slope limitation
on primitive variableg|, u andp. From the discrete states
UR, compute a discrete gradient for each ¢eland
interpolated values at cell interfaces;

Use a Lagrangian approximate Riemann solver to
compute pressureuxesp, and interface velocities)
from the MUSCL reconstructed values at the interface;

t

UIRAP YOI

X jAta=2pj
A Gl
A

oK

&) Bd=2p Mha=2p

A

t

_—_ JAOU, B a=2bvait=2b m
KI5 o

2.

By makingt tend to zero,t(> 0), we haveA&=2b | A,
&M Ba=2p! p,vd=2p! u,&J,B'! U, then we geta
semi-discretization in space of the conservation laws. That
can be seen as a particular method of lid&k [

ddU,| R, 1 X 4. Compute the upwind edge valuikg B, according to the
i iKi jAIO® B, mP sign of&ul mp
A oK 5. Compute the numericalix U, as dened in(12),
1 X 6. Compute therst order predicted statéﬁz;"pl:
— JAJdU B dus mb alb
KA ok ) n X
U™t mUp o AU
We get a classicalnite volume method A ok
Wiy, L% 4, . -
dt JKj A oK 7. Corrector step MUSCL reconstruction + slope limita-
tion: from the discrete valugsy ™!, compute a discrete
with a numerical ux Ua whose components are gradient for each ceK and interpolated values at cell
interfaces;
AR, Yad)B,dupn mPPPB m dl2P 8. Use a Lagrangian approximate Riemann solver to

compute pressureuxesp,'i;nbl and interface velocities

In (11), pressure uxes do b, and interface normal
velocitiesdu, mPcan be computed from an approximate
Riemann solver in Lagrangian coordinates (for exampl
the Lagrangian HLL solverlfl]). Then, the interface states

u™P1 from the MUSCL reconstructed values at the
interface;

Compute the upwind edge validks 5;;"" ! according to
the sign ofauy ™! mp

8.

dJ; B, should be computed from an upwind process|o, Compute the numericalix U™ as dened in(12)

according to the sign of the normal velooityy, mkp This
is interesting because the resulting has similarities with

11. Compute the second-order accurate stages at time
tp 1

the so-called Advection Upstream Splitting Method
(AUSM) ux family proposed by Liou 15], but the
construction here is different and, in some sense, pssti
the AUSM splitting.

To get higher-order accuracy in space, one can use a
standard MUSCL reconstruction + slope limiting process One can appreciate the simplicity of the numerical solver

involving classical slope limiters like for example Sweby compared to the legacy staggered Lagrange-remap
limiter function [L6]: algorithm. The complexity of the latter mainly due to various

kernel (function) calls and too much communications is
detailed in fi]. Here the predictor and corrector kernel
functions have similar programming codes and there is no
intermediate variables to save in memory.

. ULp ubnet
N AESA—

uPly,un .t?x
KJA oK

/ &:bb ¥4 &b> Obsigriabmaximindjay; bjbjb

mindojaj; jbjpb
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Density Velocity Pressure Internal energy Mach nb.
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Figure 2
Second-order Lagrangerx scheme on reference Sedhock tube problem on two different mesh grids, 100 and 400 respectively. The solid red
line is the analytic solution and blue points are the numerical solution.

4.1 Lagrangian HLL Approximate Solver 4.2.1 Sod's Shock Tubel7]

A HLL approximate Riemann solved4] in Lagrangian The initial data dened on space intervé®; 1 is made of
coordinates can be used to easily compute interface pressii9 ~ constant  states dj;u;pR ¥4 d;0;1p  and

and velocity. For a local Riemann problem made of a leféd: U PRy ¥4 @:125 0;0:1P with initial discontinuity at
stateU, and a right statdJg, the contact pressug is X 740:5. We successively test the method on two uniform
given by the formula mesh grids made of 100 and 400 cells, respectively. bk

computational time i§ % 0:23 and we use a CFL number
Hy, OrPLP QPR diOr ) equal to 0.25 and a Sweby limiter with coeent
P e a. b or a. b gr mavéc; CRP8R - ULP b ¥ 1:5. On Figure 2 one can observe a nice behavior of
a14p the Euler solver, with sharp discontinuities and a low
numerical diffusion into the rarefaction fan even for the

and the normal contact velocit§' by coarse grid.
& g.uL b ggUr 1 p?& .pL 515p 4.2.2 Two-Rarefaction Shock Tube
b 9r G b dr MaXeC,; CRP The second reference example is a case of two moving-

. . L _ away rarefaction fans under near-vacuum conditiadp [
leading to simple fqrmuilas eas_|ly implementable in th(?t is known that the Roe scheme breaks down for
second-order Heun time integration scheme. this case. The related Riemann problem is made
of the left statedq;u;pR ¥+ d; 2;0:4b and right state
ay; u; p, ¥4 d;2;0:4r The nal time of T %0:16.

We again test the method on a coarse mesh (200 points)
As example, we test the Lagrangex scheme presented in and a ne mesh (2000 points). Numerical results are given
Section 4 on few one-dimensional shock tube problemsn Figure 3 The numerical scheme appears to be robust
We use a RK2 time integrator and a MUSCL reconstructioespecially in near-vacuum zones where both density and

with the Sweby slope limiter given {i3). pressure are close to zero.

4.2 Numerical Experiments
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Figure 3

Second-order Lagrangesx scheme on a double rarefaction near-vacuum case on two different mesh grids, 200 and 2000 points respectively. The
solid red line is the analytic solution.

4.2.3 Case With Sonic Rarefaction and Supersonic Contact terms of Millions of Cell Updates Per second (denoted

The following shock tube case with initial datahereafter as MCUPs). Tests are performed on a standard
&y; u; pR ¥a &; 0; 5Sband &; u; phy, ¥4 &:125,0; 0:1P gener- 2 8 cores Intel Sandy Bridge server E5-2670. Each core
ates a sonic 1-rarefaction, a supersonic 2-contact discontiffis a frequency of 2.6 GHz, and supports latélvX

ity and a 3-shock wave. Thenal time isT ¥4 0:16 and we  (Advanced Vector Extension) vector instructions. For
use 400 mesh point§FL ¥ 0:25. Numerical results show Mmulticore support, we use the multithreading programming
a good capture of the rarefaction wave, without any norinterfaceOpenMP

entropic expansion-shocki(. 4). In the reference staggered Lagrange-remap sofjer [
thermodynamic variables are dawed at grid cell centers
4.2.4 Case of Shock-Shock Hypersonic Shock Tube while velocity variables are daed at mesh nodes. Due to

this staggered discretization and the Alternating Direction
(AD) remapping procedures, this solver is decomposed into

Of_ t_WO 1;“2'1'?9 5 (l)“(()jlsp Vé'thh ?;U; PR 1/46;;2;1[3 and hing kernels. This decomposition mechanically decreases
& U pRe 2 dl; 5,0:01 Both 1-wave and 3-wave are o moan Arithmetic Intensity (Al) of the solver.

Zgo?:l? W?\t{es, a.lrjlfjlt/hgqght state hizg M%Ch QuTberdoIr(])rderOn the other hand, the Lagrangex algorithm consists
- Minattime Ist 72 L6, e use gnd points and the 3, only two kernels with a relative high arithmetic intensity

:!m!:er CSEf clent bbls herel_(eql;u\;]ale_nt tof tt:e mllnm.ot?] which leads to two Compute-Bound (CB) kernels. In tist
imiter). One can observe a nice behavior of the solver: el mel. named PredictionLagrangeFlux() an

is no pressure or velocity oscillations at the Contacéﬁpropriate Riemann solver is called, facaxes are

d.is.continuity,. and the numericgl scheme preserves the poE'mputed and variables are updated for the prediction. The
tivity of density, pressure and internal energig( 5). second kernel, namegorrectionLagrangeFIux()

is close in terms of algorithmic steps, since it also uses a

This last shock tube problem is a violerdw case made

5 PERFORMANCE RESULTS Riemann solv_er, computesixes and updates the variables
for the correction part of the solver.
In this section, we compare the new Lagrangg-scheme In order to assess the scalability and absolute performance

to the reference (staggered) Lagrange-remap scheme ohboth schemes, we present Tiable 1a performance
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Figure 4

Shock tube problem with sonic rarefaction fan, 400 mesh poing,timeT is T = 0.18, the solid red line is the analytic solution.

Figure 5

Shock-shock case with subsonic-hypersonic shock, 400 mesh paiaktsimeT is T = 0.16, the solid red line is the analytic solution.

TABLE 1 Lagrange-ux scheme has a better scalability, due to
Performance comparison between the reference Lagrange-remap solver Blaﬂh vectorization and multithreading: our Lagrange-
the Lagrange-ux solver in MCUPs, using different machine cgorations. . | tati hi d f31.1X with 16
Scalability (last column) is computed as the speedup of the multithreade'&np ementia |0n_ac . IEVES a speedup o : Wi _Cores
vectorized version compared to the baseline purely sequential version@nd AVX vectorization (a 2X speedup from AVX vectoriza-
Tests are performed fone meshes, such that kernel data lies in DRAM tion, which is ideal for this solver with many divisions
memory. The Lagrangedx solver exhibits superior scalability, because it instructions. and an almost 16X perfect Speedup from the
has— by design— better arithmetic intensity. . '
multicore usage) whereas the reference Lagrange-remap
1 core 16 cores algorithm reaches a speed-up of only 14.8X. This difference
Scheme lcore | AVX AVX Scalability 1S mainly due to the memory-bound kernels composing the
reference Lagrange-remap scheme. Indeed, speedups due
to AVX vectorization and multithreading are not ideal for
Reference 25 38 37.0 14.8 kernels with relatively low intensity since memory
bandwidth is shared between cores.

Lagrange-ux 2.6 5.8 81.0 31.1

comparison study. First, we notice that the baseling pEALING WITH MULTIMATERIAL FLOWS
performance- i.e. the single core absolute performance

without vectorizatior- is quite similar for the two schemes, Although this is not the aim and the scope of the present
as can be seen in therst column. However, we the paper, we would like to give an outline of the possible
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extension of Lagrangedx schemes to compressible
multimaterial/multiuid ows,i.e. ows that are composed
of different immiscible uids and separated by free
boundaries.

For pure Lagrange+remap schemes, usually VOF-based
Interface Reconstruction (IR) algorithms are used (Ya@ung
PLIC, etc.). After the Lagrangian evolution, for the cells that
host more than oneuid, uid interfaces are reconstructed.
During the remapping step, one has to evaluate the mass®

uxes per material. From the computational point of view
and computing performance, this process generally slows
down the whole performance because of many array indirec-
tions in memory and sped treatment into mixed cells
along with the material interfaces.

If the geometry of the Lagrangian cells is not com-
pletely known (as in the case of Lagrange< schemes),
we have to proceed differently. A possibility is to use
Interface Capturing (IC) schemesg.conservative Eulerian b)
schemes that evaluate the convected masgs through
Eulerian cell edges. This can be achieved by the use of
antidiffusive/low-diffusive advection solvers in the spirit
of Després-Lagoutié'® limited-downwind schemel§] of
VoFire [19. In a recent work 20], we have analyzed the
origin of known artifacts and numerical interface instabilities
for this type of solvers and concluded that the reconstruction
of fully multidimensional gradients with multidimensional
gradient limiters was necessary. Thus, we decided to use ©
low-diffusive advection schemes with a Multidimensional
Limiting Process (MLP) in the spirit oR2]]. The resulting
method is quite accurate, shape-preserving and free from
any artifact. We show some numerical results in the next
two subsections. Let us emphasize that the interface
capturing strategy perfectlyts with the Lagrangeux ow
description, and the resulting schemes are really suitable for
vectorization (SIMD feature) with data coalescence into
memory. 9

6.1 Interface Capturing for Pure Advection
Problems

Let us rst present numerical results on a pure scalar
linear advection problem. The forward-backward advec-
tion case proposed by Rider and Koth¥][is a hat-
shaped function which is advected and stretched into a .
rotating velocity eld, leading to a lament structure.
Then by applying the opposite velocityeld, one have

to retrieve the initial disk shape. Ipigure § we show

)

the numerical solutions obtained on a g8@® for both Figure 6

Page 9 of 12

the passive scalareld of variablez2%;1 and the Validation of the low-diffusive interface capturing scheme
. . . . B H 2
quantityz8l  zPthat indicates the numerical spread rate  ©n the Kothe-Rider advection case, mesh“5@0ot of the

of the diffuse interface. One can conclude the good behav-

smearing indicator| Y. zdl

passive variable 2 %8;1 on the left column, and interface
zb in the right column.

ior of the method, providing both stability, accuracy and a) At initial timet = 0, b) at timet = 3, c) at timet = 6, d) at

shape preservation. timet =9, e) at nal timet = 12.
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Figure 7

Geometry and initial corguration for the reference triple-point

case. a)

6.2 Three-Material Hydrodynamics Problem

We then consider our interface capturing method for
multi uid hydrodynamics. Because material mass fractions
are advected, that is

oy p u ry %0, k¥1;...;N
b)

one can use the advection solver of these variables but
we prefer dealing with the conservative form of the
equations

ody P pr dayub¥0

in order to enforce mass conservati@3][ It is known
that Eulerian interface-capturing schemes generally
produce spurious pressure oscillations at material interfaces
[24, 25]. Some authors propose locally non conservative,
approaches 26, 27] to prevent from any pressure
oscillations. Here we have a full conservative Eulerian
strategy involving a speat limiting process which is
free from any pressure oscillation at interfaces,
providing strong robustness. This will be explained in a next
paper.

The multimaterial Lagrangedx scheme is tested on the
reference“triple point test case, foune.g. in Loubére
et al. [28]. This problem is a three-state two-material 2D
Riemann problem in a rectangular vessel. The simulation
domain isX ¥ d@;7p 00;3b as described irFigure 7
The domain is split up into three regiosi ¥ 1;2; 3 lled d)
with two perfect gases leading to a two-material problem.
Perfect gas equations of state are used wyjit#h c; ¥4 1.5
andc, ¥+ 1:4. Due to the density differences, two shocks Figure 8

in sub-domain¥, and X3 propagate with different speeds. Results on the multimateridriple point case (perfect gases)
This creates a shear along the initial contact discontinuity  using a collocated Lagrange+remap solver + low-diffusive

and the formation of a vorticity. Capturing the vorticity is

interface capturing advection scheme, mesh made of
20489 878 points. Final time i§ = 3.3530. a) Densityeld,

of course the difcult part to CompUte- We use a rathee b) pressureeld, c) temperatureeld, d) colored representation
mesh made 02048 878 points (about 1.8 M cells). of material indicators.
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OnFigure 8 we plot the density, pressure, temperatelds Workshop' Memory issues on Multi- and Manycore Platférm
respectively and indicate the location of the three material at &PGPQQ/' 2009 Lecture Notes in Computer Scien6667,
zones. One can observe a nice capture of both shocks and '

. - . 7 Stengel H., Treibig J., Hager G., Wellein G. (2015) Quantifying
contact discontinuities. The vortex is also captured performance bottlenecks of stencil computations using the

accurately. Execution-Cache-Memory modétroc. 1CS15, Proc. of the
29th ACM on Int. Conf. on Supercomputimp. 207-2016,
ACM, New York, ISBN: 978-1-4503-3559-1, DO10.1145/
2751205.2751240

8 Colella P., Woodward P.R. (1984) The numerical simulation of

Thi . . v d th desi f two-dimensional uid ow with strong shocks,). Comput.

is paper is primarily focused on the redesign of ppis54 115173,

Lagrange-remap hydrodynamics solvers in order to achievg Després B., Mazeran C. (2005) Lagrangian gas dynamics in

better HPC node-based performance. We have reformulated two dimensions and Lagrangian systeAtsh. Rational Mech.

the remapping step under anite volume ux balance, Anal. 178, 327-372.

allowing for a full SIMD algorithm. As an unintended 10 Maire P.-H., Abgrall R., Breil J., Ovadia J. (2007) A cell-

outcome, the analysis has lead us to the discovery of a new C?Rtﬁred Lagranguanﬂsc?imﬁlfo; fompfess'b“* problems,

promising family of Eulerian solvers- the so-called S J. Sci. Compug, 1781-1824.

Lagrange-ux solvers- that show simplicity of implementa- 11 Maire P.-H. (2009) A high-order cell-centered Lagrangian
scheme for two-dimensional compressibleid ows on

tion, accuracy, and exibility with a high-performance unstructured meshed, Comput. Phy228 23912425,
capability compared to the legacy staggered Lagrange-remap pyuowicz J.K., Baumgardner J.R. (2000) Incremental
scheme. Interface capturing methods can be easily plugged for remapping as a transport/advection algorithrSomput. Phys.

solving multimaterial ow problems. Ongoing work is 160, 318-335.
focused of the effective performance modeling, analysi&3 Schiesser W.E. (1991Jhe Numerical Method of Lines
and measurement of Lagrangex schemes with comparison ~ Academic Press, ISBN 0-12-624130-9.

of reference*legacy Lagrange-remap solvers including 14 Toro E.F. (2009Riemann solvers and numerical methods for

. S . . . uid dynamics. A practical introductiordrd edn., Springer,
multimaterial interface capturing on different multicore ISBN 978-3-540-25202-3, DOL0.1007/b79761

processor architectures. Because of the multicore+vectorizgs | . '\ s (1996) A sequel to AUSM: AUSM4, Comput
tion scalability of Lagrangeux schemes, one can also expect Phys.129, 2, 364-382. '

high-performance on manycore co-processors like Graphigg sweby P.K. (1984) High resolution schemes usinglimiters
Processing Units (GPU) or Intel MIC. This will be the aim  for hyperbolic conservation law§IAM J. Numer. Anal21,

of next developments. 995-1011.
17 Sod G.A. (1971) A survey of severalnite difference
methods for systems of nonlinear hyperbolic conservation laws,
J. Comput. Phy=27, 1-31.
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