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Abstract— In a recent paper [Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance
modeling of a compressible hydrodynamics solver on multicore CPUs, in“ Parallel Computing: on
the road to Exascale” ], we have achieved the performance analysis of staggered Lagrange-remap
schemes, a class of solvers widely used for hydrodynamics applications. This paper is devoted to the
rethinking and redesign of the Lagrange-remap process for achieving better performance using
today’s computing architectures. As an unintended outcome, the analysis has lead us to the discovery
of a new family of solvers– the so-called Lagrange-� ux schemes– that appear to be promising for
the CFD community.

Résumé— Schémas Lagrange-� ux : reformuler les schémas Lagrange-Projection d’ordre deux
pour améliorer la performance HPC au niveau nœud de calcul— Dans un article récent [Poncet
R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance modeling of a compressible
hydrodynamics solver on multicore CPUs, in“Parallel Computing: on the road to Exascale” ], nous
avons effectué l’analyse de la performance d’un schéma de type Lagrange+projection à variables
décalées ; cette classe de solveurs est très utilisée pour les applications d’hydrodynamique. Dans cet
article, on s’ intéresse à la reformulation des solveurs Lagrange-projection a� n d’améliorer leur
performance globale sur architectures de calculs standards. De manière inattendue, l’analyse nous a
conduit vers la découverte d’une nouvelle famille de solveurs– appelés schémas Lagrange-� ux – qui
apparaissent comme très prometteurs dans la communauté CFD.

MOTIVATION AND INTRODUCTION

For complex compressible� ows involving multiphysics
phenomena likee.g.high-speed elastoplasticity, multimate-
rial interaction, plasma, gas-particles, etc., a Lagrangian
description of the� ow is generally preferred. To achieve

robustness, some spatial remapping on a regular mesh may
be added. A particular case is the family of the so-called
Lagrange+remap schemes [1–3], also referred to as
remapped Lagrange solvers that apply a remap step on a ref-
erence (Eulerian) mesh after each Lagrangian time advance.
Legacy codes implementing remapped Lagrange solvers
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usually de� ne thermodynamical variables at cell centers and
velocity at cell nodes (Fig. 1). In Poncetet al. [4], we have
achieved a multicore node-based performance analysis of a
reference Lagrange-remap hydrodynamics solver used in
industry. By analyzing each kernel (i.e. elementary comput-
ing function) of the whole algorithm, using roo� ine-type
models [5] on one side and re� ned Execution Cache
Memory (ECM) models [6, 7] on the other side, we have
been able not only to quantitatively predict the performance
of the whole algorithm– with relative errors in the single
digit range– but also to identify a set of features that limit
the whole performance. This can be roughly summarized
into three points:
1. For typical mesh sizes of real applications, spatially

staggered variables involve a rather big amount of com-
munication to/from CPU caches and memory with low
arithmetic intensity, thus lowering the whole performance;

2. Usual Alternating Direction (AD) strategies (see the appen-
dix in [8]) or AD remapping procedures also generate too
much communication with a loss of CPU occupancy;

3. For multimaterial � ows using VOF-based interface
reconstruction methods, there is a strong loss of perfor-
mance due to some array indirections and noncoalescent
data in memory. Vectorization of such algorithms is also
not trivial.
From these observations and as a result of the analysis, we

decided to“rethink” Lagrange-remap schemes, with possi-
bly modifying some aspects of the solver in order to improve
node-based performance of the hydrocode. We have looked
for alternative formulations that reduce communication and
improve both arithmetic intensity and SIMD (Single Instruc-
tion – Multiple Data) property of the algorithm. In this paper,
we describe the process of redesign of Lagrange-remap
schemes leading to higher performance solvers. Actually,
this redesign methodology also gave us ideas of innovative
Eulerian solvers. The emerging methods, named Lagrange-
� ux schemes, appear to be promising in the extended
computational� uid dynamics community.

The paper is organized as follows. In Section 1, we� rst
formulate the requirements for the design of better
Lagrange-remap schemes. In Section 2 we give a descrip-
tion of the Lagrange step and formulate it under a� nite
volume form. In Section 3 we focus on the remap step
which is reformulated as a� nite volume scheme with pure
convective� uxes. This interpretation is applied in Section 4
to build the so-called Lagrange-� ux schemes. We also
discuss the important issue of achieving second order
accuracy (in both space and time). Performance compar-
isons between the reference Lagrange-remap and the
proposed Lagrange-� ux scheme are presented in Section 5.
In Section 6 we comment the possible extension to
multimaterial � ow with the use of low-diffusive and
accurate interface-capturing methods. We will close the
paper by some concluding remarks, work in progress and
perspectives.

1 REQUIREMENTS

Starting from“legacy’’ Lagrange-remap solvers and related
observed performance measurements, we want to improve
the performance of these solvers by modifying some of their
features but under some constraints and requirements:
1. A Lagrangian solver (or description) must be used

(allowing for multiphysics coupling);
2. To reduce communication, we prefer using collocated

cell-centered variables rather than a staggered scheme;
3. To reduce communication, we prefer using a direct

multidimensional remap solver rather than split alternat-
ing direction projections;

4. The method can be simply extended to second-order
accuracy (in space and time);

5. The solver must be able to be naturally extended to
multimaterial� ows.
Before going further, let us comment the above require-

ments. The second requirement should imply the use of a
cell-centered Lagrange solver. Fairly recently, Després and
Mazeran in [9] and Maire et al. [10] (with high-order
extension in [11]) have proposed pure cell-centered
Lagrangian solvers based on the reconstruction of nodal
velocities. In our study, we will examine if it is possible to
use approximate and simpler Lagrangian solvers in the
Lagrange+remap context, in particular for the sake of
performance. The fourth assertion requires a full multidi-
mensional remapping step, probably taking into account
geometric elements (deformation of cells and edges) if we
want to ensure high-order accuracy remapping. To summa-
rize, our requirements are somewhat contradictory, and we
have to� nd a good compromise between some simpli� ca-
tions-approximations and a loss of accuracy (or properties)
of the numerical solver.

Figure 1
“Legacy” staggered Lagrange-remap scheme: thermodynami-
cal variables are located at cell centers (circles) whereas veloc-
ity variables are located at cell nodes (squares). a) Eulerian cell,
b) Lagrange step, c) Remapping step.
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2 LAGRANGE STEP

As examples, let us consider the compressible Euler
equations for two-dimensional problems. Denoting
q; u ¼ ðuiÞi; i 2 f 1; 2g, p and E the density, velocity,
pressure and speci� c total energy respectively, the mass,
momentum and energy conservation equations read

otUl þ r � ð uUl Þ þ r � pl ¼ 0; l ¼ 1; . . . ; 4 ð1Þ

where U ¼ ðq; ðquiÞi; qEÞ, p1 ¼~0, p2 ¼ ðp; 0ÞT,
p3 ¼ ð0; pÞT andp4 ¼ pu. For the sake of simplicity, we will
use a perfect gas equation of statep ¼ c � 1ð ÞqðE � 1

2 juj2Þ,
c 2 ð1; 3�. The speed of soundc is given by
c ¼

����������
cp=q

p
.

For any volumeVt that moves with the� uid, from the
Reynolds transport theorem we have

d
dt

Z

V t

U l dx ¼
Z

@V t

@tUl þ r � ð u Ul Þf g dx

¼ �
Z

@V t

pl � mdr

wheremis the normal unit vector exterior toV t. This leads to
a natural explicit� nite volume scheme in the form

jjKnþ 1;LjðUl Þnþ 1;L
K ¼ jKjðUl Þn

K

� � tn
X

Anþ 1
2;L� oKnþ 1

2;L

jAnþ 1
2;Ljp

nþ 1
2;L

A � m
nþ 1

2;L
A ð2Þ

In (2), the superscript“L” indicates the Lagrange
evolution of the quantity. Any Eulerian cellK is deformed
into the Lagrangian volumeKnþ 1

2;L at time tnþ 1
2, and into

the Lagrangian volumeKnþ 1;L at timetnþ 1. The pressure� ux
terms through the edgesA are evaluated at timetnþ 1

2 in order
to get second-order accuracy in time. Of course, that means
that we need a predictor step for the velocity� eld unþ 1

2;L at
time tnþ 1

2 (not written here for simplicity).

Notations

To simplify, in all what follows we will use the notation
vnþ 1

2 ¼ unþ 1
2;L.

3 RETHINKING THE REMAPPING STEP

The remapping step considers the remapping� elds Ul

de� ned at cell centersKnþ 1;L on the initial (reference)
Eulerian mesh with cellsK. Let us denoteRnþ 1;L a linear
operator that reconstructs piecewise polynomial functions
from a discrete� eld Unþ 1;L de� ned at cell centers of the
Lagrangian meshM Nþ 1;L at time tnþ 1. The remapping

process consists in projecting the reconstructed� eld on
piecewise-constant functions on the Eulerian mesh,
according to the integral formula

Unþ 1
K ¼

1
jKj

Z

K
Rnþ 1;LUnþ 1;LðxÞdx ð3Þ

Practically, there are many ways to consider the projection
operation (3). One can assemble elementary projection
contributions by computing the volume intersections
between the reference mesh and the deformed mesh. But this
procedure requires the computation of all the geometrical
elements. Moreover, the projection needs local tests of
projection with conditional branching (think about the very
different cases of a compression and expansion). Thus the
procedure is not SIMD and potentially leads to a loss of
performance. The incremental remapping can also be
interpreted as a transport/advection algorithm, as empha-
sized by Dukowicz and Baumgardner [12] that appears to
be better suited for SIMD treatments.

Let us now write a different original formulation of the
remapping step. In this step, there is no time evolution of any
quantity, and in some sense we haveotU ¼ 0, that we write

otU ¼ otU þ r � ð� vnþ 1
2UÞ þ r � ð vnþ 1

2UÞ ¼0

We decide to split up this equation into two substeps:
(i) Backward convection:

otU þ r � ð� vnþ 1
2UÞ ¼0 ð4Þ

(ii) Forward convection:

otU þ r � ð vnþ 1
2UÞ ¼0 ð5Þ

Each convection problem is well-posed on the time
interval½0; � tn�. Let us now focus into these two steps and
the way to solve them.

3.1 Backward Convection in Lagrangian Description

After the Lagrange step, if we solve the backward
convection problem(4) over a time interval� tn using a
Lagrangian description, we have

jKjðUl Þn; H
K ¼ jKnþ 1;LjðUl Þnþ 1;L

K ð6Þ

Actually, from the cellKnþ 1;L we go back to the original
cell K with conservation of the conservative quantities.
For l ¼ 1 (conservation of mass), we have

jKj qn;H
K ¼ jKnþ 1;Lj qnþ 1;L

K
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showing the variation of density by volume variation.
For l ¼ 2; 3; 4, it is easy to see that both velocity and
speci� c total energy are kept unchanged in this step:

un;H ¼ unþ 1;L; En;H ¼ Enþ 1;L

Thus, this step is clearly computationally inexpensive.

3.2 Forward Convection in Eulerian Description

From the discrete� eldðUn;H
K ÞK de� ned on the Eulerian cells

K, we then solve the forward convection problem over a
time step� tn under an Eulerian description. A standard
� nite volume discretization of the problem will lead to the
classical time advance scheme

Unþ 1
K ¼ Un;H

K �
� tn

jKj

X

A� oK

jAj U
nþ 1

2;H
A ðv

nþ 1
2

A � mAÞ ð7Þ

for some interface valuesU
nþ 1

2;H
A de� ned from the local

neighbor valuesUn;H
K . We � nally get the expected Eulerian

valuesUnþ 1
K at timetnþ 1.

Notice that from(6) and(7) we have also

jKj Unþ 1
K ¼ jKnþ 1;Lj Unþ 1;L

K � � tn
X

A� oK

jAj U
nþ 1

2;H
A ðv

nþ 1
2

A � mAÞ

ð8Þ

thus completely de� ning the remap step under the� nite
volume scheme form(8). One can notice that neither mesh
intersections nor geometric considerations are required to
achieve this remapping process. The� nite volume form
(8) is now suitable for a straightforward vectorized SIMD
treatment. From(8) it is easy to achieve second-order
accuracy for the remapping step by usual� nite volume tools
(MUSCL reconstruction + second-order accurate time
advance scheme for example).

3.3 Full Lagrange+Remap Time Advance

Let us note that the Lagrange+remap scheme is actually a
conservative� nite volume scheme: putting (2) into(8) gives
for all l :

ðUl Þnþ 1
K ¼ðUl Þn

K �
� tn

Kj j

X

Anþ 1
2;L� oKnþ 1

2;L

jAnþ 1
2;Lj ðpl Þ

nþ 1
2;L

A � m
nþ 1

2;L
A

�
� tn

jKj

X

A� oK

jAj ðUl Þ
nþ 1

2;H
A v

nþ 1
2

A � mA

� �

ð9Þ

that can also be written

ðUl Þnþ 1
K ¼ ðUl Þn

K �
� tn

jKj

X

A� oK

jAj
jAnþ 1

2;Lj
jAj

ðpl Þ
nþ 1

2;L
A � m

nþ 1
2;L

A

 !

�
� tn

jKj

X

A� oK

jAj ðUl Þ
nþ 1

2;H
A ðv

nþ 1
2

A � mAÞ
� �

ð10Þ

We recognize in(10) pressure-related� uxes and convec-
tive � uxes that de� ne the whole numerical� ux.

3.4 Comments

The � nite volume formulation(10) is attractive and seems
rather simple at� rst sight. But we should not forget that
we have to compute a Lagrangian velocity vector� eld
vnþ 1

2 ¼ unþ 1
2;L where the variables should be located at cell

nodes to return a well-posed deformation. Moreover, expres-
sion(10) involves geometric elements like the length of the
deformed edgesAnþ 1

2;L. Among the rigorous collocated
Lagrangian solvers, let us mention the GLACE scheme by
Després-Mazeran [9] and the cell-centered EUCCLHYD
solver by Maireet al. [10]. Both are rather computationally
expensive and their second-order accurate extension is not
easy to achieve.

Although it is possible to couple these Lagrangian solvers
with the � ux-balanced remapping formulation, it is also of
interest to think about ways to simplify or approximate the
Lagrange step without losing second-order accuracy. One
of the dif� culty in the analysis of Lagrange-remap schemes
is that, in some sense, space and time are coupled by the
deformation process.

Below, we derive a formulation that leads to a clear
separation between space and time, in order to simply
control the order of accuracy. The idea is to make the time
step tend to zero in the Lagrange-remap scheme (method
of lines [13]), then exhibit the instantaneous spatial
numerical� uxes through the Eulerian cell edges that will
serve for the construction of an explicit� nite volume
scheme. Because the method needs an approximate Riemann
solver in Lagrangian form, we will call it a Lagrange-� ux
scheme.

4 DERIVATION OF A SECOND-ORDER ACCURATE
LAGRANGE-FLUX SCHEME

From the intermediate conclusions of the discussion 3.4
above, we would like to be free from any rather expensive
collocated Lagrangian solver. However, such a Lagrangian
solver seems necessary to correctly and accurately de� ne
the deformation velocity� eld vnþ 1

2 at timetnþ 1
2.
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In what follows, we are trying to deal with time
accuracy in a different manner. Let us come back to the
Lagrange+remap formula(10). Let us consider a“small’’
time stept that ful� lls the usual stability CFL condition.
We have

ðUl ÞKðtÞ ¼ ðUl Þn
K �

t
jKj

�
X

A� oK

jAj
jALðt=2Þj

jAj
ðpl ÞL

Aðt=2Þ �mL
Aðt=2Þ

� �

�
t

jKj

X

A� oK

jAj ðUl ÞH
A ðt=2ÞvAðt=2Þ �mA

By makingt tend to zero, (t > 0), we haveALðt=2Þ ! A,
ðpl ÞLðt=2Þ ! pl , vðt=2Þ ! u, ðUl ÞH ! Ul , then we get a
semi-discretization in space of the conservation laws. That
can be seen as a particular method of lines [13]:

dðUl ÞK

dt
¼ �

1
jKj

X

A� oK

jAj ððpl ÞA � mAÞ

�
1

jKj

X

A� oK

jAj ðUl ÞA ðuA � mAÞ ð11Þ

We get a classical� nite volume method

dUK

dt
¼ �

1
jKj

X

A� oK

jAj UA

with a numerical� ux UA whose components are

ðUl ÞA ¼ ðUl ÞA ðuA � mAÞ þ ðpl ÞA � mA ð12Þ

In (11), pressure� uxes ðpl ÞA and interface normal
velocitiesðuA � mAÞcan be computed from an approximate
Riemann solver in Lagrangian coordinates (for example
the Lagrangian HLL solver, [14]). Then, the interface states
ðUl ÞA should be computed from an upwind process
according to the sign of the normal velocityðuA � mAÞ. This
is interesting because the resulting� ux has similarities with
the so-called Advection Upstream Splitting Method
(AUSM) � ux family proposed by Liou [15], but the
construction here is different and, in some sense, justi� es
the AUSM splitting.

To get higher-order accuracy in space, one can use a
standard MUSCL reconstruction + slope limiting process
involving classical slope limiters like for example Sweby’s
limiter function [16]:

/ ða; bÞ ¼ ðab > 0ÞsignðaÞmaxðminðjaj; bjbjÞ;

minðbjaj; jbjÞÞ ð13Þ

with b 2 ½1; 2� for achieving second order accuracy. At this
stage, because there is no time discretization, everything is
de� nedontheEulerianmeshand� uxesare locatedat theedges
of the Eulerian cells. This is one originality of this scheme
compared to the legacy staggered Lagrange-remap scheme
that has to use variables de� ned on the Lagrangian cells.

To get high-order accuracy in time, one can then apply a
standard high-order time advance scheme (Runge-Kutta 2
(RK2), etc.). For the second-order Heun scheme for
example, we have the following algorithm:
1. Compute the time step� tn subject to some CFL

condition;
2. Predictor step. MUSCL reconstruction + slope limitation

on primitive variablesq, u andp. From the discrete states
Un

K, compute a discrete gradient for each cellK and
interpolated values at cell interfaces;

3. Use a Lagrangian approximate Riemann solver to
compute pressure� uxespn

A and interface velocitiesun
A

from the MUSCL reconstructed values at the interface;
4. Compute the upwind edge valuesðUl Þn

A according to the
sign ofðun

A � mAÞ;
5. Compute the numerical� ux Un

A as de� ned in(12);
6. Compute the� rst order predicted statesUH;nþ 1

K :

UH;nþ 1
K ¼ Un

K �
� tn

Kj j

X

A� oK

Aj jUn
A

7. Corrector step. MUSCL reconstruction + slope limita-
tion: from the discrete valuesUH;nþ 1

K , compute a discrete
gradient for each cellK and interpolated values at cell
interfaces;

8. Use a Lagrangian approximate Riemann solver to
compute pressure� uxespH;nþ 1

A and interface velocities
uH;nþ 1

A from the MUSCL reconstructed values at the
interface;

9. Compute the upwind edge valuesðUl ÞH;nþ 1
A according to

the sign ofðuH;nþ 1
A � mAÞ;

10. Compute the numerical� ux UH;nþ 1
A as de� ned in(12);

11. Compute the second-order accurate statesUnþ 1
K at time

tnþ 1:

Unþ 1
K ¼ Un

K �
� tn

jKj

X

A� oK

jAj
Un

A þ UH;nþ 1
A

2

One can appreciate the simplicity of the numerical solver
compared to the legacy staggered Lagrange-remap
algorithm. The complexity of the latter mainly due to various
kernel (function) calls and too much communications is
detailed in [4]. Here the predictor and corrector kernel
functions have similar programming codes and there is no
intermediate variables to save in memory.
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4.1 Lagrangian HLL Approximate Solver

A HLL approximate Riemann solver [14] in Lagrangian
coordinates can be used to easily compute interface pressure
and velocity. For a local Riemann problem made of a left
stateUL and a right stateUR, the contact pressurepH is
given by the formula

pH ¼
qRpL þ qLpR

qL þ qR
�

qLqR

qL þ qR
maxðcL; cRÞ ðuR � uLÞ

ð14Þ

and the normal contact velocityuH by

uH ¼
qLuL þ qRuR

qL þ qR
�

1
qL þ qR

pR � pL

maxðcL; cRÞ
ð15Þ

leading to simple formulas easily implementable in the
second-order Heun time integration scheme.

4.2 Numerical Experiments

As example, we test the Lagrange-� ux scheme presented in
Section 4 on few one-dimensional shock tube problems.
We use a RK2 time integrator and a MUSCL reconstruction
with the Sweby slope limiter given in(13).

4.2.1 Sod’s Shock Tube [17]

The initial data de� ned on space interval½0; 1� is made of
two constant states ðq; u; pÞL ¼ ð1; 0; 1Þ and
ðq; u; pÞR ¼ ð0:125; 0; 0:1Þ with initial discontinuity at
x ¼ 0:5. We successively test the method on two uniform
mesh grids made of 100 and 400 cells, respectively. The� nal
computational time isT ¼ 0:23 and we use a CFL number
equal to 0.25 and a Sweby limiter with coef� cient
b ¼ 1:5. On Figure 2, one can observe a nice behavior of
the Euler solver, with sharp discontinuities and a low
numerical diffusion into the rarefaction fan even for the
coarse grid.

4.2.2 Two-Rarefaction Shock Tube

The second reference example is a case of two moving-
away rarefaction fans under near-vacuum conditions [14].
It is known that the Roe scheme breaks down for
this case. The related Riemann problem is made
of the left stateðq; u; pÞL ¼ ð1; � 2; 0:4Þ and right state
ðq; u; pÞR ¼ ð1; 2; 0:4Þ. The � nal time of T ¼ 0:16.
We again test the method on a coarse mesh (200 points)
and a� ne mesh (2000 points). Numerical results are given
in Figure 3. The numerical scheme appears to be robust
especially in near-vacuum zones where both density and
pressure are close to zero.

Figure 2
Second-order Lagrange-� ux scheme on reference Sod’s shock tube problem on two different mesh grids, 100 and 400 respectively. The solid red
line is the analytic solution and blue points are the numerical solution.
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4.2.3 Case With Sonic Rarefaction and Supersonic Contact

The following shock tube case with initial data
ðq; u; pÞL ¼ ð5; 0; 5Þand ðq; u; pÞR ¼ ð0:125; 0; 0:1Þgener-
ates a sonic 1-rarefaction, a supersonic 2-contact discontinu-
ity and a 3-shock wave. The� nal time isT ¼ 0:16 and we
use 400 mesh points,CFL ¼ 0:25. Numerical results show
a good capture of the rarefaction wave, without any non-
entropic expansion-shock (Fig. 4).

4.2.4 Case of Shock-Shock Hypersonic Shock Tube

This last shock tube problem is a violent� ow case made
of two hitting � uids with ðq; u; pÞL ¼ ð1; 5; 1Þ and
ðq; u; pÞR ¼ ð1; � 5; 0:01Þ. Both 1-wave and 3-wave are
shock waves, and the right state has a Mach number of order
40. Final time isT ¼ 0:16, we use 400 grid points and the
limiter coef� cient b is here1 (equivalent to the minmod
limiter). One can observe a nice behavior of the solver: there
is no pressure or velocity oscillations at the contact
discontinuity, and the numerical scheme preserves the posi-
tivity of density, pressure and internal energy (Fig. 5).

5 PERFORMANCE RESULTS

In this section, we compare the new Lagrange-� ux scheme
to the reference (staggered) Lagrange-remap scheme in

terms of Millions of Cell Updates Per second (denoted
hereafter as MCUPs). Tests are performed on a standard
2 � 8 cores Intel Sandy Bridge server E5-2670. Each core
has a frequency of 2.6 GHz, and supports Intel’s AVX
(Advanced Vector Extension) vector instructions. For
multicore support, we use the multithreading programming
interfaceOpenMP.

In the reference staggered Lagrange-remap solver [4],
thermodynamic variables are de� ned at grid cell centers
while velocity variables are de� ned at mesh nodes. Due to
this staggered discretization and the Alternating Direction
(AD) remapping procedures, this solver is decomposed into
nine kernels. This decomposition mechanically decreases
the mean Arithmetic Intensity (AI) of the solver.

On the other hand, the Lagrange-� ux algorithm consists
in only two kernels with a relative high arithmetic intensity
which leads to two Compute-Bound (CB) kernels. In the� rst
kernel, named PredictionLagrangeFlux() , an
appropriate Riemann solver is called, face� uxes are
computed and variables are updated for the prediction. The
second kernel, namedCorrectionLagrangeFlux() ,
is close in terms of algorithmic steps, since it also uses a
Riemann solver, computes� uxes and updates the variables
for the correction part of the solver.

In order to assess the scalability and absolute performance
of both schemes, we present inTable 1 a performance

Figure 3
Second-order Lagrange-� ux scheme on a double rarefaction near-vacuum case on two different mesh grids, 200 and 2000 points respectively. The
solid red line is the analytic solution.
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comparison study. First, we notice that the baseline
performance– i.e. the single core absolute performance
without vectorization– is quite similar for the two schemes,
as can be seen in the� rst column. However, we the

Lagrange-� ux scheme has a better scalability, due to
both vectorization and multithreading: our Lagrange-� ux
implementation achieves a speedup of 31.1X with 16 cores
and AVX vectorization (a 2X speedup from AVX vectoriza-
tion, which is ideal for this solver with many divisions
instructions, and an almost 16X perfect speedup from the
multicore usage) whereas the reference Lagrange-remap
algorithm reaches a speed-up of only 14.8X. This difference
is mainly due to the memory-bound kernels composing the
reference Lagrange-remap scheme. Indeed, speedups due
to AVX vectorization and multithreading are not ideal for
kernels with relatively low intensity since memory
bandwidth is shared between cores.

6 DEALING WITH MULTIMATERIAL FLOWS

Although this is not the aim and the scope of the present
paper, we would like to give an outline of the possible

Figure 4

Shock tube problem with sonic rarefaction fan, 400 mesh points,� nal timeT is T = 0.18, the solid red line is the analytic solution.

Figure 5

Shock-shock case with subsonic-hypersonic shock, 400 mesh points,� nal timeT is T = 0.16, the solid red line is the analytic solution.

TABLE 1

Performance comparison between the reference Lagrange-remap solver and
the Lagrange-� ux solver in MCUPs, using different machine con� gurations.
Scalability (last column) is computed as the speedup of the multithreaded

vectorized version compared to the baseline purely sequential version.
Tests are performed for� ne meshes, such that kernel data lies in DRAM
memory. The Lagrange-� ux solver exhibits superior scalability, because it

has— by design— better arithmetic intensity.

Scheme 1 core
1 core
AVX

16 cores
AVX Scalability

Lagrange-� ux 2.6 5.8 81.0 31.1

Reference 2.5 3.8 37.0 14.8
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extension of Lagrange-� ux schemes to compressible
multimaterial/multi� uid � ows, i.e. � ows that are composed
of different immiscible � uids and separated by free
boundaries.

For pure Lagrange+remap schemes, usually VOF-based
Interface Reconstruction (IR) algorithms are used (Young’s
PLIC, etc.). After the Lagrangian evolution, for the cells that
host more than one� uid, � uid interfaces are reconstructed.
During the remapping step, one has to evaluate the mass
� uxes per material. From the computational point of view
and computing performance, this process generally slows
down the whole performance because of many array indirec-
tions in memory and speci� c treatment into mixed cells
along with the material interfaces.

If the geometry of the Lagrangian cells is not com-
pletely known (as in the case of Lagrange-� ux schemes),
we have to proceed differently. A possibility is to use
Interface Capturing (IC) schemes,e.g.conservative Eulerian
schemes that evaluate the convected mass� uxes through
Eulerian cell edges. This can be achieved by the use of
antidiffusive/low-diffusive advection solvers in the spirit
of Després-Lagoutière’s limited-downwind scheme [18] of
VoFire [19]. In a recent work [20], we have analyzed the
origin of known artifacts and numerical interface instabilities
for this type of solvers and concluded that the reconstruction
of fully multidimensional gradients with multidimensional
gradient limiters was necessary. Thus, we decided to use
low-diffusive advection schemes with a Multidimensional
Limiting Process (MLP) in the spirit of [21]. The resulting
method is quite accurate, shape-preserving and free from
any artifact. We show some numerical results in the next
two subsections. Let us emphasize that the interface
capturing strategy perfectly� ts with the Lagrange-� ux � ow
description, and the resulting schemes are really suitable for
vectorization (SIMD feature) with data coalescence into
memory.

6.1 Interface Capturing for Pure Advection
Problems

Let us � rst present numerical results on a pure scalar
linear advection problem. The forward-backward advec-
tion case proposed by Rider and Kothe [22] is a hat-
shaped function which is advected and stretched into a
rotating velocity � eld, leading to a� lament structure.
Then by applying the opposite velocity� eld, one have
to retrieve the initial disk shape. InFigure 6, we show
the numerical solutions obtained on a grid5002 for both
the passive scalar� eld of variable z 2 ½0; 1� and the
quantity zð1 � zÞ that indicates the numerical spread rate
of the diffuse interface. One can conclude the good behav-
ior of the method, providing both stability, accuracy and
shape preservation.

a)

b)

c)

d)

e)

Figure 6

Validation of the low-diffusive interface capturing scheme
on the Kothe-Rider advection case, mesh 5002. Plot of the
passive variablez 2 ½0; 1� on the left column, and interface
smearing indicator l ¼ zð1 � zÞ in the right column.
a) At initial timet = 0, b) at timet = 3, c) at timet = 6, d) at
time t = 9, e) at� nal timet = 12.
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6.2 Three-Material Hydrodynamics Problem

We then consider our interface capturing method for
multi� uid hydrodynamics. Because material mass fractions
are advected, that is

otyk þ u � r yk ¼ 0; k ¼ 1; . . . ; N

one can use the advection solver of these variables but
we prefer dealing with the conservative form of the
equations

ot qykð Þ þ r � qykuð Þ ¼0

in order to enforce mass conservation [23]. It is known
that Eulerian interface-capturing schemes generally
produce spurious pressure oscillations at material interfaces
[24, 25]. Some authors propose locally non conservative
approaches [26, 27] to prevent from any pressure
oscillations. Here we have a full conservative Eulerian
strategy involving a speci� c limiting process which is
free from any pressure oscillation at interfaces,
providing strong robustness. This will be explained in a next
paper.

The multimaterial Lagrange-� ux scheme is tested on the
reference“triple point” test case, founde.g. in Loubère
et al. [28]. This problem is a three-state two-material 2D
Riemann problem in a rectangular vessel. The simulation
domain is X ¼ ð0; 7Þ � ð0; 3Þ as described inFigure 7.
The domain is split up into three regionsXi, i ¼ 1; 2; 3 � lled
with two perfect gases leading to a two-material problem.
Perfect gas equations of state are used withc1 ¼ c3 ¼ 1:5
and c2 ¼ 1:4. Due to the density differences, two shocks
in sub-domainsX2 andX3 propagate with different speeds.
This creates a shear along the initial contact discontinuity
and the formation of a vorticity. Capturing the vorticity is
of course the dif� cult part to compute. We use a rather� ne
mesh made of2048� 878 points (about 1.8 M cells).

Figure 7

Geometry and initial con� guration for the reference triple-point
case. a)

b)

c)

d)

Figure 8

Results on the multimaterial“ triple point’’ case (perfect gases)
using a collocated Lagrange+remap solver + low-diffusive
interface capturing advection scheme, mesh made of
20489 878 points. Final time isT = 3.3530. a) Density� eld,
b) pressure� eld, c) temperature� eld, d) colored representation
of material indicators.
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OnFigure 8, we plot the density, pressure, temperature� elds
respectively and indicate the location of the three material
zones. One can observe a nice capture of both shocks and
contact discontinuities. The vortex is also captured
accurately.

CONCLUDING REMARKS AND PERSPECTIVES

This paper is primarily focused on the redesign of
Lagrange-remap hydrodynamics solvers in order to achieve
better HPC node-based performance. We have reformulated
the remapping step under a� nite volume � ux balance,
allowing for a full SIMD algorithm. As an unintended
outcome, the analysis has lead us to the discovery of a new
promising family of Eulerian solvers– the so-called
Lagrange-� ux solvers– that show simplicity of implementa-
tion, accuracy, and� exibility with a high-performance
capability compared to the legacy staggered Lagrange-remap
scheme. Interfacecapturingmethodscan beeasily plugged for
solving multimaterial� ow problems. Ongoing work is
focused of the effective performance modeling, analysis
and measurement of Lagrange-� ux schemes with comparison
of reference“ legacy” Lagrange-remap solvers including
multimaterial interface capturing on different multicore
processor architectures. Because of the multicore+vectoriza-
tion scalability of Lagrange-� ux schemes, one can also expect
high-performance on manycore co-processors like Graphics
Processing Units (GPU) or Intel MIC. This will be the aim
of next developments.
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